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Abstract

Several previous studies have shown that when a cell that has taken up nanoparticles

divides, the nanoparticles are inherited by the two daughter cells in an asymmetrical fashion,

with one daughter cell receiving more nanoparticles than the other. This interesting observa-

tion is typically demonstrated either indirectly using mathematical modelling of high-through-

put experimental data or more directly by imaging individual cells as they divide. Here we

suggest that measurements of the coefficient of variation (standard deviation over mean) of

the number of nanoparticles per cell over the cell population is another means of assessing

the degree of asymmetry. Using simulations of an evolving cell population, we show that the

coefficient of variation is sensitive to the degree of asymmetry and note its characteristic

evolution in time. As the coefficient of variation is readily measurable using high-throughput

techniques, this should allow a more rapid experimental assessment of the degree of

asymmetry.

Introduction

How nanoparticles interact with cells is important for many applications of nanotechnology,

most directly when nano-sized objects are being used to diagnose and treat disease [1–7], but

also indirectly when nanoparticles released from products containing nanoscale features may

subsequently interact with biology [8–11]. While in vivo studies remain the gold standard,

nanoparticle-cell interactions are nevertheless often investigated in vitro and commonly using

cancerous cell lines to allow for more rapid experimentation. Cancer cells generally divide rap-

idly (e.g., the cell population doubling time of HeLa cells is typically less than a day) implying

that cell divisions are, implicitly or explicitly, a common feature of many in vitro experiments.

In this context, it has repeatedly been observed that when cells divide, the nanoparticles

they have taken up are shared between the resulting daughter cells in an asymmetrical fashion

[12–22], that is, one daughter cell receiving more of the nanoparticles from the mother than

the other daughter cell. Evidence for such an asymmetry includes fits of computational [13,14]

and theoretical [15,16,20] models to experimental data, as well as more direct observations by

tediously imaging individual cells as they divide and subsequently tracking the nanoparticle

inheritance pattern of the daughter cells [19–22].
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Here we complement these approaches by showing that the coefficient of variation over the

cell population (i.e., the standard deviation over the mean) is a useful observable to quickly

assess the degree of asymmetry upon cell division. We have previously developed a model of

nanoparticle uptake in dividing cell populations and demonstrated that it describes experimen-

tal observations well [23–26]. With this firm basis, we perform simulations of the evolution of

the cell population and, specifically assess how the coefficient of variation evolves in time both

after a nanoparticle exposure as well as during continuous exposure. While an increase of the

coefficient of variation with time after exposure has been observed previously [13,20], we here

show that such an increase is characteristic of asymmetric inheritance; for symmetric inheri-

tance, the coefficient of variation instead oscillates. Furthermore, between these two extremes of

symmetry and asymmetry, a mixed behaviour is observed. Thus, how the coefficient of variation

evolves in time after exposure is sensitive to the degree of asymmetry. Measurement of the coef-

ficient of variation is far easier than a full assessment, and modelling, of the whole distribution.

Consequently, we suggest that its time evolution allows a ready assessment of potential asymme-

try in nanoparticle inheritance upon cell division for future studies.

Results and discussion

From the outset, it is important to distinguish between two different notions of asymmetric

inheritance upon cell division. The first notion is befitting when discussing what happens at

cell level. Thus, consider a cell that has 100 nanoparticles and when it divides, the two daughter

cells take, say, 43 and 57 of those nanoparticles, respectively. Clearly we may consider this par-

ticular division as asymmetric.

However, we may also consider the same process at the particle level. Thus, say that each of

those 100 particles has an equal probability of ending up in daughter cell 1 or 2. The most

probable inheritance is then, indeed, that both daughter cells take 50 nanoparticles. Neverthe-

less, it will often be the case that the daughter cells take something close to 50, but not exactly

50. For example, the probability of one daughter inheriting 43 and the other 57 nanoparticles

is 0.03, while the probability of both receiving 50 nanoparticles is 0.08 (see below for how to

determine this). Certainly, the latter is a more probable event, but if we consider also the prob-

ability of one daughter receiving 49, 48, 47 etc nanoparticles, then it is clear that most of the

time, the inheritance at a cell level is asymmetric, at least to some degree. In essence, the reason

for this is simply the assumption that the inheritance is stochastic at a single-particle level. In

other words, regardless of the fact that the inheritance is completely symmetric for a single par-
ticle, at the cell level it is typically asymmetric.

Of course, there is the possibility that even at a single particle level, the probability that a

particle is inherited by a certain daughter cell is skewed towards one of the daughter cells, so

that the probability of daughter cell 1 inheriting a nanoparticle is p, while the probability of

daughter cell 2 receiving the nanoparticle is 1—p. Here p must be between 0.5 (completely

symmetric) to 1 (completely asymmetric).

The initial report [15] on asymmetric inheritance of nanoparticles explicitly considered the

asymmetry at single-particle level and, indeed, reported a probability, p, between 0.52 and 0.72

[15]. Other workers have sometimes been a bit less explicit when it comes to their definition of

asymmetry. In light of the fact that asymmetric inheritance at a cell level is a trivial conse-

quence if the inheritance is stochastic, we consider that the more interesting question is the

degree of asymmetry at single-particle level. Hence, in the following we will stick to the origi-

nal definition of asymmetry.

Thus, in order to model the inheritance upon cell division, we consider a cell containing n
nanoparticles which divides into two daughter cells and where the probability of daughter cell
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1 inheriting a nanoparticle upon cell division is p. It is well-known that the probability of

daughter cell 1 inheriting k nanoparticles is then given by a binomial distribution [15]. Since

which daughter cell is number 1 or 2 is arbitrary, the overall inheritance distribution is given

by a sum of binomials, viz.

1

2

n

k

 !

pkð1 � pÞn� k þ pn� kð1 � pÞk
� �

: ð1Þ

We show this distribution for a cell containing 100 nanoparticles in Fig 1A, both for a

completely symmetric inheritance [p = 0.5 in Eq (1)] as well as for a highly asymmetric inheri-

tance (p = 0.8). These results illustrate more vividly the discussion above: Even for a completely

symmetric inheritance at single-particle level, the distribution (Fig 1A; blue) nevertheless has a

width and most of the time, a recently divided cell will not take half of the nanoparticles of the

mother. For asymmetric inheritance at single-particle level, the distribution (Fig 1A; red) splits

into two peaks and essentially all divisions will be asymmetric at cell level.

