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ABSTRACT

Translation termination in eukaryotes is catalyzed
by two release factors eRF1 and eRF3 in a coopera-
tive manner. The precise mechanism of stop codon
discrimination by eRF1 remains obscure, hindering
drug development targeting aberrations at transla-
tion termination. By solving the solution structures
of the wild-type N-domain of human eRF1 exhibited
omnipotent specificity, i.e. recognition of all three
stop codons, and its unipotent mutant with UGA-
only specificity, we found the conserved GTS loop
adopting alternate conformations. We propose that
structural variability in the GTS loop may underline
the switching between omnipotency and unipotency
of eRF1, implying the direct access of the GTS loop
to the stop codon. To explore such feasibility, we
positioned N-domain in a pre-termination ribosomal
complex using the binding interface between
N-domain and model RNA oligonucleotides
mimicking Helix 44 of 18S rRNA. NMR analysis
revealed that those duplex RNA containing 2-nt
internal loops interact specifically with helix a1 of
N-domain, and displace C-domain from a
non-covalent complex of N-domain and C-domain,
suggesting domain rearrangement in eRF1 that
accompanies N-domain accommodation into the
ribosomal A site.

INTRODUCTION

One of the key steps in translation termination is to
decode the stop codon within the ribosomal A site by
class I polypeptide chain release factor (1,2). The two

class I release factors in prokaryotes possess different
decoding capability: RF1 recognizes exclusively UAA
and UAG as stop codons, while RF2 terminates transla-
tion at UAA and UGA. The ‘tripeptide anticodon’
hypothesis was first proposed as a mechanism of stop
codon recognition, in which the Pro-Ala/Val-Thr (P�T)
loop in RF1 and the Ser-Pro-Phe (SPF) loop in RF2
decode the second and third stop codon positions via
direct interactions (3,4). However, the high-resolution
crystal structures of RF1-bound (5,6) and RF2-bound
(7,8) ribosome, including their respective cognate stop
codons, revealed a significantly more complex mode of
stop codon recognition. These structures were then used
in molecular dynamics free-energy calculations to elabor-
ate on a potential mechanism of stop codon discrimin-
ation between RF1 and RF2 (9).
Eukaryotic and archaeal class I release factors, eRF1

and aRF1, are both omnipotent and share high sequence
similarity with each other but do not possess any obvious
sequence homology with their bacterial counterparts (2).
Structurally, eRF1 is composed of three distinct protein
domains (10–12) performing specific roles: N-domain rec-
ognizes the stop codon at the decoding site of the 40S
subunit, M-domain triggers hydrolysis of the peptidyl-
tRNA ester bond in the peptidyl transferase center
(PTC), while C-domain forms a complex interface with
class II release factor eRF3 (2). Despite availability of
the crystal structure of full-length eRF1 (10), the mechan-
ism of stop codon recognition remains obscure. Over the
last decade, various experimental approaches led to differ-
ent models. Among these models, the TASNIKS (13,14)
and YxCxxxF motifs (15) in N-domain of eRF1 were
proposed to play a role in stop codon recognition,
forming the so-called non-linear model. In particular,
experiments on photoactivatable cross-linking of a
modified stop codon to N-domain in a pre-termination
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complex pinpointed the NIKS motif as being positioned in
proximity to the first uridine, and the YxCxxxF motif in
proximity to the purines in the second and third stop
codon positions (16,17). Other models, known as the
cavity models, were proposed based on a set of point
mutations found to affect stop codon readthrough in
yeast. In these models, individual nucleotides of the stop
codon are accommodated into three defined cavities on
the surface of N-domain (18,19). Although both the
non-linear and cavity models share some residues
implicated in stop codon recognition, they are not
entirely compatible, thus requiring further experiments
to resolve.
Investigation of stop codon recognition in eukaryotes

