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Abstract

Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not
constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic
spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may
modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation
without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a
theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By
analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is
correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent
with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the
postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the
neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of
synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation,
channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while
adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient
mechanism to control the temporal resolution of synaptic integration.
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Introduction

Action potentials are initiated when the membrane potential

exceeds a threshold value, but this value depends on the stimulation

and can be very variable in vivo [1–4], which has triggered a recent

controversy about the origin of this variability [5–7]. This

phenomenon has been observed in many areas of the nervous

system: visual cortex [1–3], somatosensory cortex [4]; prefrontal

cortex [8]; neostriatum [9], neocortex [10,11], hippocampus

[12,13], and auditory brainstem [14–17]. Experimental studies

have shown that the spike threshold is correlated with the average

membrane potential [2,8], inversely correlated with the preceding

rate of depolarization [1–4,9,12,14] and inversely correlated with

the preceding interspike interval [13,18]. Thus, threshold dynamics

participate in the input-output properties of neurons: it enhances

coincidence detection and gain modulation properties [1,2], it

contributes to feature selectivity in sensory processing [2,4,19],

contrast invariance [2,20] and temporal coding [17,21,22].

Among the mechanisms that can modulate the spike threshold

[23], two are thought to be especially relevant: inactivation of sodium

channels [1,2,4,8,12,17] and activation of potassium channels [2,10–

12,14–16]. In this study, we chose to focus on the role of sodium

channel inactivation because it specifically impacts spike initiation

without changing the membrane potential, and because of the

extensive voltage-clamp data available for Na channels. Our first goal

was to check whether Na channel inactivation, given their measured

properties, can account for significant threshold variability and for the

qualitative properties of the spike threshold dynamics, as listed above.

Our second goal was to evaluate the consequences of threshold

dynamics on the integration of postsynaptic potentials (PSPs).

We analyzed the influence of Na inactivation on spike threshold

in a model, in which we were able to express the spike threshold as

a function of Na channel properties and variables [23]. We

collected previously published voltage clamp measurements of Na

channel properties and found that Na inactivation by itself can

account for substantial threshold variability, with the same

qualitative properties as experimentally observed. To investigate

the implications for synaptic integration, we derived a dynamical

equation for the spike threshold and defined effective PSPs as the

difference between the PSP and the threshold. We found that, with

threshold adaptation as implied by Na inactivation, effective PSPs

are briefer than PSPs and that their shape depends on membrane

depolarization. Finally, we discuss the potential contribution of

other mechanisms of threshold modulation.

Results

The threshold equation
We previously derived a formula, the threshold equation, which

relates the instantaneous value of the spike threshold to ionic
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channels properties [23]:

h~Va{kalog
gNa

gL

ENa{Va

ka

� �
{kaloghzkalog

gtot

gL

where Va is the half-activation voltage of Na channels, ka is the

activation slope factor, gNa is the total Na conductance, gL is the

leak conductance, ENa is the Na reversal potential, h is the

inactivation variable (1-h is the fraction of inactivated Na

channels). Here the spike threshold is defined as the voltage value

at the minimum of the current-voltage function in the membrane

equation (we compared various threshold definitions in [23]). This

formula is derived from the assumption that the Na activation

curve is well described by a Boltzmann function, which implies

that the Na current below spike initiation is close to an exponential

function of voltage (see Text S1 for the derivation). This

approximation of the Na current is the basis of the exponential

integrate-and-fire model (EIF) [24]. In this paper, we focus on the

impact of Na inactivation and therefore we ignore the last term of

the threshold equation, which simplifies to:

h~VT{kalogh

where VT is a constant term, corresponding to the minimum spike

threshold (when Na channels are not inactivated). We call the EIF

model with Na inactivation the inactivating exponential integrate-

and-fire model (iEIF; see Methods). After a spike, the voltage is reset

to the resting potential EL, and h is unchanged. Thus, when the

neuron is depolarized, Na channels inactivate (h decreases) and the

threshold increases: the threshold adapts to the membrane potential.

Steady-state threshold and threshold variability
We start by studying the steady-state threshold, which is the

value h?(V0) of the spike threshold for a fixed voltage V0. It

corresponds to the threshold measured with the following

experiment. The cell is clamped at a voltage V0 (Figure 1A),

and a fraction of Na channels inactivates. In the Hodgkin-Huxley

formalism, this fraction is 1{h~1{h?(V0), where h? is the

steady-state inactivation function (h is the fraction of non-

inactivated channels). If the clamp is relaxed and a current is

injected, the neuron may produce a spike if the current is large

enough (Figure 1A). The steady-state threshold h?(V0) corre-

sponds to the maximum voltage that can be reached without

triggering an action potential, and it depends on the fraction (1-h)

of inactivated Na channels: when the membrane is depolarized,

Na channels inactivate, which raises the spike threshold.

One way to understand threshold adaptation is to look at how

the excitability curve changes with h (and therefore with

depolarization). The excitability curve (Figure 1B) shows the value

of dV/dt vs. V for a fixed value of h, as given by the membrane

equation (which is equivalent to the I-V curve, if the current is

scaled by the membrane capacitance). When h decreases (Na

channels inactivate), the entire excitability curve shifts towards

higher voltages and the threshold shifts accordingly. As in [23], we

define the threshold as the voltage at the minimum of the

excitability curve, but since the entire curve is shifted by Na

inactivation, other definitions would produce similar results.

The membrane potential V is always below threshold, unless the

cell spikes. Therefore the observable threshold values cannot be

larger than the intersection between the threshold curve and the

diagonal line h~V , if these two curves intersect (Figure 1C). Thus,

the spike threshold may vary between the minimum steady-state

threshold VT and the solution of h?(V )~V . When there is no

such solution, the threshold can be arbitrarily large, meaning that

a very slow depolarization would not elicit a spike (Figure 1C, top

dashed curve). Thus, the range of threshold variability can be

derived from the steady-state threshold curve.

Using the threshold equation, we can calculate the steady-state

threshold as a function of V: h?(V )~VT{ka log h?(V ), where

h?(V ) is the Na inactivation curve, which is generally well fitted

by a Boltzmann function [25]:

h?(V )~
1

1zexp
V{Vi

ki

where Vi is the half-inactivation voltage, and ki is the inactivation

slope factor. When we substitute this function in the threshold

Figure 1. Steady-state threshold. A, The membrane potential is
clamped at a given voltage V0 , then a constant current I is injected (iEIF
model). The steady-state threshold h?(V0) is defined as the maximum
voltage that can be reached without triggering an action potential. B,
Two excitability curves dV/dt = F(V,V0)/C are shown in the phase plane
(V ,dV=dt), for two different initial clamp values V0 (solid lines;
V0 = 280 mV and 226 mV). The steady-state threshold h?(V0) is the
voltage at the minimum of the excitability curve for the initial voltage
V0. C, Steady-state threshold (red lines) of a cortical neuron model [63]
for the original maximal Na conductance (solid line) and for a higher
and lower Na conductance (resp. bottom and top dashed line). When
the cell is slowly depolarized, it spikes when V~h?(V ), i.e., the spike
threshold is the intersection of the red and black dashed curves. If there
is no intersection, the neuron cannot spike with slow depolarization.
The top dashed line (low Na conductance) is interrupted because the
threshold is infinite at high voltages (i.e., the cell is no longer excitable).
doi:10.1371/journal.pcbi.1001129.g001

Author Summary

Neurons spike when their combined inputs exceed a
threshold value, but recent experimental findings have
shown that this value also depends on the inputs. Thus, to
understand how neurons respond to input spikes, it is
important to know how inputs modify the spike threshold.
Spikes are generated by sodium channels, which inactivate
when the neuron is depolarized, raising the threshold for
spike initiation. We found that inactivation properties of
sodium channels could indeed cause substantial threshold
variability in central neurons. We then analyzed in models
the implications of this form of threshold modulation on
neuronal function. We found that this mechanism makes
neurons more sensitive to coincident spikes and provides
them with an energetically efficient form of gain control.