It is noteworthy that the inheritance distribution is highly dependent on the number of

nanoparticles, as illustrated in Fig 1B and 1C which shows the inheritance distribution for 10,

100 and 1000 particles and for two different asymmetries. This requires careful consideration

when comparing to data stemming from experimental techniques that do not directly measure

the number of nanoparticles, but proxies thereof (e.g., fluorescence intensity [27]). For such

cases, the actual number of nanoparticles is obviously not known. However, as will transpire,

the results we present below are only weakly dependent on actual numbers, at least when the

numbers concerned are 100 or more particles, so this seems not to be an issue in practice.

Whether it could actually be used as a basis for a method to convert from, say, fluorescence to

number of nanoparticles is an interesting idea, but one that we do not pursue further here.

From Fig 1B and 1C we also conclude that if a cell has fewer nanoparticles before division,

then the inheritance distribution can become quite wide, relatively speaking. This is particu-

larly so for larger asymmetries at single-particle level [larger p in Eq (1)], leading to overlap-

ping of the two peaks; conversely, for larger number of nanoparticles, the peaks become,

relatively speaking, more narrow and well-separated. This is not a novel phenomenon, but

rather is related to small-number fluctuations. However, it can have very practical implica-

tions. Thus, Braeckmans, De Smedt and colleagues suggested that nanoparticles delivered into

cells within vesicles are unsuitable for long-term tracking of cells due to asymmetry upon cell

division, while if they are delivered into the cytosol, the inheritance is symmetric and tracking

can be performed for longer [20]. While the symmetrical inheritance is a prerequisite, Fig 1B

shows that it is not sufficient to ensure a symmetrical inheritance at cell level; a large number

of labels is also required (cf. the results for n = 100 and 1000 in Fig 1B)–undoubtedly an inter-

esting application, or rather avoidance of, small-number fluctuations. More generally, cell divi-

sion is known to be a cause of variability also for organelles and biomolecules (e.g., proteins

and RNA molecules), especially when the number of objects is low [28].

We end this general discussion about asymmetrical inheritance with the further qualifica-

tion that we should actually not consider the particles themselves, but what happens to the

nanoparticle-containing organelles [15,18,29], as presumably it is the organelles that are being

inherited by daughter cells. The distinction arises because some nanoparticles may reside

within the same organelle and would presumably be inherited as a unit. We will avoid this

complication in the following, which would be reasonable if organelles are mostly similarly

populated, including due to nanoparticles not agglomerating in suspension and being taken

up as single particles. Suffice to say here, that it is possible to take into account a differing num-

ber of nanoparticles in the organelles by deconvolving the number of nanoparticle-containing
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organelles with the organelle occupancy distribution (or organelle fluorescence distribution in

the case of methods based on fluorescence) and this has been described previously [29].

Given the interest in asymmetric nanoparticle inheritance, we posed the question whether

there exist simple, high-throughput, experiments that could explicitly measure or at least give

an indication of the degree of asymmetry even without detailed mathematical modelling [13–

16,18,20] or tedious tracking of single cells [19–22]. We have previously argued, both from a

theoretical perspective [24] as well as with simulations [23], that the mean nanoparticle uptake

Fig 1. Inheritance distribution [Eq (1)]. A. Inheritance distribution for a cell containing 100 nanoparticles upon

division, for symmetric inheritance [p = 0.5 in Eq (1)] and highly asymmetric inheritance (p = 0.8) as indicated by the

legend. (Solid lines) Normal distribution approximation (see Methods). B-C. Inheritance distribution for different

number of particles (n = 10, 100 and 1000 as indicated in figures). B. Symmetric inheritance [p = 0.5 in Eq (1)]; C.

Highly asymmetric inheritance (p = 0.8).

https://doi.org/10.1371/journal.pone.0242547.g001
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over a cell population is insensitive to (potential) asymmetries of the inheritance distribution.

The reason is simple: when a cell divides, regardless of the asymmetry, the mean inheritance

remains 50%. This line of thinking, however, raised the possibility that the standard deviation

(the next order of statistical descriptors) of the number of nanoparticles per cell over a cell

population could be sensitive enough to the inheritance distribution and thereby be used to

demonstrate asymmetry. More precisely, we zoned in on the coefficient of variation (CV), that

is, the standard deviation divided by the mean, as a normalised version of the width of the

distribution.

Thus, we performed simple simulations of a continuously evolving cell population [23–26],

where cells age as time goes on and, when reaching the end of one full cell cycle, cells divide

into two new daughter cells that start the cell cycle anew. While the total duration of the cell

cycle in reality is not the same for all cells, the variation is nevertheless moderate for cell lines,

with a coefficient of variation of around 20% [30,31]. In our previous work on A549 cells we

also showed good agreement between experiments and a parameter-free model that assumes

the total duration of the cell cycle is the same for all cells [23,24]. For simplicity, we therefore

assumed that all cells age at the same rate and have the same total duration of their cell cycle;

however, below we also show results when this condition is relaxed. We also assumed that the

cells were in the exponentially growing phase, which implies that the duration of one cell cycle

is equal to the cell population doubling time. In order to make the discussion general, we pres-

ent all our results with time normalised to the total duration of the cell cycle. For rapidly grow-

ing cells (e.g., HeLa) with a cell population doubling time of around a day, this implies that

times can, roughly, be interpreted as days; for more slowly growing cells, the “actual time” may

be found by multiplying our results with the cell population doubling time. We simulated

experiments where cells took up nanoparticles continuously, as well as experiments where

uptake for a limited duration (a “pulse”) was followed by a subsequent observation time (a

“chase”). When cells divide, the nanoparticles they contain were shared between the daughter

cells in accordance with the inheritance distribution [Eq (1)]. More details may be found in

the Methods section and our previously published work [23–26].