has been making progress by studying eRF1 of
variant-code organisms, in which one or two of the uni-
versal stop codons are reassigned to sense codon(s)
(20,21). Chimeric eRF1s composed of N-domain from
some of the variant-code organisms (ciliates) and the
MC-domain of eRF1 from universal-code organisms
(human or yeast) retain stop codon specificity typical
for ciliate eRF1s, demonstrating unequivocally that
N-domain of eRF1 directly decodes the stop codon
(13,22–24). From these efforts, a mutant of human
eRF1 with substitutions in N-domain corresponding to
eRF1 of Stylonychia (ciliate) with UGA-only specificity
(T122Q, S123F, L124M and L126F) was shown to
exhibit strong UGA unipotency (23). By solving the
solution structures of N-domain of both the wild-type
(wt) eRF1 and the UGA-unipotent mutant (denoted as
Q122FM(Y)F126 henceforth), we found that those point
mutations, while preserving the global structure of
N-domain, alter conformation of the strictly conserved
GTS loop (positions 31–33) remote from the mutation
sites. This indicates that switching between omnipotency
and unipotency of eRF1 may be modulated by distinct
conformations of the GTS loop.
Both N-domain and M-domain of eRF1 possess

putative ribosomal binding sites (2). The genetic inter-
actions between eRF1 and the decoding region of Helix
44 of 18S rRNA in the 40S subunit were reported (25). In
the attempt to investigate whether direct interaction
between N-domain and the decoding region of Helix 44
is possible, we utilized a 15-mer RNA oligonucleotide that
contains internal loops, mimicking the decoding region of
Helix 44 (26–29). By generating different mutants of the
15-mer RNA, we obtained constructs with different sizes
of internal loop, and found that presence of a 2-nt internal
loop is critical for strong binding to N-domain. These
results indicate that helix a1 of N-domain potentially
interacts with Helix 44 in the 40S subunit. Interestingly,
the RNA-binding region is shielded partially in solution
by C-domain, as observed from the crystal structure of
full-length eRF1 (10). In solution, the 15-mer RNA is
able to displace C-domain from the non-covalent
complex of N-domain and C-domain, suggesting an im-
perative domain rearrangement in eRF1 during which
N-domain accommodates itself into the ribosomal A
site. A manually docked model of eRF1 N-domain onto
the A site of the 40S subunit supports the structural
plausibility of our findings.

MATERIALS AND METHODS

Expression and purification of protein samples

The DNA fragments encoding the wild-type and the
Q122FM(Y)F126 mutant of N-domain (residue 1–142),
the NM-domain (residues 1–275), and C-domain
(residues 275–437) of human eRF1 with a C-terminal
hexahistidine tag were cloned into pET23(+) vector
(Novagen) under the phage T7 RNA-polymerase
promoter (30,31), and were expressed in Escherichia coli
Rosetta(DE3) host cells. Uniformly 13C, 15N-labeled wt
N-domain and Q122FM(Y)F126 were produced in
minimal media (M9) utilizing 15NH4Cl (1.0 g/l) and

13C6-
glucose (2.0 g/l) as the sole nitrogen and carbon sources.
Uniformly, 2H, 13C, 15N-labeled NM-domain was
produced using 2H2O (99% d-enrichment) as the
solvent. All recombinant proteins were purified from cell
lysates utilizing a 5ml HisTrap HP column (GE
Healthcare), and further purified using three 5ml
HiTrap desalting columns (GE Healthcare) connected in
series. NMR samples contained 0.1–1.0mM protein in
20mM MES, 100 mM KCl, 2mM DTT at pH 6.0. For
all experiments involving C-domain, 3mM of
b-mercaptoethanol was added to prevent oxidation of
the cysteine thiol groups.

Cloning and point mutagenesis of chimeric Euplotes
aediculatus/human and Stylonychia mytilus/human eRF1
genes, expression and purification of chimeric eRF1
proteins were described (23,24).

In vitro radio frequency (RF) activity assay

The eRF1 activity was measured in an in vitro system sug-
gested by Caskey et al. (32). Rabbit reticulocyte ribosomes
were isolated and purified as described (15).