Na Inactivation and Synaptic Integration
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equation, we find that the steady-state threshold has a horizontal

asymptote (VT) for large negative potentials and a linear asymptote

for large positive potentials, because the inactivation function is

close to exponential (Figure 2A). Thus, the steady-state threshold

can be approximated by a piecewise linear function (see Text S1):

h?(V )~VT , if VvVi

h?(V )~
ka

ki

(V{Vi)zVT , if VwVi

In other words, the minimum threshold is VT, which is determined

by the maximum Na conductance (Figure 2B), the threshold

increases above the half-inactivation voltage Vi, and the slope is

the ratio of activation and inactivation slope factors. Regarding

threshold variability, we can distinguish three cases, depending on

Na channel properties:

1) if VTvVi then the spike threshold is constant VTð Þ;

2) if VTwVi and kavki, then the threshold varies between VT

and (kiVT{kaVi)=(ki{ka);

3) if VTwVi and ka§ki , then the threshold can be arbitrarily

large (that is, the neuron can be continuously depolarized

without triggering spikes, as observed in some preparations [26]).

Figure 2C-E illustrates case 2 in a single-compartment model with

fluctuating inputs (note that the membrane potential can exceed the

threshold without triggering a spike because spike initiation is not

sharp, unlike in real cortical neurons and in multicompartmental

models; see the discussion in [23]). We started by examining these

conditions in the dataset collected in the literature by Angelino and

Brenner [25] about the properties of the 9 Nav1 channel types. These

properties were obtained from voltage clamp measurements of Na

channels expressed in exogenous systems. Figure 3A shows the

distribution of Vi in this dataset, which is rather wide (290 mV to

225 mV). Central neuron channel types, i.e., Nav1. [1,2,3,6][27],

are shown in red. Since the minimum threshold VT depends on the

maximal Na conductance, it cannot be deduced from channel

properties alone. Considering that VT should lie between 255 and

245 mV [28], a substantial part of the channels fall into the first case,

i.e., constant threshold, while the rest can fall into the second

(moderate threshold variability) or third case (unbounded variability),

depending on whether ka.ki. Figure 3B shows that, while this latter

condition is never met for channel types expressed in sensory neurons

(blue dots), about half of those expressed in central neurons (red) and

muscles (green) satisfy ka.ki. Thus, it seems that all three cases occur

in similar proportions for channel types expressed in central neurons.

However, not all Na channels are involved in spike initiation. In

particular, in central neurons, spike initiation is mediated by Nav1.6

channels while Nav1.2 channels are involved in axonal back-

propagation [8]. This first dataset contained only 4 Nav1.6 channels,

for which Vi,250 mV in all cases (26168.4 mV), suggesting

significant threshold variability, but this is a small sample. Besides, this

first dataset was somewhat artificial, because channels, some of which

had mutations, were artificially expressed in an exogenous system,

which might alter their properties. Therefore we looked at a second

dataset, consisting of in situ measurements in intact central neurons

that we collected in the literature (see Table S1). These measurements

may combine the properties of several channel types expressed at the

same site, e.g. Nav1.1, Nav1.2, or Nav1.6. In some of these studies,

the threshold was also measured and found to be variable

[8,17,29,30]. In this dataset, as shown in Figure 3C, the half-

inactivation voltage was always lower than 250 mV, which implies

that most channels induce threshold variability (cases 2 and 3). About

half of them met the condition ka.ki (Figure 3D). Thus, in this

dataset, Na inactivation induces unbounded threshold variability in

about half cases and moderate variability in the other half.

Threshold dynamics
We have shown that Na channel properties, i.e., parameters Va,

ka,Vi, ki, allow us to determine whether Na inactivation can make

the spike threshold variable and we found that the answer is

positive in central neurons. While this analysis gives an estimate of

potential threshold variability, the observed variability and its

properties depend on the stimulation. The instantaneous value of

the spike threshold depends on the value of the inactivation

variable h through the following formula [23]: h~VT{kalogh.

We now assume that h evolves according to a standard Hodgkin-

Huxley equation with first order kinetics:

dh

dt
~

h?(V ){h

th

Figure 2. Role of Na channel properties in threshold variability
in the iEIF model. A, The steady-state threshold curve (red curve) is
well approximated by a piecewise linear curve determined by Na
channel properties (top dashed black curve), where Vi is the half-
inactivation voltage and VT is the non-inactivated threshold. The slope
of the linear asymptote is ka/ki (resp. activation and inactivation slope
parameters). Na channel properties in this figure were taken from Kuba
et al. (2009). The spike threshold is variable only when VivVT , and very
variable when (additionally) ka§ki . B, The non-inactivated threshold VT

is determined by the maximum Na conductance gNa, relative to the leak
conductance gL. As the ratio r~gNa=gL increases, the steady-state
threshold curve h?(V ) shifts downward (red curves; r = 0.4; 2; 10) and
threshold variability is reduced. C, Trajectory of the model in the (V ,h)
phase plane (blue), superimposed on the steady-state threshold curve
(red). Spikes are initiated when Vwh (dashed line: V~h), but the
empirical measurement overestimates the threshold. The spike
threshold is highly variable in this example (250 to 210 mV). D,
Trajectory of the model in the (V ,h) phase plane (blue), superimposed
on the Na inactivation curve (black). The threshold is very variable when
most Na channels are inactivated. E, Voltage trace (black curve) and
spike threshold h (red curve; h~VT {kalogh) in the inactivating
exponential model driven by a fluctuating input (see Methods), where
black dots represent empirical measurement of spike onsets (first
derivative method, kth = 5 mV/ms). Note that the membrane potential
can exceed threshold without triggering a spike because the threshold
is soft (unlike in integrate-and-fire models).
doi:10.1371/journal.pcbi.1001129.g002

Na Inactivation and Synaptic Integration
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where th is the inactivation time constant. By differentiating the

threshold equation and substituting the differential equation for h,

we obtain a differential equation for h as function of the

membrane potential (see Text S1 A), which can be approximated

by:

th
dh

dt
~h?(V ){h

with th~th. To simplify the calculations, we assume in the

following that the inactivation time constant th does not vary

significantly with V, but we examine the effect of this voltage-

dependence later. This equation describes how the threshold

changes with the membrane potential, and therefore with the

stimulation, and is entirely determined by Na channel properties.

Since the steady-state threshold h?(V ) increases with V (Figure 2),

it appears that the threshold adapts to the membrane potential

with characteristic time th. Thus, we readily see that 1) the

threshold increases with the membrane potential and 2) the

threshold is lower for faster depolarization, because it has less time

to adapt to the membrane potential.

Before we describe threshold dynamics in more details, we need

to make an important remark. As is seen in Figure 2E, which

describes the dynamics of an iEIF model with fluctuating inputs,

the membrane potential can exceed the threshold without

triggering a spike, if the fluctuation is fast enough. This reflects

the fact that spike initiation in this model, as in any biophysical

single-compartment model, is not sharp: since there is no well-

defined voltage threshold, what we describe as threshold variations

are more accurately described as voltage shifts of the excitability

curve. This makes the definition of a dynamic threshold a little

ambiguous. However, spike initiation in cortical neurons is much

sharper than in single-compartment models [5], because of the

active backpropagation of spikes from the initiation site [6]. A

direct in vitro measurement of the slope factor in cortical neurons

(characterizing spike sharpness) gave DT<1 mV [18] (compared to

ka < 6 mV), meaning that spike initiation is almost as sharp as in

an integrate-and-fire model. This phenomenon is well captured by

multicompartmental models [8,23] and it affects spike sharpness

independently of threshold variability: in Figure 7H of ref. [23],

spikes are initiated as soon as the membrane potential exceeds the

dynamic threshold, which is determined according to the

threshold equation. This motivates us to introduce a new model,

the inactivating integrate-and-fire model (iLIF, see Methods),

which is simply an integrate-and-fire model with an adaptive

threshold given by the differential equation above (after a spike,

the voltage is reset to the resting potential EL, and the threshold is

increased - see Methods). This phenomenological model is not

only simpler, but also seemingly more realistic than the iEIF model

for the present problem, in that it reproduces both the sharpness of

spike initiation and the variability of spike threshold. We use this

model in the remainder of this paper.