Before delving into more realistic circumstances, we discuss the case that the majority of

cells of a cell population initially have roughly the same number of nanoparticles and subse-

quently evolve only due to cell division. In other words, we do not explicitly take into account

the uptake process and we use a much more narrow initial distribution than one finds experi-

mentally. This situation is sufficiently simple that it can be understood in detail and allows us

to illustrate the general idea most clearly, before moving on to wider and more realistic initial

distributions. Thus, consider Fig 2 which shows how the distribution of number of nanoparti-

cles per cell evolves with time. We start by discussing the condition that the inheritance is sym-

metric [p = 0.5 in Eq (1); upper row of Fig 2]. Initially, most cells have 100 nanoparticles, but

we include a limited spread around this value (Fig 2A). As time progresses, some cells will

divide and thereby dilute their nanoparticle load. This results in a secondary peak which is

centered on half the initial load, that is, on p�100 = 50 (Fig 2B). Naturally, cells that have not

yet divided remain within the original peak, though their abundance progressively decreases

with time (Fig 2B and 2C). After one full cell cycle, all cells have divided and only the second-

ary peak remains (Fig 2D). Since we assume that the inheritance is stochastic, the secondary

peak is wider than the original, reflecting the width of the inheritance distribution (Fig 1A;

blue).

Fig 2A–2D show also the consequences this evolution has on the mean and standard devia-

tion of the number of nanoparticles per cell (line with bars in grey). Initially, the standard devi-

ation is small (Fig 2A), reflecting the limited spread within the population of this simplified

situation. As some cells divide, the standard deviation grows substantially (Fig 2B), because it
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now represents the standard deviation over two well-separated peaks. As time progresses, the

standard deviation continues increasing as more and more cells divide, but then starts to

decrease when the initial peak is no longer dominating the population (Fig 2C). After one full

cycle, the standard deviation reaches a new minimum (Fig 2D), now reflecting the width of the

secondary peak, which is wider than the original distribution, but nevertheless a single peak. A

similar evolution may be observed for the coefficient of variation (Fig 2E) though its time-

dependence is slightly more complex to consider in detail since it is the ratio between standard

deviation and mean, both of which vary with time.

Consider now instead the situation that the inheritance is highly asymmetric [p = 0.8 in Eq

(1)]; lower row of Fig 2) and assuming the same initial distribution (Fig 2F). In this case, when

cells divide two secondary peaks are formed (Fig 2G), one centered on (1—p)�100 = 20 and

one on p�100 = 80 nanoparticles. They represent, respectively, the cells that took the least num-

ber of nanoparticles upon cell division, and the ones that took the most. As time progresses,

more and more cells divide and the original peak decreases and the two secondary ones grow

(Fig 2G and 2H). After one full cell cycle, only the two secondary peaks remain, representing

the inheritance distribution (Fig 1A; red) convoluted with the original distribution (Fig 2F).

The standard deviation of the distribution of number of nanoparticles per cell (line with

bars in grey in Fig 2F–2I) shows a similar evolution in time as for a symmetric inheritance (Fig

2A–2D). The main difference is that for an asymmetric inheritance, the standard deviation is

even more substantial, reflecting the larger width of the underlying inheritance distribution

(Fig 1A; red). Furthermore, it remains large even after one full cell cycle (Fig 2I), again a reflec-

tion of the underlying inheritance distribution. Also in the case of a highly asymmetric inheri-

tance, the standard deviation reaches a maximum before settling on a (new) minimum after

one full cell cycle (Fig 2I; see also S1 Fig). However, when we consider the time evolution of

the coefficient of variation, we also have to factor in how the mean evolves in time. Since, there

is a simultaneous monotonic decrease of the mean, the net effect on the coefficient of variation

is a monotonic increase with time (Fig 2J).

Fig 2. Time-evolution of the number of nanoparticles per cell due to cell division with a narrow initial distribution. Upon cell division, the nanoparticles taken up

were shared between the daughter cells with a given inheritance distribution [Eq (1)]. The upper row is for symmetric inheritance [p = 0.5 in Eq (1)], while the lower is for

a highly asymmetric inheritance (p = 0.8). A-D and F-I. Distribution of number of nanoparticles per cell, for the times indicated at the top. (Grey lines with bars)

Mean ± standard deviation over the full population. The distribution is cut off in panels A and F, in order to keep panels A-D and F-J on the same scale. E and J, Time-

evolution of the coefficient of variation (CV) under the two different conditions. The datapoints indicate the times for which panels A-D and F-I, respectively, show the

distribution. The initial distribution was chosen as a normal distribution with a standard deviation of 1.

https://doi.org/10.1371/journal.pone.0242547.g002
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Considerations such as these give the following picture for how the coefficient of variation

of the number of nanoparticles changes with time: There is an overall growth with each cell

cycle and this growth is larger the more asymmetric the inheritance is (cf. the scale of Fig 2E

and 2J). On top of this overall growth, there are potentially oscillations within each cell cycle.

For a symmetric inheritance, the oscillations are prominent (Fig 2E), but the more asymmetric

the inheritance, the less clear are the oscillations. For highly asymmetric inheritance, the oscil-

lations disappear and the coefficient of variation grows monotonically (Fig 2J). Overall, it is

thus clear that how the coefficient of variation evolves over a cell cycle is strongly dependent

on the asymmetry of the inheritance.

As discussed above, the inheritance distribution is dependent on the actual number of

nanoparticles, which could complicate the generality of the analysis. However, the time evolu-

tion of the coefficient of variation remains very similar, regardless if we assume that the num-

ber of nanoparticles is 100 (as in Fig 2), 1,000 or 10,000 (S2 Fig). In practice, the overall

conclusions thus appear to be fairly general.

Furthermore, to simplify the picture we considered a very narrow distribution of the num-

ber of nanoparticles per cell in our discussion (Fig 2). In reality, the distribution is typically

wide. For example, in our previous work on polystyrene nanoparticle uptake by A549 cells, we

found that the experimental data was well-fitted by a log-normal distribution [23,24]. How-

ever, even with such a wide distribution, the time-evolution of the coefficient of variation

shows, largely speaking, similar trends (S3 Fig).