NMR spectroscopy

All NMR spectra were acquired using 600, 700 or
900MHz Bruker Avance II spectrometers. Chemical
shifts were referenced to 2,2-dimethyl-2-silapentane-
5-sulfonate (DSS) directly for 1H and indirectly for 13C
and 15N spins. The NMR data were processed using
TopSpin 2.0 (www.bruker-biospin.com) and analyzed
using CARA (www.nmr.ch). 1H, 15N and 13C resonances
of wt N-domain, Q122FM(Y)F126, and NM-domain were
assigned using 3D TROSY-HNCA and TROSY-
HNCACB. Side-chain 1H and 13C were assigned using
iterative analysis of the 3D 15N-NOESY-HSQC and
13C-NOESY-HMQC spectra coupled with structure calcu-
lations. The assignment process was facilitated by com-
parison with chemical shifts deposited in the Biological
Magnetic Resonance Data Bank (www.bmrb.wisc.edu)
for individual domains (33–35). Reverse labeling of
phenylalanine (36) and the dual amino acid-selective
13C–15N labeling technique (37,38) were employed
to resolve ambiguous assignments in Q122FM(Y)F126.
Residual dipolar couplings of wt N-domain and
Q122FM(Y)F126 were abstracted from the chemical shifts
of TROSY and anti-TROSY cross-peaks in isotropic and
anisotropic solvent conditions, respectively. Partial align-
ment of the proteins was induced by addition of 10mg/ml
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bacteriophage Pf1 (Hyglos GmbH). The axiality and
rhombicity of the alignment tensor were calculated
using PALES (39). Transverse relaxation time (T2) were
measured with eight relaxation delays, i.e. 12.5, 25, 50,
62.5, 87.5, 112.5, 156.25 and 200ms. The spectra
measuring 1H–15N Nuclear Overhauser Effect (NOE)
were acquired with a 2-s relaxation delay, followed by a
3-s period of proton saturation. In the absence of proton
saturation, the spectra were recorded with a relaxation
delay of 5 s. The exponential curve fitting and data
analysis were carried out using Origin (Origin Lab).

Structure calculations

NOE distance restraints for the calculated structures
of wt N-domain and Q122FM(Y)F126 were obtained from
15N-NOESY-HSQC and 13C-NOESY-HMQC spectra,
respectively. Backbone dihedral angle restraints (j and
c) were derived from the backbone 13C0, 13Ca,

13Cb,
1Ha

and 1Hb chemical shift values using TALOS (40).
Structure calculations were performed using CYANA
3.0 (41,42) and visualized using MOLMOL (43) and
PyMOL (Delano Scientific). Quality of the final structures
was assessed using PROCHECK-NMR (44).

The homology models of the N-domains of Euplotes
and Stylonychia were calculated by the I-TASSER server
(45,46). The Template Modeling (TM)-score of both
models as compared to the structure of wt N-domain
were calculated by the TM-align server (47).

Structural characterization of RNA

All of the synthesized RNA oligonucleotides were
purchased from 1st BASE. The lyophilized RNA was
dissolved in diethylpyrocarbonate-treated water, and
diluted into the NMR buffer supplemented with 2–5mM
MgCl2. The RNA samples were incubated at 80�C
for 2min followed by cooling to room temperature.
Chemical shift assignments of 1H from the nucleobases
of 15-mer-UAA were based on the standard
2D NOESY (mixing time 350ms), DQF-COSY and
natural abundance 13C-HSQC all acquired at 25�C, as
well as 2D sofast-15N-HMQC (48) without
15N-decoupling measured at 20�C. Assignments of 1H
from the other RNA constructs were based on their
respective 2D NOESY spectra. H10 protons were only
partially assigned. 1D 31P-spectra with 1H-decoupling
were used to distinguish between double-stranded
helical and stem-loop structures. In the N-domain/RNA
titration experiments, the 1H resonances of
RNA were monitored as a function of added 13C,
15N-labeled wt N-domain to RNA, and vice versa.
Suppression of 1H resonances stemming from 13C-,
15N-labeled protein was achieved using isotope filtering
NMR experiment. Chemical shift perturbations
were calculated by CSP= [(��H)

2+(0.14���N)
2]1/2.

Binding affinity was obtained based on the chemical
shift perturbation of N-domain using the Scatchard plot
method (49).