The threshold also increases with each action potential [23] (see

also Text S1 A), as was recently demonstrated in vitro [18]. This

can be described as simple additive shift: h?hz(dt=t�h)ka, where

t�h is the average value of the time constant th(V ) during the action

potential and dt is the spike duration (typically, a few ms). If the

inactivation time constant is short compared to the typical

interspike interval, then this shift results in a relative refractory

period, but has negligible influence on the subsequent dynamics of

the model. If it is long, it results in spike-frequency adaptation and

explains in vivo observations where the threshold was found to be

inversely correlated with the previous interspike interval [13]. This

phenonemon can be seen in the noise-driven iLIF model when Na

inactivation is slow (not shown). In the following, we focus on the

impact of fast Na inactivation.

Quantitatively, the relationship between average membrane

potential and threshold depends on the steady-state threshold

Figure 3. Measured properties of Na channels and threshold variability. A, Distribution of half-inactivation voltage (Vi) of Na channels
expressed in exogenous systems (from a database of 40 Na channels reported in Angelino and Brenner, 2007 [25]), including central neuron channel
types (red), sensory neuron channel types (blue) and muscular channel types (green). Assuming a minimum spike threshold between 255 mV and
245 mV (dashed lines), channels on the left have variable threshold while channels of the right have a constant threshold. B, Inactivation (ki) vs.
activation slope (ka) for the same dataset. Channels with Vi,250 mV (variable threshold) are indicated by a black contour. These channels have high
threshold variability when ka.ki (right of the dashed line). C, Distribution of Vi for Na channels expressed in central neurons in situ (see Table S1). The
threshold should be variable in most cases. D, Inactivation (ki) vs. activation slope (ka) for the same dataset. High threshold variability is predicted in
about half cases.
doi:10.1371/journal.pcbi.1001129.g003

Na Inactivation and Synaptic Integration
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function h?(V ). Figure 4 shows this relationship in a neuron

model with adaptive threshold (defined by the dynamical equation

above) and fluctuating inputs of varying mean. As expected, the

average threshold increases with the average membrane potential,

and the slope is steeper above half-inactivation voltage Vi. In these

simulations, the slope of the steady-state threshold curve was

ka/ki = 1, close to experimental values, but we note that the

average threshold only increases as about 2/3 the average

membrane potential in the depolarized region. This is because

the membrane potential is very variable (about 6 mV in this figure)

and therefore the threshold is not constantly in the sensitive region

(V.Vi). This is consistent with previous measurements in the

visual cortex in vivo, where Azouz and Gray (2003) found a linear

correlation with a slope of 0.5.

To calculate the relationship between the slope of depolariza-

tion and the threshold, we consider a linear depolarization with

slope s (i.e., V(t) = V0+st) and calculate the intersection with the

threshold h(t) (Figure 5A). By linearizing the steady-state threshold

h?(V ) as previously described, we find that the slope s and the

threshold h are related by the following equation (see Methods):

h~Vi{sthlog
(1{ka=ki)hzka=ki(sthzVi){VT

ka=kisth

Unfortunately, this implicit equation does not give a closed

formula for h as a function of s, except when ka~ki:

h~Vi{sth log 1z
Vi{VT

sth

� �

In this particular case, the threshold diverges to infinity at

s�~(VT{Vi)=th, i.e., no spike is produced if the depolarization is

slower than s* (Figure 5B, dashed line). This phenomenon can

occur more generally when ka§ki (unbounded variability, case 3)

and has been observed in neurons of the cochlear nucleus [16]

(where it is described as a "rate threshold"). In all cases, for large s

(fast depolarization), the threshold h tends to VT, i.e., to the lowest

possible threshold, and it increases for smaller s, i.e., slow

depolarization (Figure 5B, solid line). The equations show that

the slope-threshold relationship depends on the half-inactivation

voltage Vi and on the threshold time constant th ( = th). The

relationship is more pronounced when Vi is low compared to the

minimum threshold VT (Figure 5C; VT was 255 mV). The role of

the threshold time constant can be seen as a scaling factor for

slopes, i.e., the threshold depends on the product sth of the slope

and threshold time constant. The slope-threshold relationship is

more pronounced when the threshold time constant is short

(Figure 5D). In experiments in vivo, the slope-threshold relationship

was measured using linear regression on the membrane potential

preceding each spike [2,4]. We simulated the adaptive threshold

model with a fluctuating input (Figure 5E) and performed a similar

analysis, by calculating the depolarization slopes over a duration

equal to the threshold time constant. The resulting slope-threshold

relationship matches our previous calculation (which only uses Na

channel properties), but with more variability (Figure 5F), as is also

observed in experiments. Finally, we measured the slope-

relationship in the multicompartmental model of Hu et al. [8]

with fluctuating inputs, for which we previously showed that the

threshold equation accurately predicted the measured threshold

[23]. The slope-threshold relationship also matched our prediction

(Figure S1).

Threshold variability with fluctuating inputs
These dynamical properties of the threshold imply that the threshold

should be variable for fluctuating inputs (typical of in vivo regimes) but

not for constant DC inputs (typical of in vitro stimulations). More

generally, it implies that the threshold distribution depends on the

membrane potential distribution, as shown in Figure 6 with a neuron

model with adaptive threshold driven by fluctuating inputs with

different statistics. The average threshold depends mainly on the

average membrane potential (Figure 6A), but the standard deviation is

correlated with both the average and the standard deviation of the

membrane potential (Figure 6B). This could underlie the observed

difference in threshold variability between spontaneous activity

(,s. = 1.4 mV) and visual responses (,s. = 2.3 mV) [1], because

in visual responses the membrane potential is presumably both more

depolarized and more variable. Interestingly, fast spiking cells showed

lower threshold variability together with a lower mean threshold,

which is also consistent with our results.

Implications for synaptic integration
These results have two main implications for synaptic

integration: 1) threshold adaptation reduces the impact of the

input mean, relative to its variance, and 2) the negative correlation

between threshold and depolarization rate shortens the timescale

of synaptic integration.