Having established the general idea for these simplified scenarios, we proceed by showing

the results for a more realistic situation, more closely linked to potential experiments. Thus we

consider a cell population that is exposed to, and take up, nanoparticles for a limited amount

of time (a “pulse”) followed by a period during which the time-evolution of the population is

subsequently followed (a “chase”). During the nanoparticle exposure, each cell takes up nano-

particles at a certain rate, which we assume remains fixed throughout the exposure. There are

most likely random elements to the uptake process, which could limit the validity of assuming

a fixed uptake rate. However, it is equally likely that there are also deterministic aspects to the

uptake process, such as cell size [29], cell surface receptor expression and other cell characteris-

tics that remain relatively fixed with time. Indeed, a model based on a fixed uptake rate agrees

very well with the time evolution of the distribution of nanoparticles per cell measured experi-

mentally in our previous work [23,24]. This empirical observation will be sufficient for our

purposes here. The specific uptake rate distribution was chosen to be log-normal, because our

previous experimental data on polystyrene nanoparticle uptake by A549 cells is well-fitted by

such a distribution [23,24]. We thus used parameters that explicitly reproduce the experimen-

tal distributions from this work, though these measurements were made in terms of fluores-

cence (in arbitrary units) and so cannot readily be interpreted as actual particle numbers.

Naturally, a log-normal uptake rate distribution produces at the end of the exposure a distribu-

tion of number of nanoparticles per cell that is also (roughly) log-normal (Fig 3A), a case

which we have briefly already considered (S3 Fig). However, the uptake process coupled to cell

division also produces a correlation between the age of a cell (the time since last division) and

the number of nanoparticles it has taken up [23,24]. The reason is, loosely speaking, that

recently divided (i.e., “young”) cells have just halved the number of nanoparticles taken up,

while cells just about to divide (i.e., “old” cells) have had the longest time to take up nanoparti-

cles without diluting their nanoparticles due to cell division. The correlation grows stronger

the longer the cells are allowed to take up nanoparticles, and can be experimentally demon-

strated by determining the number of nanoparticles in cells currently in a certain cell cycle

phase [23]. We can also observe the effect in the distributions of number of nanoparticles per

cell after the end of the exposure (Fig 3A). There, cell division leads to a tail at the lower end of
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the number of nanoparticles, something which is hardly visible for a symmetric inheritance

distribution but is increasingly more evident for more asymmetric inheritance (cf. the black

and green lines in Fig 3A). The correlation between cell age and number of nanoparticles will

affect how the coefficient of variation evolves in time after a nanoparticle exposure. Further-

more, it introduces a dependence of how the coefficient of variation evolves in time on the

length of the nanoparticle exposure.

We start by discussing the results for various asymmetries of the inheritance distribution

with a fixed time of the nanoparticle exposure. We use a nanoparticle exposure of 0.17T,

which corresponds to 4 h for a cell population doubling time of one day. This would seem to

be a rather useful exposure duration: From a fundamental point of view, it is fairly short com-

pared to the total length of one cell cycle, thus reducing the effect of the correlation between

number of nanoparticles and cell age; conversely, from a practical point of view, it is still long

Fig 3. Time-evolution of the coefficient of variation of the number of nanoparticles per cell after a nanoparticle

exposure. Cells were allowed to take up nanoparticles for a limited period of time (“pulse”) and then followed

(“chased”). During the exposure, the cells took up nanoparticles according to a distribution of uptake rates, simulating

a realistic uptake process. The specific uptake rate distribution was chosen to be log-normal, because our previous

experimental data on polystyrene nanoparticle uptake by A549 cells is well-fitted by such a distribution [23,24].

Specifically, we used the same width of the distribution (σ = 0.5, where σ is the standard deviation of the corresponding

normal distribution) and location (μ = 6.85, where μ is the mean of the corresponding normal distribution) that

reproduces the experimental distributions (the location parameter is, however, less significant as our previous

measurements were made in arbitrary fluorescence units). Upon cell division, the nanoparticles taken up were shared

between the daughter cells with a given inheritance distribution [Eq (1)]. Time (t) is counted after the nanoparticle

exposure. A. Distribution of number of nanoparticles per cell after an initial exposure for 0.17T amount of time and

for symmetric inheritance [p = 0.5 in Eq (1)] and highly asymmetric inheritance (p = 0.8). Note the logarithmic

abscissa axis, which suggests a very wide distribution in linear scale. B. Coefficient of variation of number of particles

per cell, for cells exposed to nanoparticles for 0.17T amount of time, for different asymmetries of the inheritance

distribution as indicated in the legend. C-D. The effect of the duration of nanoparticle exposure (as indicated in the

legend) for C. symmetric inheritance [p = 0.5 in Eq (1)] and D. highly asymmetric inheritance (p = 0.8). Note that for

panels C-D, the ordinate axis does not start at the origin to better show the time-evolution.

https://doi.org/10.1371/journal.pone.0242547.g003

PLOS ONE Asymmetry of nanoparticle inheritance upon cell division: Effect on the coefficient of variation

PLOS ONE | https://doi.org/10.1371/journal.pone.0242547 November 17, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0242547.g003
https://doi.org/10.1371/journal.pone.0242547


enough to allow a sufficient number of nanoparticles to be taken up and hence give a strong

enough signal. Fig 3B thus shows how the coefficient of variation evolves in time for the vari-

ous asymmetries of the inheritance distribution. We may observe that for symmetric (or nearly

symmetric) inheritance, there are oscillations in the coefficient of variation. Furthermore,

while there is an overall increase (disregarding the local oscillations) in the coefficient of varia-

tion with time, it is very small and barely visible (it is more clear in Fig 3C below). For larger

asymmetries, the oscillations are diminished and the overall growth becomes more pro-

nounced. For highly asymmetric inheritance, the coefficient of variation grows essentially

monotonically in time. All in all, the results are similar to the results we found without explic-

itly modelling the uptake process (S3 Fig). This is, of course, not surprising, given that we

(intentionally) considered a fairly limited duration of nanoparticle exposure. Still, the effect of

having an uptake that takes time is discernible, because the minima in the oscillations do not

occur at full cell cycles (t = T, 2T etc) but rather are shifted towards earlier times.