RESULTS

The GTS loop of N-domain adopts distinct conformations

To understand the structural effect of the quadruple
mutations (i.e. T122Q, S123F, L124M and L126F) that
lead to unipotency for UGA in the mutant eRF1, we
determined the solution structures of wt N-domain and
Q122FM(Y)F126, and compared them with the correspond-
ing crystal structure of N-domain in full-length human
eRF1 (10). The solution structures were verified against
measured residual dipolar couplings, and the structure
determination statistics are reported in Table 1. As
expected, the NMR solution structure of wt N-domain
matches closely with the crystal structure of N-domain
in full-length eRF1 (Supplementary Figure S2A). The
only observed significant deviations are positioning of
the N-terminal part of helix a3 and conformation of the
GTS loop.
The global structure of Q122FM(Y)F126 is well super-

imposable with wt N-domain (Figure 1A). Their structural
differences are confined to b-strand b4 that contains the
point mutations, as well as the GTS loop. Likewise, helix
a3 of Q122FM(Y)F126 is also repositioned relative to wt
N-domain (Figure 1A). Although the four point muta-
tions are spatially remote from the GTS loop, structural
alteration that occurred to the GTS loop in
Q122FM(Y)F126 is evident from the difference in amide
chemical shift for the GTS loop and several other
nearby residues including C97 and T99 (Figure 1B and
Supplementary Figure S2B). Furthermore, different GTS
loop conformations are also confirmed by clear differences
in the NOEs patterns between wt N-domain and
Q122FM(Y)F126 (Supplementary Figure S2C). The alter-
native conformation of the GTS loop in Q122FM(Y)F126 is
maintained via an intricate propagation of hydrogen
bonding perturbations from the mutation sites situated
at the beginning of b-strand b4 that constitutes the hydro-
phobic core of N-domain (Figure 1A). In wt N-domain,
this b-strand forms a well-defined network of hydrogen

Table 1. Structural statistics for the final 20 conformers of

Q122FM(Y)F126

NMR restraints
Total unambiguous distance restraints 3081
Intra residual 824
Sequential (ji – jj=1) 715
Short-range (ji� jj � 1) 1539
Medium (2� ji� jj � 4) 619
Long range (ji� jj � 5) 923
Dihedral angle restraints 256
Hydrogen bond restraints 75

RMSD from the average atomic coordinates (residues 6–140, Å)
Backbone atoms 0.26±0.05
All heavy atoms 0.68±0.03

Ramachandran analysis (%)
Residues in most favoured regions 81.3
Residues in additional allowed regions 18.7
Residues in generously allowed regions 0.0
Residues in disallowed regions 0.0

None of the structures exhibits distance violations >0.2 Å or dihedral
angle violations >2�.
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bonds with the adjacent b-strand starting from L124 to
D128, as seen from the alternating directions of the
side-chains in consecutive residues. In Q122FM(Y)F126,
the regular hydrogen-bonding network is disrupted
starting from M124. Mutation L126F is critical for
breaking the regularity, since the phenylalanine aromatic
ring is found flipped to the opposite side of b-strand b4
relative to the side-chain position of L126, thus inflicting
position change of C127. As the side-chain of C127 is
moved away from the hydrophobic core formed between
the b-strand b4, helix a2 and helix a3, the N-terminal part

of helix a3 is repositioned closer to the GTS loop. The
phenylalanine substitution at position 126 in three of the
ciliates that are unipotent for UGA suggests that similar
structural features may have causal effect on the UGA
unipotency in those organisms (Supplementary Figure
S1). Nevertheless, the structural alteration in
Q122FM(Y)F126 is likely to be an additive effect from all
of the point mutations (23).

Remarkably, the GTS loop adopts distinct conform-
ations in all three situations, namely the crystal and
solution structures of wt N-domain as well as the
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Figure 1. Structural comparison between wt N-domain and Q122FM(Y)F126. (A) Superposition of the solution structures of wt N-domain (green)
and Q122FM(Y)F126 (blue). Regions that are structurally distinct between the two are highlighted in cyan (wt N-domain) and magenta
(Q122FM(Y)F126). (B) Differences in amide chemical shift between wt N-domain and Q122FM(Y)F126 are calculated by
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are denoted in italics. (C) Conformations of the GTS loop (residues N30–S33) found in the crystal structure of wt N-domain (left panel), the solution
structure of wt N-domain (middle panel), and the solution structure of Q122FM(Y)F126 (right panel). Positions of the residues that form the
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2.67±0.09 Å.
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solution structure of Q122FM(Y)F126 (Figure 1C). This
implies that the GTS loop has the flexibility to adopt
different conformations even within wt N-domain. In
fact, the GTS loop in the solution structures has rather
defined conformations, as backbone RMSD of the loop
region (N30–M34) in wt N-domain and Q122FM(Y)F126