Sensitivity to the mean and variance of inputs. When

V.Vi, the steady-state threshold increases with the voltage

(Figure 2A), with a slope close to 1. As a result, when the neuron

is driven by a fluctuating input (such as a sum of random synaptic

currents), the average threshold increases with the average

membrane potential, as shown in Figure 4. Because the slope

of this relationship is close to 1 (ka&ki), the average difference

between the instantaneous value of the threshold and the

Figure 4. Predicted relationship between mean membrane
potential and mean threshold. We simulated the iLIF model (see
Methods) with a fluctuating input current. The standard deviation was
fixed while the mean current was varied between trials. The mean spike
threshold (ShT) is plotted as a function of the mean membrane
potential (SVT). The slope of the curve is larger above half-inactivation
voltage Vi (0.64 from linear regression, red line) than below (0.23).
doi:10.1371/journal.pcbi.1001129.g004

Na Inactivation and Synaptic Integration
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membrane potential should be nearly constant above Vi:

DV&VT{Vi. Thus, we expect that the mean of the input

should have little impact on postsynaptic firing, while it should be

more sensitive to its variance. Figure 7 shows the results of

simulations where fluctuating currents with varying mean and

variance were injected into a neuron model with adaptive

threshold. When the threshold does not adapt, the output firing

rate is sensitive both to the mean and the variance of the input

(Figure 7A, mixed line, and Figure 7B). When the mean is above

threshold (255 mV in Figure 7), the firing rate is mostly

determined by the mean. However, as threshold adaptation is

increased (Figure 7A, dashed and solid lines, and Figure 7C,D),

the firing rate becomes less and less sensitive to the input mean

and relatively more sensitive to the variance. When threshold

adaptation parameters correspond to experimentally measured

properties of Na channels (ka&ki), the firing rate is mostly

sensitive to the input variance, although the mean input still plays

a role. Thus, by maintaining a constant difference between

average potential and threshold, Na channel inactivation acts as a

homeostatic mechanism.

Timescale of synaptic integration. It was remarked in

previous studies that the negative relationship between threshold

and depolarization rate should make the neuron more sensitive to

coincidences [2,4], because depolarization is faster and thus threshold

is lower for coincident inputs. We make this remark more precise by

looking at effective PSPs, defined as the difference between the PSP and

the dynamic threshold (Figure 8). Consider a neuron model in which

the membrane potential is described by a sum of PSPs:

V (t)~V0z
X
i,k

PSPi(t{tk
i )

where PSPi is the PSP at synapse i and tk
i is the timing of the kth spike

received at synapse i. If we approximate threshold dynamics by a

linear differential equation (when V.Vi), then the threshold h(t) is a

low-pass filtered version of V (t):

h(t)~h0z
X
i,k

L � PSPi(t{tk
i )

Figure 5. Slope-threshold relationship in the adaptive threshold model. A, The neuron is linearly depolarized with a given slope s
(V(t) = EL+st) until the membrane potential (black) reaches threshold (red) and the neuron spikes. The intersection of the black and red traces (red
dots) can be calculated (see Results). B, Threshold vs. depolarization slope (solid line) and analytical formula when ka = ki (dashed line). C, Slope-
threshold relationship for different values of the half-inactivation voltage Vi (Vi = 263 mV in panels A,B). D, Slope-threshold relationship for different
values of the inactivation time constant (th~5 ms in panels A,B). E, The iLIF model is driven by a fluctuating current and we measure the slope of
depolarization before each spike over a duration th~5 ms by linear regression. F, Slope-threshold relationship measured with linear regression in the
noise-driven iLIF model (red dots), superimposed on the calculated relationship from panel B.
doi:10.1371/journal.pcbi.1001129.g005
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where L is a first-order low-pass filter with time constant th (i.e., cutoff

frequency 1=(2pth)), i.e.:

(L � V )(t)~
a

th

ðt

0

e
{ s

th :V (t{s)ds

where a~
Lh?
LV

&ka=ki. This model with adaptive threshold is

equivalent to a model with fixed threshold h0, where the voltage is

defined by u~V{hzh0, i.e., relatively to the threshold. In this

equivalent model, the voltage reads:

u(t)~V0z
X
i,k

(PSPi{L � PSPi)(t{tk
i )

Thus, it is a linear superposition of effective PSPs (ePSPs), defined as

the difference between the PSP and the threshold PSP (effect of

PSP on threshold):

u(t)~V0z
X
i,k

ePSPi(t{tk
i )

where ePSPi~PSPi{L � PSPi is the effective PSP at synapse i.

This equivalent model has exactly the same form as the initial

model (superposition of PSPs), the only difference being that PSPs

are replaced by effective PSPs with a different shape. This is

illustrated in Figure 8A.

In other words, threshold adaptation acts as a simultaneous

inhibition with slower time constant (than the excitatory PSP), or

as a simultaneous excitation for inhibitory PSPs. As a result, the

temporal width of effective PSPs is smaller than that of PSPs, so

that the timescale of synaptic integration is shorter (Figure 8A,C;

see also Text S1 B for analytical calculations). Far from Vi, i.e.,

when the threshold varies linearly with the membrane potential,

the threshold PSP is proportional to ka/ki, which is close to 1 in

Figure 6. Threshold distribution as a function of membrane
potential statistics. An iLIF model was stimulated by fluctuating
inputs with different means and standard deviations and the threshold
distribution was measured. A, Average threshold (color-coded) as a
function of the mean (,V.) and standard deviation (sV) of the
membrane potential. The average threshold depends primarily on the
average membrane potential. White areas correspond to parameter
values that were not tested (top) or that elicited no spike (bottom). B,
Standard deviation of the threshold as a function of membrane
potential statistics. Threshold variability depends on both the average
and the standard deviation of the membrane potential.
doi:10.1371/journal.pcbi.1001129.g006

Figure 7. Firing rate as a function of input statistics. An iLIF model was simulated in the same way as in Figure 6, but with different values for
the parameter ka/ki, which controls threshold adaptation. A, Output firing rate vs. mean input with threshold adaptation (solid line, ka/ki = 1), with
mild threshold adaptation (dashed line, ka/ki = 0.5) and without threshold adaptation (mixed line, ka/ki = 0). The horizontal axis is the input resistance
R times the mean input ,I., i.e., the mean depolarization in the absence of spikes. The input standard deviation was chosen so that the neuron fires
at 10 Hz when the mean depolarization is 10 mV. B, Firing rate (color-coded) vs. mean and standard deviation of the input, without adaptation
(ka/ki = 0). The standard deviation is shown in voltage units to represent the standard deviation of the membrane potential in the absence of spikes,

i.e., s~RsI

ffiffiffiffiffiffiffiffiffiffiffi
tI

tI zt

r
, where sI is the input standard deviation (in current units) and tI is the input time constant. The horizontal mixed line

corresponds to the mixed line shown in panel A, and the vertical dashed line corresponds to the threshold for constant currents. C, Same as B, but
with mild threshold adaptation (ka/ki = 0.5). D, Same as B, but with normal threshold adaptation (ka/ki = 1).
doi:10.1371/journal.pcbi.1001129.g007
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experimental measurements. Closer to Vi, the threshold PSP is

proportional to dh/dV, which lies between 0 and ka/ki (Figure 8B).

This means that threshold adaptation increases when the neuron is

more depolarized, so that effective PSPs become sharper. This

property is shown in Figure 8C, where the half-width of effective

PSPs is seen to depend on the threshold time constant (sharper

effective PSPs for shorter time constants) and on threshold

sensitivity dh/dV, i.e., indirectly on depolarization. In all cases,

effective PSPs are always sharper than PSPs. For example, when

the threshold time constant equals the PSP time constant and the

neuron is depolarized well above Vi (with ka = ki), threshold

adaptation reduces the half-width of the PSP by a factor greater

than 2 (intersection of the two lines in Figure 8C). In some cases,

the effective PSP may change sign, as shown in Figure 8A

(bottom). This occurs when the threshold time constant or the

threshold sensitivity is large (Figure 8D). In the case of

exponentially decaying PSPs, this condition can be analytically

calculated (see Text S1 B): thwtm(1{dh=dV ). This property

implies that inhibitory PSPs may trigger delayed spikes because of

threshold adaptation, which we discuss below.