To investigate the effect of the duration of the nanoparticle exposure in more detail, we

compare how the coefficient of variation evolves with time for an exposure of 0.17T, 0.5T and

T (corresponding to 4 h, 12 h and 24 h for a cell population doubling time of one day). Fig 3C

shows the results for symmetric inheritance. The shorter nanoparticle exposure (0.17T) repro-

duces the results from Fig 3B, but due to the difference in scale, the oscillatory behaviour is

more clear. For the medium exposure time (0.5T), the oscillations are also clear, but we addi-

tionally note a further shift in the time at which the minima occur. For the longer exposure

time (T), the oscillations are barely visible, being washed out by the length of the nanoparticle

exposure. Fig 3D shows the results for a highly asymmetric inheritance (p = 0.8). At this scale,

the oscillations are somewhat visible for the shorter nanoparticle exposure (0.17T) but most

likely too small to be observable by current experimental methodologies. For the longer nano-

particle exposures (0.5T and T) the oscillations are effectively gone. The results for a few other

asymmetries of the inheritance distribution may be found in the Supporting Information (S4

Fig) which essentially shows a continuum between the two extremes discussed here.

At least at a qualitative level, these results are consistent with the few previous reports that

have assessed the coefficient of variation experimentally. Thus, an early study that reported an

asymmetric inheritance of 74% also reported an increasing, non-oscillatory, dependence of the

coefficient of variation with time [13]. Furthermore, a more recent publication that reported

an asymmetric inheritance of 64% also noted an increasing coefficient of variation (squared)

[20].

To show the generality of the observations, we also performed simulations with other

uptake rate distributions than those giving a good fit to our previous experimental data

[23,24]. As already noted, using a (narrow) Gaussian distribution, we observe the same behav-

iour (S2 Fig). Furthermore, when using a log-normal distribution and varying the width of the

distribution (S5 Fig) we observe different coefficients of variation in absolute terms, while

when varying the position (S6 Fig) there is not much of an effect. In both cases, the qualitative
trends, in particular the dependence on the asymmetry of the inheritance distribution, are

identical to our previous observations (Fig 3). We also repeated the simulations with an uptake

rate distribution chosen to agree with previous experimental observations on a different sys-

tem, namely quantum dot uptake by A549 cells [29]. Again, the quantitative behaviour is dif-

ferent compared to Fig 3, but the qualitative behaviour is identical (S7 Fig).

Finally, we also relaxed the condition that all cells have the same total duration of their cell

cycle. Thus, we assumed a distribution of cell cycle durations, with a coefficient of variation of

20% [30,31] and otherwise ran the simulations as above. Under these conditions, we observe

oscillations in the coefficient of variation when the inheritance is symmetric (or nearly sym-

metric), while for larger asymmetries, the coefficient of variation grows and does so (nearly)
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monotonically (S8 Fig). In other words, the observations are qualitatively similar to what is

observed when the total cell cycle duration is kept fixed (Fig 3), the main difference being that

for symmetric inheritance, the overall increase of the coefficient of variation (upon which the

oscillations are overlaid) is more pronounced. This is something that would be relevant only

for fairly long experiments, as the effect is observable at timescales of several cell cycles, which

amounts to several days of intermittent experimental observation for typical cell cycle

durations.

For completeness, we also consider the experimental scenario that the cells are exposed

continuously to nanoparticles and study how the coefficient of variation evolves in time under

these circumstances. Again, we use a log-normal distribution of uptake rate of the cells, and

specifically one that reproduces the experimental distributions from our previous experimen-

tal data on polystyrene nanoparticle uptake by A549 cells [23,24]. We also keep the assumption

that the uptake rate is inherited by both daughters upon cell division. Fig 4 shows the results

for various asymmetries of the inheritance distribution. We may observe that for a symmetric

(or nearly symmetric) inheritance, the coefficient of variation exhibits a maximum before

decreasing again, while a highly asymmetric inheritance is monotonically increasing. Thus,

Fig 4. Time-evolution of the coefficient of variation of the number of nanoparticles per cell during continuous

uptake. Cells were allowed to take up nanoparticles according to a distribution of uptake rates, simulating a realistic

uptake process. The specific uptake rate distribution was chosen to be log-normal, because our previous experimental

data on polystyrene nanoparticle uptake by A549 cells is well-fitted by such a distribution [23,24]. Specifically, we used

the same width of the distribution (σ = 0.5, where σ is the standard deviation of the corresponding normal

distribution) and location (μ = 6.85, where μ is the mean of the corresponding normal distribution) that reproduces

the experimental distributions (the location parameter is, however, less significant as our previous measurements were

made in arbitrary fluorescence units). Upon cell division, the nanoparticles taken up were shared between the daughter

cells with a given inheritance distribution [Eq (1)]. The different lines represent the results for different asymmetries of

the inheritance distribution, starting from a symmetric distribution [p = 0.5 in Eq (1)] towards a highly asymmetric

one (increasing p) as indicated in the legend. Note that the ordinate axis does not start at the origin to better show the

time-evolution.

https://doi.org/10.1371/journal.pone.0242547.g004
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also under these (simulated) experimental conditions, one finds a rather strong dependence

on asymmetry. While it would be difficult to discern the difference between a symmetric

inheritance and, say, an asymmetry of p = 0.6, there is a much larger difference when com-

pared to higher asymmetries (cf. the results for p = 0.7, 0.8 and 0.9). We expect such differences

to be well within the range of what is experimentally observable.

Conclusions

Previous efforts at demonstrating (potential) asymmetry in how nanoparticles are shared

between daughter cells upon cell division have mainly focussed on the full distribution over

cells, requiring either detailed modelling [13–16,18,20] or tedious experimental observations

[19–22]. Here we have shown that the second moment over the statistical distribution, or

more precisely the coefficient of variation, is sensitive to asymmetry and can be used for a

more rapid read-out of the degree of asymmetry. This conclusion remains true for two com-

mon experimental scenarios, namely the evolution after a nanoparticle exposure limited in

time and during continuous exposure, though the results look decidedly different.