are 0.32±0.28 Å and 0.05±0.02 Å, respectively. This
suggests that the observed GTS loop conformations
might represent end-states in a complex equilibrium of
different conformations. Close inspection reveals that
side-chains of the individual residues have different
solvent exposure in three structures, hinting at the possi-
bility that alternative GTS loop conformations expose dif-
ferent functional chemical groups for interactions with the
stop codons. Functional implication of the GTS loop in
stop codon recognition had been reported (50), since
T32A and T32V eRF1 mutants tended to UGA
unipotency. Furthermore, two individual point mutations
in the GTS loop of eRF1, i.e. T32A and S33A, were found
to exhibit opposite effects on their release activity
measured in vitro using fully reconstituted eukaryotic
translation system, namely 32% UAA/30% UAG/75%
UGA and 100% UAA/90% UAG/63% UGA, respect-
ively (E. Alkalaeva, personal communication).
Coincidentally, the side-chain of T32 in the structure of

Q122FM(Y)F126 is hidden from the solvent, suggesting
that T32 is not required for interacting with UGA (right
panel in Figure 1C).
We found that in Q122FM(Y)F126, but not in wt

N-domain, the resonance stemming from the hydroxyl
proton of S70 can be observed (Supplementary Figure
S2D), protected by potential hydrogen bonding to the
carbonyl oxygen of S33 (Figure 1C). Hence, the structure
of Q122FM(Y)F126 indicates that S70 might involve in sta-
bilization of the GTS loop in an alternative conformation.
The 15N-relaxation rates of wt N-domain and

Q122FM(Y)F126 have shown that the GTS loop is rela-
tively more dynamic on the sub-nanosecond timescale
than the bulk of N-domain (Figure 2). It was reported
that the ligand-binding sites are often found at or
close to the flexible regions in protein (51,52). It is inter-
esting to note that, in spite of increased dynamics, the
NOEs- and RDCs-derived averaged structure of the
GTS loop is significantly different in wt N-domain and
Q122FM(Y)F126, implying rather complex equilibrium
between conformations conferring different functionality.
We suggest that the observed the GTS loop ‘hotspot’ may
provide necessary flexibility needed to switch between dif-
ferently functionalized conformations upon interaction
with the stop codon. Apparently, the dynamic properties
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of wt N-domain and Q122FM(Y)F126 do not differ signifi-
cantly from each other (Figure 2). Hence, this led us to
conclude that although the switching between
omnipotency and unipotency of eRF1 can be sufficiently
explained by the alteration of the GTS-loop conform-
ation, it is not reflected by the fast dynamics.

RF activity of C127 mutants of eRF1 with omni-, bi- and
uni-potent specificity

Although the distinct GTS loop conformation in
Q122FM(Y)F126 compared to wt N-domain implicates a
functional role of the GTS loop in stop codon recognition,
one may argue that loss of UAA- and UAG-decoding
capability in the mutant might be caused by the
substituted residues directly. To prove the non-direct im-
plication of the 122–128 region of eRF1 in stop codon
decoding, the RF activity of the variant-code (Euplotes
and Stylonychia) eRF1s with C127 mutations has been
determined in an in vitro Caskey assay (32). C127 is an
invariant residue in family of eRF1s and is located neigh-
bour to F126 in the Q122FM(Y)F126 mutant that possesses
the same stop codon specificity as Styloyichia eRF1
(Figure 1A). The sequence homology between human
eRF1 and eRF1 of Euplotes and Stylonychia are 72.8
and 70.1%, respectively. Hence, their N-domains have
very similar folds, as the models of Euplotes and
Stylonychia’s N-domains derived by homology modeling
possess a TM-score (between (0,1)] of 0.92 and 0.94,
respectively.
As was shown earlier C127A and C127S mutants of

human eRF1 exhibited tendency towards UGA
unipotency (15), while C127S mutant of Euplotes eRF1-
restored efficient recognition of UGA stop codon without
changing of UAA and UAG stop codon decoding in the
readthrough RF assay (53). We have shown that C127A
and C127S mutants of Euplotes eRF1 also restored recog-
nition of UGA stop codon but RF activity towards UAG
was reduced for both mutants (Figure 3). However,

insertion of the same C127A and C127S mutations into
Stylonychia eRF1 with UGA-only specificity caused total
abolishment of RF activity towards UGA (Figure 3).