Similar properties are seen when synaptic filtering is taken into

account, that is, when the synaptic current is an exponentially

decaying function rather than an instantaneous pulse (Dirac), giving

biexponential PSPs (Figure 9A). As previously, effective PSPs are

briefer and can change sign (Figure 9B). A new property can be

observed: the peak time is shorter for ePSPs than for PSPs. This

could not be seen with exponential PSPs since in that case both the

PSP and the ePSP peak at 0 ms. With synaptic filtering, ePSPs peak

earlier and at a smaller value. The peak time of the PSP increases

with the time constant of synaptic filtering, but threshold adaptation

makes ePSPs not only briefer but also less sensitive to the filtering

time constant (Figure 9C,D). This phenomenon was recently

demonstrated in neurons of the medial superior olive (MSO), a

structure involved in the computation of interaural time differences,

a cue to the azimuth of a sound source [31]. These neurons detect

coincidences between inputs from the contralateral side and from

the ipsilateral side. It was found that PSPs from the contralateral

side peak about 500 ms later than those from the ipsilateral side, and

are also shallower, which makes coincidence detection problematic

(the required precision is about a few tens of microseconds). But

threshold adaptation reduces the peak time of the shallower

contralateral PSP, so that PSPs from both sides have similar

latency. Another interesting consequence of the compression of

peak times by threshold adaptation is that it also minimizes the

impact of dendritic propagation on the effective latency of PSPs.

As is illustrated in Figure 10A, the reduction of PSP width

makes the neuron more sensitive to coincidences at the timescale

of threshold dynamics, i.e., of Na inactivation. This property only

arises when the neuron is sufficiently depolarized, i.e., when V.Vi

(Figure 10B). In high-conductance states that are typical of in vivo

activity [32,33], the mean membrane potential is depolarized,

typically around 260 mV, which is slightly higher than the

average Vi in the dataset of Na channels in central neurons in situ

(Vi&{63 mV ; Figure 3C). Thus, neurons in vivo should be more

Figure 8. The effective postsynaptic potential. A, Top: Normalized postsynaptic potential (PSP, solid line) and threshold PSP, i.e., effect of the
PSP on the threshold (dashed line). Bottom: The effective PSP is the difference between the PSP and the threshold PSP. It is briefer and can change
sign. B, The effect of the PSP on spike threshold depends on how the threshold changes with voltage (dh/dV, bottom), which depends on the
membrane potential V and is determined by the Na inactivation curve (top; dashed line: half-inactivation). At high voltage, dh/dV = ka/ki ( = 1 here). C,
Half-width of the effective PSP (color-coded) as a function of threshold sensitivity dh/dV and the threshold time constant th . The black cross
corresponds to the situation shown in panel A. The membrane time constant (t~5 ms) is shown by a horizontal solid line. D, Zero crossing time of
the effective PSP as a function of threshold sensitivity and threshold time constant. The white triangle corresponds to parameter values where the
effective PSP is always positive.
doi:10.1371/journal.pcbi.1001129.g008
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sensitive to coincidences at the timescale of Na inactivation. This

comes in addition to the fact that the membrane time constant is

about 5 times shorter in vivo than in vitro because of increased total

conductance [34,35]. More precisely, the shape of effective PSPs

depends on depolarization: as the neuron is more depolarized, the

fast component of the effective PSP (which decays with time

constant th) becomes more dominant, so that the neuron becomes

more sensitive to fine correlations (Figure 8C).

For inhibitory PSPs (IPSPs), threshold adaptation is equivalent

to simultaneous excitation with a slower time constant. Thus, in

some cases, the later part of the effective PSP can be positive

(Figure 8D), and therefore an IPSP can trigger a spike

(Figure 10C). This phenomenon is generally called postinhibitory

facilitation. It has been previously observed in different systems,

and can be mediated by other mechanisms than Na inactivation

[36,37]. Figure 10C shows an example of postinhibitory

facilitation due to Na inactivation, where a slow depolarization

fails to trigger a postsynaptic spike but additional IPSPs do.

Finally, while we have previously ignored the voltage dependence

of the time constant of Na inactivation, we show in Figure 10D how

it affects synaptic integration. The time constant decreases when the

neuron is depolarized above Vi (see Methods), which reduces the

half-width of effective PSPs (Figure 8C,D). This property was termed

adaptive coincidence detection in previous experimental studies [2].

Discussion

Based on voltage clamp measurements of Na channel properties, we

have found that Na inactivation can produce by itself large threshold

variability, as observed in experiments in vivo [124]. Our analysis led us

to a simple theoretical criterion on Na channel properties (VTwVi for

moderate variability and ka§ki for unbounded variability). Threshold

dynamics are then inherited from the dynamics of Na inactivation,

which implies that the threshold adapts to the membrane potential. As

a consequence, the threshold is correlated with the preceding

membrane potential and inversely correlated with the depolarization

rate. Both properties were observed in experiments and the

quantitative relationships are close to what we predict from the

properties of Na inactivation. Our analysis also provides a simple

adaptive equation which describes threshold dynamics.

The criterion for large threshold variability (ka§ki) depends on

the precise values of the half-activation (ka) and half-inactivation

voltages (ki), obtained from Boltzmann fits. However, the relevant

voltage range for these fits is the spike initiation range, and

reported experimental values generally correspond to fits over the

entire voltage range. This could contribute a significant measure-

ment error in these values, as we previously showed [23]. Another

potential source of error is the overlap between activation and

inactivation. If the inactivation time constant is very short

(comparable to the activation time constant), then voltage-clamp

measurements tend to overestimate ka [23]. Thus, there is some

uncertainty about the precise value of ka/ki in Na channels.

One consequence of threshold adaptation is to reduce the sensitivity

of neurons to their mean input, and to make them more sensitive to

fluctuations. In vitro, Arsiero et al. [38] indeed observed that pyramidal

cells of the prefrontal cortex were very sensitive to the variance of their

inputs, even when the mean was high. In vivo, Ringach and Malone

[39] described the responses of neurons of the primary visual cortex as

linear filtering of the visual input followed by (stochastic) spiking when a

threshold was exceeded. They found that the threshold (defined on an

abstract variable) adapted to the input statistics, so that neurons

responded only to positive fluctuations above the mean.

Threshold adaptation implies that a presynaptic spike has an

effect on both the membrane potential (the classical PSP) and the

spike threshold. We defined an effective PSP by subtracting the

threshold effect from the PSP. Thus, a neuron model with adaptive

threshold where the membrane potential is a sum of PSPs is

equivalent to a model with fixed threshold where the potential is a

sum of effective PSPs. We found that effective PSPs were briefer

than PSPs, which makes neurons more sensitive to input

correlations at the timescale of Na inactivation. The effect of

threshold adaptation can be understood as simultaneous inhibition

for EPSPs and simultaneous excitation for IPSPs. These effective

PSPs become briefer as the neuron is more depolarized, which can

be seen as a form of adaptive coincidence detection: as the neuron is

more depolarized, it requires more precisely coincident inputs to

fire. This suggests that the effective integration time constant of

neurons might be even shorter in vivo than expected from

conductance measurements [34] because neurons are significantly

depolarized in high conductance states [33]. A similar sharpening

effect was recently found with Kv1 channels in neurons of the

medial superior olive (MSO) [40]; a linear treatment of temporal

sharpening by active conductances along dendrites was also recently

done [41] (although independently of threshold properties).

Although Na channel inactivation can account for all the properties

that have been experimentally observed, other mechanisms could

potentially contribute to threshold variability: somatic measurement

when spikes are initiated in the axon, channel noise and other ionic

mechanisms. We discuss below these alternative mechanisms and

evaluate whether they may account for threshold adaptation.