After a concluded nanoparticle exposure, two features define how the coefficient of varia-

tion evolves in time: oscillations and an overall increase. For rather symmetric inheritance, the

oscillations are prominent and hence provide the most sensitive test for the degree of asymme-

try; conversely, for more asymmetric inheritance, the oscillations effectively disappear and

instead an overall increase in the coefficient of variation will be the more sensitive observable

to gauge the degree of asymmetry. To observe the oscillations, the nanoparticle exposure has

to be as short as possible and the more asymmetric, the shorter the exposure is required.

During continuous uptake, instead, symmetric inheritance is characterised by a maximum

of the coefficient of variation. The more asymmetric the inheritance, the less pronounced the

maximum is and for high degrees of asymmetry, the coefficient of variation increases

monotonically.

We expect that these observations are well within the range of what is observable with cur-

rent experimental methodologies. We have not given explicit analytical expressions for how

the coefficient of variation evolves with time that could be immediately fitted to data. Indeed,

we expect such expressions to be more complex than useful. Nevertheless, the observations we

present should be sufficient to allow a first, qualitative and easily accessible, assessment of the

degree of asymmetry and thereby suggest if it is interesting to pursue these matters further

with a more detailed study.

While we explicitly had high-throughput methods in mind for the experiments we simulate

here, we note that the results could potentially also be used for comparing to experimental

data measured by “medium-throughput” approaches. Thus, quantification of the mean over a

distribution is inherently easier (i.e., fewer samples are needed) than the full distribution.

From this point of view, the coefficient of variation (being essentially the second-order statisti-

cal descriptor, with the mean being the first) is certainly easier to sample well compared to the

full distribution. Consequently, comparison to the results we show here may be possible

already with a moderate number of cells.

We may also briefly comment on how this work fits into the wider context of “noise” (or

variability) in biological systems [32], and that introduced by cell division in particular [28]. It

is known that biomolecules [28] and organelles [33] can be partitioned stochastically and, par-

ticularly when the number of objects is low, this can lead to significant variability among cells

(cf. Fig 1B and 1C). In the case of gene-expression specifically, this is well-studied and both

experiment [34] and modelling [35–38] have made significant progress, leading to fully analyt-

ical results [36–38] now being available for direct comparison to experiments. A key difference
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with such studies is that here we consider exogenous objects (nanoparticles), rather than

endogenous ones (biomolecules or organelles). The reason this is important is that cells have a

mechanism for regenerating endogenous objects, while this is not relevant for exogenous

objects (typically [39]). The models consequently differ in whether a “production process” has

to be included or not. It has the further consequence that, say, the variability in gene expres-

sion can be quantified in terms of a time-independent (steady-state) variability [36,37]. In con-

trast, we have phrased our results in terms of the time-dependence of the coefficient of

variation and, indeed, the lack of regeneration is the reason the time-dependence is interesting

in the first place. Overall, we may view the present work as a generalisation of the variability

introduced by cell division to account for the particularities of exogenous objects.

Methods

Simulations were performed, where each cell was given an “age”, representing how far along

its cell cycle it is. In the majority of cases, we assumed that the total duration of the cell cycle

was the same for all cells and also that all cells progress along the cell cycle (“age”) at the same

rate. As time progressed in the simulations, each cell was aged and the cells that reached the

end of their cell cycle were started anew, but now as two cells. In order to simulate an exponen-

tially growing cell population, we used an exponentially decaying initial age distribution where

the number of cells at the very beginning of the cell cycle was twice as many as the number of

cells at the very end. This also ensures that the age distribution does not change in time

[23,24,26,40].

We also performed simulations where the total cell cycle duration was not the same for all

cells (S8 Fig). We used an Erlang distribution of cell cycle durations, because it provides a rea-

sonable fit to measured cell cycle durations reported in the literature [41]. Specifically, we used

a distribution with a coefficient of variation set to 20%, corresponding to reported variations

in the total cell cycle duration for cell lines [30,31], and a mean that gives the same cell popula-

tion growth as when the cell cycle duration was held fixed. When a cell divided, the daughter

cells were each assigned a random cell cycle duration from the same distribution. We initiated

the simulations by positioning the cells along the cell cycle at random according to a uniform

distribution, ensuring that cells were not started at a position beyond the total duration of

their cell cycle. Subsequently we ran the simulation for several (mean) cell cycles, until the age

distribution no longer changed, ensuring that the cell population grows exponentially and

asynchronously. The consequent parts of the simulations were performed in the same way as

when the total cell cycle duration was held fixed.

Each cell also contained a number of nanoparticles. When a cell reached the end of the cell

cycle, a random number was taken based on the relevant inheritance distribution and one of

the daughter cells was given this number of nanoparticles, while the other daughter cell was

given the rest of the nanoparticles. We let the number of nanoparticles be a real (rather than

natural) number, for simplicity and because when simulating the uptake process with a log-

normal distribution of uptake rates, cells end up taking up a real number of nanoparticles.

Consequently we also used a normal distribution approximation to the binomials in the inher-

itance distribution, because it thereby returns a real number. Thus, the inheritance distribution

reads

1

2
Nðnp; npð1 � pÞÞ þ Nðnð1 � pÞ; npð1 � pÞÞð Þ ð2Þ

where N(μ, σ2) is a normal distribution of mean μ and standard deviation σ. This approxima-

tion is excellent for the kind of numbers we are considering here (see solid lines in Fig 1A) and
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does not have any effect on the results. Since the inheritance distribution in Eq (2) can occa-

sionally result in a negative number of nanoparticles, we further used a cut-off so that only

positive numbers were returned; again, these adjustments have no bearing on the final results.

For the simplest cases where we did not take into account nanoparticle uptake (Fig 2 and

S1–S3 Figs) we simply initialised the cells with the stated starting distribution of number of

nanoparticles, with no correlation between number of nanoparticles and cell age. For the more

realistic scenarios (Figs 3 and 4 and S4–S8 Figs), the uptake process was also simulated. In this

case, each cell was, before starting the simulation, given an uptake rate, J, from the stated distri-

bution of uptake rates. Subsequently, each cell took up nanoparticles with this rate, such that

in a time Δt, a cell would accumulate JΔt nanoparticles. Upon cell division, the accumulated

nanoparticles were shared between daughter cells as described above. Furthermore, the uptake

rate of the mother was also inherited by both daughter cells. When simulating the further evo-

lution after a concluded nanoparticle exposure (Fig 3 and S4–S8 Figs), further uptake was sim-

ply ignored.