The different effects of the same C127 mutation on the
recognition of UGA by human, Euplotes and Stylonychia
eRF1s are a very hard argument in favour of suggestion
that C127 does not participate directly in UGA
recognition.

NMR structural characterization of 15-mer RNA
mimicking the decoding region of Helix 44

To investigate potential interactions between N-domain
and the A site of the 40S subunit, we designed a series
of double-stranded RNA oligonucleotides, aiming to
mimic the decoding region of Helix 44 in 18S rRNA
(Figure 4A and B). The 15-mer RNA constructs are Ci-
(inversion center) duplexes containing either two 2-nt
asymmetric internal loops at the symmetrical positions
or a single large internal loop (Figure 4B). It appears
that symmetric structures provide sufficient thermo-
dynamic stability to accommodate a significant number
of mismatches in the central region, enabling studies of
the impact of variability in the internal loop length
found in different organisms (e.g. Tetrahymena
thermophila and Thermomyces lanuginosus in Figure 4A)
on binding to N-domain. The 7-mer RNA, which does not
contain any internal loop, was used as a reference for
RNA binding. In addition, in some constructs we
incorporated 20-O-methyl at C5 position exhibiting an
easily detectable 1H-NMR line (54) acting as a structural
probe for interactions near the internal loop. This modi-
fication has been shown to cause a negligible effect on the
structure of double-stranded RNA (55).

Secondary structure of the 15-mer RNA constructs was
determined using 2D-NOESY spectra. All mutant RNA
constructs adopt the double-stranded helical structure
(Supplementary Figure S3A). The canonical double-
stranded helical structure can be clearly seen from the
presence of three cross-peaks stemming from G2’s, G3’s
and G10’s imino protons in the H10–H5 region (5.0–
6.2 ppm; right panel in Figure 4C) (56). In 15-mer-UAA,
five Watson–Crick base pairs were detected using imino
proton resonances protected from exchange with solvent
(left panel in Figure 4C). Watson–Crick base pairing
between A4 and U12 was not observed. Instead, a minor
conformation associated with the closing base pair of
A4–U12 in 15-mer-UGG and 15-mer-GAG was
observed, indicating a slow ‘breathing’ action of the
internal loop on the 1H chemical shift timescale
(Figure 4C, Supplementary Figure S3B and C). This
type of intra-molecular dynamics is expected in RNA-
containing internal loops (57). The secondary structure
of 15-mer-UGA is similar to 15-mer-UAA. The
non-Watson–Crick base pair of U7–G8 is confirmed by
detection of the corresponding imino proton resonances
(Figure 5D) as well as strong NOEs between the two
protons. For 15-mer-UGG and 15-mer-GAG, while an
overall helical structure was maintained, both of the
RNA constructs are deemed to form a large internal
loop, due to the lack of observable stable base pairing
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Figure 4. 15-mer RNA constructs that mimic the decoding region of Helix 44. (A) Secondary structure of the highly conserved decoding region of
Helix 44 in prokaryotic 30S and eukaryotic 40S ribosomal subunits. The internal loops are highlighted in bold; Watson-Crick and non-Watson-Crick
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15-mer-UAA in H2O before and after addition of paromomycin. Three peaks stemming from paromomycin are indicated by caret.
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from the nucleotides in the central region (Figure 5D). The
7-mer construct was expected to contain no internal loop,
and this was confirmed by the observation of all expected
base pairings (lower panel in Figure 5C).
Aminoglycosides are a class of antibiotics that bind to

the decoding region of Helix 44 in 16S rRNA (58). In
particular, paromomycin binds much stronger to the pro-
karyotic than to the eukaryotic ribosome, owing to several

differences in the rRNA sequence of the internal loop
(25,53,59). Despite the fact that some of our selected
15-mer RNA constructs do not match exactly the oligo-
nucleotide sequence of the decoding region of Helix
44 shown in Figure 4A, they interact with paromomycin
at the internal loop as expected (Figure 4B and D).
This indicates that the 15-mer RNA constructs possess
some essential structural determinants sufficient for
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paromomycin binding. This clearly supports the structural
relevance of the 15-mer RNA constructs as mimics of the
decoding region of Helix 44.