Remote spike initiation
A recent debate about the validity of the Hodgkin-Huxley model

for cortical neurons has highlighted the fact that, for central

neurons, spikes are initiated in the axon while in vivo measurements

of the spike threshold were done at the soma, which could be an

artifactual cause of threshold variability [5-7]. However, it is unclear

Figure 9. Effective postsynaptic potential with synaptic filtering. A,
Normalized biexponential PSPs obtained with non-instantaneous synaptic
currents (i.e., postsynaptic currents are exponentially decaying with time
constant ts between 1 ms and 20 ms). B, As for exponential PSPs (Figure 8),
effective PSPs (ePSPs) are narrower and change sign (only the positive part is
shown). The time to peak is also shorter. Threshold adaptation parameters
were th~3 ms and dh/dV = 1. C, The peak time increases with the synaptic
filtering time constant ts, but less rapidly for ePSPs than for PSPs. D, ePSP
peak time vs. PSP peak time. Threshold adaptation makes peak times shorter
and compressed.
doi:10.1371/journal.pcbi.1001129.g009
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whether distal initiation could account for the inverse correlation

between the threshold and the preceding slope of depolarization.

To address this question, we consider a simplified situation

where spikes are initiated in the axon hillock when the potential is

above a fixed threshold VT (Figure 11A). Suppose the membrane

potential increases linearly in the soma (blue line) and spreads to

the spike initiation site with a delay tf (black line). A spike is

initiated when the propagated potential reaches threshold (dashed

red line), and backpropagated to the soma with a delay tb. As a

result, the spike ‘‘threshold’’ (in fact, spike onset) is higher when

measured at the soma, by an amount of (tf ztb)s, where s is the

slope of depolarization. This has two consequences: 1) threshold

variability is increased for fluctuating inputs, 2) the threshold is

positively correlated with the slope of depolarization. Based on

passive cable properties, the forward delay can be estimated

as tf ~
CSaxon

gC

&25{100 ms and the backward delay as

tb~
CSsoma

gC

&100 {900ms, where C is the specific membrane

capacitance, Saxon (resp. Ssoma) is the membrane surface of the

spike initiation site (resp. soma) and gC is the coupling

conductance between the two sites [23]. Considering active

conductances would reduce these values, but these estimations

are already close to experimental measurements [42]. Thus, the

total delay (forward + backward) is smaller than 1 ms.

We confirmed this reasoning by simulating the response of the

multicompartmental model of Yu et al. (2008) [7] to fluctuating inputs

and measuring the slope-threshold relationship both at the soma and at

the axon initial segment (AIS) (Figure 11B). As we expected, we found

that this relationship was more pronounced at the AIS than at the

soma, meaning that the net effect of backpropagation is a positive

correlation between slope and threshold. More precisely, the net effect

corresponds to a total delay of tf ztb~0:8 ms (difference between the

two slopes of the linear regressions), in accordance with the estimation

above. Thus, since distal spike initiation predicts the opposite

relationship between depolarization rate and threshold than experi-

mentally observed, it cannot be the dominant cause of threshold

variability and cannot account for the properties of threshold dynamics.

Channel noise
The Hodgkin-Huxley formalism describes the dynamics of the

macroscopic average of many sodium channels, but individual

channels have stochastic dynamics [43,44]. It results in threshold

variability which is not significantly correlated with input properties

[45,46,43,47,48]. As previously, we examine whether this mechanism

may account for the slope-threshold relationship in a simplified

model. We consider an integrate-and-fire model with a threshold that

fluctuates randomly, according to an Ornstein-Uhlenbeck process:

th
dh

dt
~h0{hzsh

ffiffiffiffiffiffiffi
2th

p
j(t)

where h0 is the mean voltage threshold, sh is the standard deviation

of the threshold distribution, j(t) is a gaussian white noise and th is

Figure 10. Synaptic integration with adaptive threshold. A, The iLIF model was simulated with random inputs (exponentially decaying PSPs),
temporally distributed according to a Poisson process. Top: Spikes are produced when the membrane potential V (black) exceeds the threshold h
(red). Bottom: This is equivalent to a model with fixed zero threshold (red) and potential V-h (black), which is the sum of effective PSPs. Effective PSPs
are sharper than PSPs. B, Top: The threshold is more adaptive when the neuron is depolarized (right) than near resting potential (left). Bottom: When
the mean input is increased (4 different levels shown), effective PSPs become sharper and their negative part cancels the input mean (see Figure 8).
C, Random inhibitory PSPs are added to a depolarizing current ramp. Without inhibitory inputs (dashed), the threshold adapts and the neuron does
not spike. With inhibitory inputs (solid), the sign change in effective PSPs (see Figure 8) acts as a rebound and triggers spikes. This phenomenon is
often called postinhibitory facilitation [36]. D, When the voltage dependence of the Na inactivation time constant is taken into account (see Methods),
effective PSPs become sharper as the neuron is more depolarized, which implies an adaptive coincidence detection property [2].
doi:10.1371/journal.pcbi.1001129.g010
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the time constant of fluctuations (related to the time constant of Na

activation).

When depolarization is very slow, spikes will be initiated lower

than h0 on average, because the stochastic threshold has time for

many excursions below its mean, i.e., the threshold reaches the

membrane potential rather than the converse (Figure 11C, left). In

fact if the membrane is not depolarized (zero slope), a spike will be

initiated at resting potential (although after a potentially very long

time) because there is a positive probability that h reaches that

potential. On the contrary, if depolarization is very fast, spike

initiation occurs at h(t), where t is near the time of depolarization,

and therefore the distribution of the threshold at spike times is the

same as the distribution of h(t) (at all times), with mean h0

(Figure 11C, right). Therefore, the threshold is positively correlated

with the slope of depolarization. We confirmed this reasoning with a

numerical simulation of the model for different depolarization

slopes (Figure 11D). Thus, as for distal spike initiation, channel noise

produces threshold variability but induces a (weak) positive slope-

threshold relationship, which is contrary to experimental findings.

Synaptic conductances
The spike threshold increases with the total non-sodium

conductance, because spike initiation requires more Na channels

to be open in order to counteract a larger total conductance. Thus,

fluctuating synaptic conductances could be a source of threshold

variability. We previously estimated the effect of total conductance

on spike threshold through the following formula [23]:

h~VTzkalog
gtot

gL

� �

where gtot~gezgizgL is the total conductance, including

excitatory (ge) and inhibitory (gi) conductances, and we ignored

the effects of Na inactivation. Threshold variability is determined

by the variability of total conductance at spike time. In low-

conductance states (in vitro or down states in vivo), spikes are

preferentially triggered by increases in excitatory conductance ge

[49]. In this case, the depolarization rate is positively correlated

with ge, and therefore with the threshold. Besides threshold

variability can only be mild because the total conductance is low

(relative to the leak conductance). In high-conductance states (up

states in vivo), spikes are preferentially triggered by decreases in

inhibitory conductance gi [49]. In this case, the depolarization rate

is negatively correlated with gi, and therefore with the threshold.

Therefore, in high-conductance states but not in low-conductance

states, the slope-threshold relationship induced by synaptic

conductances is qualitatively consistent with experimental obser-

vations in vivo. However, with the same reasoning, the membrane

potential increases when inhibition decreases and therefore, if

inhibition is the main source of variability, the threshold should be

negatively correlated with the preceding membrane potential,

which contradicts experimental observations in vivo. Therefore,

synaptic conductances cannot simultaneously account for the

slope-threshold relationship and for the dependence on membrane

potential observed in vivo.

Sodium channel activation
In our analysis, we assumed that Na activation is instantaneous.