See also our previous work for further details, arguments and agreements between the

results of the simulations and experiments [23–26].

Supporting information

S1 Fig. Time-evolution of the standard deviation of the number of nanoparticles per cell

due to cell division with a narrow initial distribution. Upon cell division, the nanoparticles

taken up were shared between the daughter cells with a given inheritance distribution [Eq (1)].

The different lines represent the results for different asymmetries of the inheritance distribu-

tion, starting from a symmetric distribution [p = 0.5 in Eq (1)] towards a highly asymmetric

one (increasing p) as indicated in the legend. The initial distribution was chosen as a normal

distribution with a standard deviation of 1. The results show that regardless of asymmetry (or,

indeed, symmetry) the standard deviation always exhibits a maximum within the first cell

cycle before reaching a second minimum after one full cell cycle. The results for p = 0.5 and

p = 0.8 correspond to the coefficient of variation shown in Fig 2E and 2J, respectively.

(TIF)

S2 Fig. Time-evolution of the coefficient of variation of the number of nanoparticles per

cell due to cell division for different (initial) number of nanoparticles and a narrow initial

distribution. Upon cell division, the nanoparticles taken up were shared between the daughter

cells with a given inheritance distribution [Eq (1)]. The different lines represent the results for

different asymmetries of the inheritance distribution, starting from a symmetric distribution

[p = 0.5 in Eq (1)] towards a highly asymmetric one (increasing p) as indicated in the legend.

The initial (mean) number of nanoparticles is indicated by the linestyle (solid, dashed, dotted;

also indicated in the legend). The initial distribution was chosen as a normal distribution with

a standard deviation of 1. The results show that regardless of the initial number of nanoparti-

cles, the time-evolution of the coefficient of variation is roughly the same: For symmetric

inheritance minor differences can be discerned, though they are likely too small to be measur-

able with current experimental methodologies; for more asymmetric inheritance, the differ-

ences are hardly visible at all.

(TIF)

S3 Fig. Time-evolution of the coefficient of variation of the number of nanoparticles per

cell due to cell division with a log-normal initial distribution. A. Choice of initial distribu-

tion of number of nanoparticles per cell. Note the logarithmic abscissa axis, which suggests a

very wide distribution in linear scale. The initial distribution was chosen to be a log-normal
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distribution, because our previous experimental data on polystyrene nanoparticle uptake by

A549 cells is well-fitted by such a distribution [23,24]. Specifically, we used a width of the dis-

tribution corresponding to the experimental one (σ = 0.5, where σ is the standard deviation of

the corresponding normal distribution); the location of the distribution was fairly arbitrary,

because the experimental data is in fluorescence rather than particle numbers (μ = ln 100,

where μ is the mean of the corresponding normal distribution). B. Upon cell division, the

nanoparticles taken up were shared between the daughter cells with a given inheritance distri-

bution [Eq (1)]. The different lines represent the results for different asymmetries of the inheri-

tance distribution, starting from a symmetric distribution [p = 0.5 in Eq (1)] towards a highly

asymmetric one (increasing p) as indicated in the legend. The results are rather similar com-

pared to the situation where the initial distribution is a narrow normal distribution (Fig 2E

and 2J and S2 Fig) in that the coefficient of variation exhibits clear oscillations for symmetric

or nearly symmetric inheritance, but becomes almost monotonically increasing the larger the

asymmetry of the inheritance. A difference is that the starting (t = 0) coefficient of variation is

distinctly larger for a log-normal distribution compared to the narrow normal distribution

(Fig 2 and S2 Fig).

(TIF)

S4 Fig. Time-evolution of the coefficient of variation of the number of nanoparticles per

cell after a nanoparticle exposure. Cells were allowed to take up nanoparticles for a limited

period of time (“pulse”) of duration 0.17T, 0.5T and T (indicated in the legends) and then fol-

lowed (“chased”). During the exposure, the cells took up nanoparticles according to a distribu-

tion of uptake rates, simulating a realistic uptake process. The specific uptake rate distribution

was chosen to be log-normal, because our previous experimental data on polystyrene nanopar-

ticle uptake by A549 cells is well-fitted by such a distribution [23,24]. Specifically, we used the

same width of the distribution (σ = 0.5, where σ is the standard deviation of the corresponding

normal distribution) and location (μ = 6.85, where μ is the mean of the corresponding normal

distribution) that reproduces the experimental distributions (the location parameter is, how-

ever, less significant as our previous measurements were made in arbitrary fluorescence units).

Upon cell division, the nanoparticles taken up were shared between the daughter cells with a

given inheritance distribution [Eq (1)]. Time (t) is counted after the nanoparticle exposure.

The different panels show the results for different asymmetries of the inheritance distribution.

A. p = 0.6; B. p = 0.7; C. p = 0.9. The results for symmetric inheritance (p = 0.5) and p = 0.8

may be found in Fig 3C and 3D. Note that the ordinate axis does not start at the origin to better

show the time-evolution.

(TIF)

S5 Fig. Dependence of the time-evolution of the coefficient of variation of the number of

nanoparticles per cell after a nanoparticle exposure on the width of the uptake rate distri-

bution. Cells were allowed to take up nanoparticles for a limited period of time (“pulse”) and

then followed (“chased”). During the exposure, the cells took up nanoparticles according to a

distribution of uptake rates, simulating a realistic uptake process. The specific uptake rate dis-

tribution was chosen to be log-normal, because our previous experimental data on polystyrene

nanoparticle uptake by A549 cells is well-fitted by such a distribution [23,24]. Specifically, we

used the same location of the distribution (μ = 6.85, where μ is the mean of the corresponding

normal distribution) that reproduces the experimental distributions. The width of the distribu-

tion (in terms of σ, the standard deviation of the corresponding normal distribution) was var-

ied, both making it more narrow (σ = 0.25) and wider (σ = 0.75) than that reproducing the

experimental distributions (σ = 0.50). Upon cell division, the nanoparticles taken up were

shared between the daughter cells with a given inheritance distribution [Eq (1)]. Time (t) is
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counted after the nanoparticle exposure. (Rows) Variation with the symmetry of the inheri-

tance distribution, ranging from completely symmetric inheritance [p = 0.5 in Eq (1)] to highly

asymmetric inheritance (p = 0.9). (Left column) Coefficient of variation in absolute terms.