The 15-mer RNAs bind to helix a1 of N-domain

Among the 15-mer RNA constructs, the strongest binding
15-mer-UGA interacts withN-domain withKd of�150 mM
as estimated from NMR titration data (Figure 5A). The
binding interface spans from residues N11 to I21,
covering most of helix a1 (Figure 5B). In particular,
several lysine residues within the binding region, i.e. K16,
K18 and K19, are highly conserved and are likely to
contribute to the interactions with RNA (Supplementary
Figure S1). In addition, the aromatic side-chain of the
conserved W15 could be involved in a stacking interaction
with the nucleic acid bases. These types of interactions are
commonly found non-sequence-specific interactions in
protein–RNA complexes (60,61).

Besides helix a1 some other residues of N-domain were
also affected by RNA binding as detected by CSP
(Figure 5A and B). All of these observations can be
explained by allosteric propagation of the structural per-
turbations from helix a1 directly involved in RNA
binding to other secondary structure elements located
in its immediate spatial proximity. This effect can be
seen as drastic CSP at F117, of which side-chain is in
close contact with helix a1. Some residues with notable
CSPs are located in helix a4, especially at and around
T137, which is tightly packed against helix a1 with the
side-chain of T137 facing I21 in helix a1. A site with
rather subtle chemical shift perturbation is located on
the opposite side of helix a1 at T58 (Figure 5B).
Interestingly, in the crystal structure of eRF1 in
complex with domain 2/3 of eRF3, an ATP molecule
was found in proximity to T58 of eRF1, with N7 of
adenine in contact with the threonine hydroxyl group
(PDB ID: 3E1Y) (50). This indicates a possibility of
interactions between T58 and the flipped out adenine in
the internal loop of the 15-mer RNA.

Upon binding to N-domain, all tested 15-mer RNA
constructs induced consistent CSP patterns, albeit with
variable magnitudes reflecting different binding affinities
(Figure 5A). Specifically, 15-mer-GAG exhibits signifi-
cantly weaker response, which is likely due to its thermo-
dynamically unstable central stem. This implies that
binding of the 15-mer RNA to N-domain does not
depend strongly on the sequence of the internal loop,
but rather on the structural variability of the double-
stranded RNA. To highlight the role of the internal loop
in binding to N-domain, we tested the interaction using
the 7-mer RNA, which comprises the central region of
15-mer-UGA but without the internal loops (Figure 5C).
The significantly attenuated binding affinity shows that
the internal loop is required for specific binding to helix
a1 of N-domain. Furthermore, only a specific set of
resonances of the 15-mer RNA was perturbed upon inter-
action with N-domain (Figure 5D and E). Based on that,
the binding site can be mapped onto a region of the
15-mer RNA that includes the internal loop (Figure 4B).
Close inspection revealed that nucleotides A9 and G10

seemed to experience a larger perturbation compared to
other relevant nucleotides. We argue that if the central
RNA stem was the only element required for the inter-
action, binding affinity of the 7-mer RNA to N-domain
should be comparable to the 15-mer RNA, particularly
15-mer-UGA. Hence, we have established that the inter-
action between N-domain and RNA requires certain
structural elements that include double-stranded helices
and a 2-nt internal loop. These results strongly support
the potential of N-domain to interact directly with the
decoding region of Helix 44.

Binding of 15-mer RNAs displaces C-domain from a
non-covalent complex of N-domain and C-domain

The 3D crystal structure of full-length eRF1 shows that its
three protein domains extend outward from the center of
mass to form a Y-shape tertiary structure, with C-domain
exhibiting a considerable contact interface with N-domain
(10). In solution, TROSY NMR spectra of full-length
eRF1 showed fewer than expected resonances, with
the majority of cross-peaks broadened by conform-
ational exchange. We traced the source of this conform-
ational jitter to the interactions between N-domain
and C-domain, since the NM-domain construct corres-
ponding to a C-domain-truncated eRF1 lacks significant
structural interactions between N-domain and M-domain
(Supplementary Figure S4). Interestingly, our model
RNAs are interacting with helix a1 of N-domain that is
found at the interface with C-domain in the crystal struc-
ture of eRF1 (Figure 6C). We hypothesized that the
15-mer RNA and C-domain may compete for binding to
N-domain, and hence, set out to test it by competitive
binding experiments.
NMR titration experiments with 15N-labeled N-domain