Voltage clamp measurements indeed show that its time constant is

only a fraction of millisecond [50,29,51,52]. However, with this

approximation, we might have neglected a source of threshold

variability. As previously, let us examine the potential contribution

Figure 11. Effect of distal spike initiation and channel noise on the slope-threshold relationship. A, Illustration of the effect of
depolarization slope s on somatic spike onset. In cortical neurons, spikes are initiated in the axon initial segment (AIS, black), then backpropagated to
the soma (blue). Somatic depolarization is propagated forward to the spike initiation site in the axon with delay tf . A spike is initiated in the axon
when the threshold VT is reached (dashed red line). The spike is backpropagated to the soma with delay tb . During time tf ztb , the somatic voltage
has increased by s(tf ztb) and the spike onset is seen higher (red dot). B, Slope-threshold relationship in the multicompartmental model of Yu et al.
(2008) [7] with fluctuating inputs (mean 0.7 nA, standard deviation 0.2 nA, time constant 10 ms), measured at the AIS (top) and at the soma (bottom).
As expected, the slope-threshold relationship is less pronounced at the soma than at the AIS. C, The effect of channel noise is modeled by a stochastic
threshold (red; h0~{50 mV , sh~2 mV , and th~1 ms) and the neuron is linearly depolarized. With slow depolarization (left), the threshold (at spike
time) is lower than the average instantaneous threshold. With fast depolarization (right), the threshold distribution (at spike time) follows the
distribution of h. D, As a result, the threshold is positively correlated with the depolarization slope (blue dots: threshold vs. slope for all spikes in the
simulations; black dots: average threshold for each slope).
doi:10.1371/journal.pcbi.1001129.g011
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of this cause of threshold variability to the slope-threshold

relationship. If depolarization is slow (compared to the activation

time constant), then the proportion of open channels is given by

the steady-state activation curve and our analysis applies. If

depolarization is very fast, fewer channels are opened than at

steady state and therefore the threshold is higher. Thus, non-

instantaneous activation of Na channels contributes a positive

correlation between depolarization rate and threshold, contrary to

experimental findings.

Other voltage-gated channels
In the same way as synaptic conductances, voltage-gated

channels may also modulate the spike threshold [23]. In particular,

the delayed-rectifier potassium channel (e.g. Kv1) has been

previously proposed by several authors as the source of threshold

variability [2,10,11,14–16,21]. Indeed, a similar model to our iLIF

model was previously introduced in the context of threshold

accommodation by potassium channels [36]. To account for the

positive correlation between membrane potential and threshold,

the conductance must increase with depolarization, i.e., the

activation curve must be an increasing function of the voltage. We

only consider this case in this discussion. The threshold depends

on the voltage-gated conductance gK through the following

formula:

h~VTzkalog
gLzgK

gL

where we ignored the effect of Na inactivation. To account for

significant threshold variability, two conditions must be met: 1) the

maximal conductance must be large (compared to the leak) and 2)

the half-activation voltage must be low enough. In this case, the

spike threshold adapts to the membrane potential, which implies a

positive correlation between membrane potential and threshold and

a negative correlation between depolarization rate and threshold, as

experimentally observed. It is also possible to differentiate the

threshold equation and obtain a differential equation that describes

the threshold dynamics as for Na inactivation, although it takes a

different form [23]. However, there are several differences with

threshold modulation induced by Na inactivation. Firstly, the

threshold is always bounded by the value obtained with the maximal

conductance. Secondly, the relationship between membrane

potential and threshold is in general sigmoidal and can only be

linear in a limited range, where the voltage is below half-activation

but the conductance is still very large (the slope of this relationship is

then ka
Na/ka

K). The impact on synaptic integration is also different,

because the conductance impacts not only the threshold but also the

PSPs and effective membrane time constant.

Finally, we discuss below the possible interactions of several Na

channel subtypes and of slow and fast Na inactivation.

Inactivation with several sodium channel subtypes
We assumed that a single Na channel type (e.g. Nav1.6) was

present. It is possible to extend our analysis to the case of multiple

subtypes. Suppose the Na current is made of two components

corresponding to two channel types:

INa~gLh1kae(V{VT1)=kazgLh2kae(V{VT2)=ka

To simplify, we assumed that the two channels have the same

activation Boltzmann factor ka, which is not unreasonable. Then

the Na current can be equivalently expressed as:

INa~gLkae(V{h)=ka

where:

h~{kalog h1e
{

VT1
ka zh2e

{
VT2
ka

� �

~VT1{kalog(h1zh2e
VT1{VT2

ka )

In other words, when several subtypes are present, inactivation in

the threshold equation is replaced by a linear combination of

inactivation variables of all subtypes. For example, Nav1.2 and

Nav1.6 are both found in the axon initial segment [8], and Nav1.2

channels activate and inactivate at more depolarized potentials

than Nav1.6 [53]. According to the threshold equation above, at

hyperpolarized voltages, threshold modulation should be mainly

determined by Nav1.6 (the inactivation variable h2 for Nav1.2 is

less voltage-dependent and its threshold is higher); at more

depolarized voltages (assuming the threshold has not been

reached), Nav1.6 channels inactivate (h1<0) and threshold

modulation is then determined by Nav1.2 channels. Note however

that with several channel subtypes, it is not possible to express

threshold dynamics as a single kinetic equation for h anymore

(without the use of the hidden variables h1 and h2).

Slow sodium channel inactivation
In the present study, we focused on fast Na inactivation. We have

briefly mentioned that the threshold equation applies when Na

inactivation is slow, and implies that the threshold increases after

each spike, which induces a negative correlation between threshold

and preceding inter-spike interval. This effect is expected, but it gets

more interesting when the interaction between slow and fast

components is considered. One way to model this interaction is to

consider two Na currents, as in the previous section. But since

inactivation in the same channel can show slow and fast

components, it might be more relevant to include this interaction

in the gating variables. The simplest way is to consider these

components as independent gating processes, that is:

INa~gLhslowhfastkae(V{VT )=ka

where the gating variables hslow and hfast have slow and fast

dynamics, respectively [54,55]. Since the interaction is multiplica-

tive for the Na current, it is additive for the threshold:

h~hslowzhfast~VT{kaloghslow{kaloghfast

In this case, it is possible to write a kinetic equation for each

component of the threshold (hfast and hslow), in the same way as

before (note that hslow increases after each spike, whereas this effect

can be neglected for hfast since its impact on subsequent spikes is

negligible). Here, the effect of slow inactivation can be thought of

as a slow change of an effective minimal threshold

V�T~VT{kaloghslow with firing activity. Interesting interactions

appear because, as we have seen, threshold variability depends on

the value of that minimal threshold (relative to Vi). Suppose for

example that VT,Vi. At low firing rates (when interspike intervals

are larger than the slow inactivation time constant), V�T&VT and

the threshold is not variable. If the firing rate is high enough, then
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V�TwVi and the threshold becomes variable with fast inactivation.

In the same way, the time constant of synaptic integration should

be larger at low rates than at high rates. Thus, slow inactivation

controls threshold modulation by fast inactivation.

In summary, many mechanisms may contribute to the variability

of the spike threshold, but only two can account for its observed

adaptive properties: Na inactivation and adaptive conductances (most

likely K channels). Although threshold dynamics is qualitatively

similar for both mechanisms, they can be distinguished by the fact

that Na inactivation has no subthreshold effect on the membrane

potential. Specifically, if the threshold is mainly modulated by

adaptive conductances, then we can make two predictions:

1) The relationship between membrane potential and threshold

should be determined by the I-V curve in the region where

Na channels are closed: h~azkalog
dI

dV
(V )

����
����, where a is a

constant, and the I-V curve should be highly nonlinear (this

derives from the threshold equation above and the fact the

total conductance is dI/dV).

2) The effective membrane time constant teff (as measured e.g. by

the response to current pulses) should be inversely correlated with

the threshold, through a similar formula: h~b{kalogteff ,

because teff is inversely proportional to the total conductance.

In a few experimental studies, the application of a-dendrotoxin,

a pharmacological blocker of low-voltage-activated potassium

channels, greatly reduces threshold variability [16], which suggests

a strong role for these channels in threshold adaptation. Our

results suggest an alternative interpretation of these observations.