(Right column) Coefficient of variation “normalised” by subtraction of the mean value. The

results are in qualitative agreement with those simulating experimental systems (Fig 3 and S7

Fig below) as well as when varying the location of the uptake rate distribution (S6 Fig below)

demonstrating the generality of the observations.

(TIF)

S6 Fig. Dependence of the time-evolution of the coefficient of variation of the number of

nanoparticles per cell after a nanoparticle exposure on the location of the uptake rate dis-

tribution. Cells were allowed to take up nanoparticles for a limited period of time (“pulse”)

and then followed (“chased”). During the exposure, the cells took up nanoparticles according

to a distribution of uptake rates, simulating a realistic uptake process. The specific uptake rate

distribution was chosen to be log-normal, because our previous experimental data on polysty-

rene nanoparticle uptake by A549 cells is well-fitted by such a distribution [23,24]. Specifically,

we used the same width of the distribution (σ = 0.5, where σ is the standard deviation of the

corresponding normal distribution) that reproduces the experimental distributions. The loca-

tion of the distribution (in terms of μ, the mean of the corresponding normal distribution) was

varied (μ = 5, 7, 9, where μ = 6.85 is the value that reproduces the experimental distributions).

Upon cell division, the nanoparticles taken up were shared between the daughter cells with a

given inheritance distribution [Eq (1)]. (Rows) Variation with the symmetry of the inheritance

distribution, ranging from completely symmetric inheritance [p = 0.5 in Eq (1)] to highly

asymmetric inheritance (p = 0.9). A-E. Coefficient of variation as a function of time, where

time (t) is counted after the nanoparticle exposure. The results are in qualitative agreement

with those simulating experimental systems (Fig 3 and S7 Fig below) as well as when varying

the width of the uptake rate distribution (S5 Fig) demonstrating the generality of the observa-

tions.

(TIF)

S7 Fig. Time-evolution after a nanoparticle exposure simulating another system that has

been studied experimentally. Previous work has quantified the distribution of number of

nanoparticles per cell (technically, the number of nanoparticle-containing vesicles) for A549

cells exposed to quantum dots and developed a theoretical model to describe it [29]. We can

thereby use this data/model as another example where to test our approach. Thus, cells were

allowed to take up nanoparticles for a limited period of time (“pulse”) and then followed

(“chased”). During the exposure, the cells took up nanoparticles according to a log-normal dis-

tribution of uptake rates with parameters (σ = 0.55 and μ = 5.2, where σ is the standard devia-

tion and μ is the mean, respectively, of the corresponding normal distribution) such that it fits

the model describing quantum dot uptake by A549 cells [29]. Upon cell division, the nanopar-

ticles taken up were shared between the daughter cells with a given inheritance distribution

(Eq 1). The cell population doubling time was set to 22 h, as in our previous work on the same

(A549) cells [23]. A. Distribution of number of nanoparticles per cell after the initial exposure

for 4 h and for symmetric inheritance [p = 0.5 in Eq (1)]. (Solid line) Results of the previously

developed model [29], with parameters chosen to correspond to A549 cells, a quantum dot

concentration of 4 nM and a 4 h exposure time. (Dotted line) Log-normal approximation of

the exact model. Note that the log-normal distribution approximation has a slightly fatter tail

than the exact model, but since the exact model often somewhat underestimates the number of

cells with high particle numbers observed experimentally [29], we consider this a feature. B.

Coefficient of variation as a function of time for different asymmetries of the inheritance
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distribution as indicated in the legend. Time (t) is counted after the nanoparticle exposure.

The results are in qualitative agreement with those simulating another experimental system

(Fig 3) as well as when varying the width (S5 Fig) and location (S6 Fig) of the uptake rate distri-

bution, demonstrating the generality of the observations.

(TIF)

S8 Fig. Time-evolution after a nanoparticle exposure with a distribution of total cell cycle

duration. Rather than a fixed total cell cycle duration, cells were assigned a cell cycle duration

from an Erlang distribution with a coefficient of variation of 20%. We use this particular distri-

bution because it provides a reasonable fit to measured cell cycle durations reported in the lit-

erature [41]. When a cell divided, the daughter cells were each assigned a random cell cycle

duration from the same distribution. Cells were allowed to take up nanoparticles for a limited

period of time (“pulse”), 0.17T, and then followed (“chased”). During the exposure, the cells

took up nanoparticles according to a distribution of uptake rates, simulating a realistic uptake

process. The specific uptake rate distribution was chosen to be log-normal, because our previ-

ous experimental data on polystyrene nanoparticle uptake by A549 cells is well-fitted by such a

distribution [23,24]. Specifically, we used the same width of the distribution (σ = 0.5, where σ
is the standard deviation of the corresponding normal distribution) and location (μ = 6.85,

where μ is the mean of the corresponding normal distribution) that reproduces the experimen-

tal distributions (the location parameter is, however, less significant as our previous measure-

ments were made in arbitrary fluorescence units). Upon cell division, the nanoparticles taken

up were shared between the daughter cells with a given inheritance distribution [Eq (1)]. A.

Coefficient of variation as a function of time for different asymmetries of the inheritance dis-

tribution, as indicated in the legend. B-F. Same results shown individually, so as to better show

the variation. Note that for this reason, the ordinate axis does not start at the origin and the

axes are different for the different panels. Time (t) is counted after the nanoparticle exposure.

The results are in qualitative agreement with those where the total cell cycle duration was held

fixed (Fig 3), the main difference being that for symmetric inheritance (panel B) the overall

increase observed over multiple cell cycles is more pronounced.

(TIF)
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