The application of a blocker reduces the total conductance, which

also reduces the minimum threshold VT (see the threshold

equation with voltage-gated channels), possibly below half-

inactivation voltage Vi, where there is no threshold adaptation

due to Na inactivation. Thus, it could be that threshold adaptation

was due to Na inactivation, but that suppressing K conductances

shifted the minimum threshold out of the operating range of this

mechanism. This hypothesis could be tested by simultaneously

injecting a fixed conductance in dynamic clamp, to compensate

for the reduction in total conductance of the cell.

Although we cannot draw a universal conclusion at this point, and

while it is possible that either or both mechanisms are present in

different cells, we observe that Na inactivation is a metabolically

efficient way for neurons to shorten and regulate the time constant of

synaptic integration. Indeed, Na inactivation implies no charge

movement across the membrane while K+ conductances modulate

the threshold by counteracting the Na current, which implies a large

transfer of charges across the membrane (Na+ inward and K+
outward) in the entire region where the threshold is variable. Recently,

it was found in hippocampal mossy fibers that K+ channels open only

after spike initiation, in a way that minimizes charge movements [56].

Since energy consumption in the brain is a strong evolutionary pressure

[57-59], we suggest that Na inactivation may be the main source of

threshold variability when this variability has functional benefits.

Methods

All numerical simulations were implemented with the Brian

simulator [60] on a standard PC.

Inactivating exponential model (iEIF)
Near spike initiation, the Na current can be approximated by an

exponential function of the voltage [18,24]. If the inactivation

variable h is not discarded (see Text S1 A), we obtain the following

model (membrane equation and inactivation dynamics):

C
dV

dt
~gLhexp

V{VT

ka

� �
zgL(EL{V )zI ð1Þ

dh

dt
~

h?(V ){h

th

ð2Þ

where V is the membrane potential, h is the Na inactivation

variable, I is the input current, C is the membrane capacitance, gL

(resp. EL) is the leak conductance (resp. the reversal potential), ka

is the Na activation slope factor, VT is the threshold when Na

channels are not inactivated, h? is the Na steady-state inactivation

function, and th is the Na inactivation time constant, which we

consider constant for simplification (except in Figure 10D). Since

the model does not include K+ channels and the exponential

approximation is not valid beyond spike initiation, action

potentials are not realistically reproduced, but we only focus on

spike initiation. We call this model iEIF (inactivating exponential

integrate-and-fire model, equations (1–2)). The membrane poten-

tial is reset to EL when it crosses 0 mV (h is unchanged). In

Figure 2, we used EL~{70 mV , t~
C

gL

~5 ms (typical mem-

brane time constant in vivo [34]), VT = 258 mV, ka = 5 mV,

th~5 ms, and the inactivation function was a Boltzmann function

with parameters Vi = 263 mV and ki = 6 mV.

Adaptive threshold model and iLIF model
A very good approximation of the Na current is an exponential

function of V [18,24,61]. The spike threshold can then be

expressed with the threshold equation [23]:

h~VT{kalogh ð3Þ

where

VT~Va{kalog
gNa

gL

ENa{Va

ka

� �
ð4Þ

is the minimum threshold, i.e., when Na channels are not

inactivated (h = 1). By differentiating the threshold equation and

substituting the differential equation for h, we obtain a differential

equation for h as function of the membrane potential (see Text S1),

which can be approximated by:

th
dh

dt
~h?(V ){h ð5Þ

with th~th, where h?(V )~VT{ka log h?(V) is the steady-state

threshold, which can be approximated by a piecewise linear

function (see Text S1):

h?(V )~VT , if VvVi ð6Þ

h?(V )~
ka

ki

(V{Vi)zVT , if VwVi ð7Þ

We refer to the differential equation of h together with the expression

of h?(V ) above as the adaptive threshold model. In simulations, we used

this model with a passive membrane equation:
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tm
dV

dt
~EL{VzRI ð8Þ

where R is the membrane resistance and I is the input current, and a

spike is produced when Vwh. The membrane potential is then reset

to EL. Refractoriness is implemented either by maintaining V at

resting potential for 5 ms (Figure 10) or by increasing the threshold h
by 3.6 mV (Figures 4, 6–8), corresponding to a spike duration of 3 ms

and ka = 6 mV (see Text S1 A, effect of output spikes on threshold).

We call this model iLIF (inactivating leaky integrate-and-fire model,

equations (5–8)). In Figure 10 we used tm~20 ms and Na parameters

from a recent study of the role of Na inactivation in the temporal

precision of auditory neurons [17]: Va~{38:6 mV ; ka~4:1 mV ;

Vi~{57:9 mV ; ki~4:6 mV . For Figures 4–8, we used

VT = 255 mV, Vi = 263 mV (average value in the in situ dataset),

tm~th~5 ms. Unless otherwise specified, we chose ka/ki = 1

(average in the dataset: 1.05).

In Figure 10D, the time constant of Na inactivation is voltage-

dependent, as in [17]:

th(V )~
1

Q
100 7e

Vz60
11 z10e

{Vz60
25

� �{1

z0:6

� 	
,

where Q~3
40{23

10 ~3:

Fluctuating inputs
Fluctuating inputs (Figures 2C–E, 6–10) were generated

according to Ornstein-Uhlenbeck processes:

dI

dt
~

mI{I

tI

zsI

ffiffiffiffi
2

tI

s
j(t)

where mI is the mean, sI is the standard deviation, tI is the

autocorrelation time constant, and j(t) is a gaussian white noise of

zero mean and unitary variance. We chose tI~10 ms in Figure 2

and tI~2 ms in other figures.

Empirical threshold measurement
To measure spike onset in models with no explicit threshold

(Figures 2, 10, 11), we used the first derivative method [62], which

consists in measuring the membrane potential V when its

derivative dV/dt crosses an empirical criterion kth. Since the

input is not controlled, it measures spike onset and is an

overestimate of the spike threshold. These two quantities can be

related in simple models [23].

Slope-threshold relationship
To calculate the relationship between the slope of depolariza-

tion and the threshold, we consider a linear depolarization with

slope s: V(t) = st, and we calculate the intersection with the

threshold h(t) (Figure 5A), described by the adaptive threshold

model. By integrating the dynamic threshold equation, we find

that when V~h (t~h=s), the threshold is implicitly determined

by the following equation:

h~
1

th

ðh=s

{?
e

u{h=s
th h?(su)du

For low values of s, this equation may have no solution (i.e., the

neuron does not spike). Using the piecewise linear approximation

of the steady-state threshold, we obtain:

h~
1

th

ðVi=s

{?
e

u{h=s
th VT duz

ðh=s

Vi=s

e
u{h=s

th
ka

ki

(su{Vi)zVT

� �
du

" #

which simplifies to:

h~Vi{sthlog
(1{ka=ki)hzka=ki sthzVið Þ{VT

ka=kisth

This is also an implicit equation for h, but it can be easily

(numerically) calculated with a nonlinear solver. A closed formula

can be obtained in the case when ka~ki:

h~Vi{sthlog 1z
Vi{VT

sth

� �

Supporting Information

Figure S1 Slope-threshold relationship in the multicompart-

mental model of Hu et al. (2009), measured with linear regression

over 5 ms (black dots), superimposed on the calculated relationship

(red dashed line), using the Na channel properties of the model (as

in Platkiewicz and Brette, 2010, Fig. 8H).

Found at: doi:10.1371/journal.pcbi.1001129.s001 (0.17 MB PDF)

Table S1 Properties of Na channels of central neurons in situ.

Found at: doi:10.1371/journal.pcbi.1001129.s002 (0.16 MB PDF)

Text S1 Impact of sodium channel inactivation on spike

threshold dynamics and synaptic integration.

Found at: doi:10.1371/journal.pcbi.1001129.s003 (0.53 MB PDF)
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