and unlabeled C-domain, and vice versa, show that
N-domain indeed interacts with C-domain at the interface
that includes the contact area observed in the crystal struc-
ture of eRF1 (Figure 6A–C). Majority of the amide
resonances of C-domain were severely attenuated by line
broadening upon N-domain binding (Figure 6B and D),
while several amide resonances of N-domain were also
disappeared when binding to C-domain (Figure 6A).
This indicates that the kinetic rate of binding is in the
fast to intermediate exchange regime on NMR timescale,
and the binding of N-domain may induce additional con-
formational exchange to C-domain on another timescale.
This low affinity or transient nature of binding between
N-domain and C-domain is supported by thermodynam-
ically weak, entropy-driven interactions observed in earlier
isothermal scanning colourimetric studies (31).
Nevertheless, CSP and extreme broadening of cross-peaks
allowed us to map the binding interface on N-domain
(Figure 6C). The binding interface seems to be more
extensive than can be predicted from the crystal structure
of eRF1, which suggests that there are other modes of
complex formation between N-domain and C-domain.
In fact, variations in domain orientation were observed
in the different crystal structures of eRF1 in complex
with domain 2/3 of eRF3, as the relative orientations
between N-domain and C-domain differ by 15�, 16�, and
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30� for human complex versus free eRF1, human complex
versus Schizosaccharomyces pombe complex and S. pombe
complex versus free eRF1, respectively (50). It is interest-
ing to note that part of the GTS loop was also significantly
affected by the presence of C-domain (Figure 6A and C).

Perturbations of the C-domain resonances were moni-
tored in competitive binding between the two domains and
15-mer RNA. Initially, addition of N-domain attenuated
majority of the cross-peaks and shifted some of them (left
panel in Figure 6D). As 15-mer-UGA was titrated into the
complex of N-domain and C-domain, the attenuated and
shifted cross-peaks returned progressively to the initial
state corresponding to free C-domain in solution (right
panel in Figure 6D). As we have already shown the
15-mer RNA binds to N-domain, while C-domain does
not interact with the 15-mer RNA at all (Supplementary
Figure S5), this result clearly demonstrates that the
15-mer-RNA is able to displace C-domain from the
non-covalent complex of N-domain and C-domain.

DISCUSSION

Selectivity of stop codon recognition is modulated
by multiple GTS loop conformations

The strictly conserved GTS loop of N-domain is emerging
as being implicated in decoding or in direct contact with
the stop codon (17,62,63). The most significant insight
from the finding of distinct GTS loop conformations in
wt N-domain and Q122FM(Y)F126 is that the shift in stop
codon selectivity might be determined by the structural
changes, that are critical for interactions of amino
acid(s) with the stop codon. Having the same amino
acid sequence as the wild-type at the positions 122–126,
eRF1 with a single point mutation T32A had been
shown to exhibit tendency towards UGA unipotency
(50, E. Alkalaeva, personal communication). Why does
T32A mutant show similar attribute as Q122FM(Y)F126?
The same question can be asked about the stop codon
decoding by various eRF1 mutants investigated in
previous studies; since; in many cases; the point mutations
scattered across a large part of N-domain resulted in the
same bias of stop codon selectivity. This paradox can be
explained in two ways: (i) eRF1 mutant, which has lost
interaction with one or two out of three nucleotides of a
stop codon, can still support the peptide release for that
particular stop codon but with reduced efficiency,
probably because, one amino acid substitution is not
enough to destroy completely the direct interaction with
stop codon(s) (this might be the case for T32A mutant)
and (ii) the part of described earlier point mutations,
which have given rise to altered stop codon specificity,
are responsible for structural modulation of N-domain
regions that actually interact with the stop codon(s) (this
might be the case for Q122FM(Y)F126).

Similar mutations of the highly conserved C127 in
human, Euplotes and Stylonychia eRF1s evoke different
responses: the decreased recognition for UAA and UAG
for human eRF1, the appearance of UGA recognition for
Euplotes eRF1, and its disappearance for Stylonychia
eRF1. This indicates that C127 does not participate

directly in stop codon recognition as well as very likely
the same for the other amino acid residues in the region
122–126. It also shows that residue nearby to the stop
codon recognition site can critically affect stop codon
selectivity.
In the context of our proposed mechanism, point

mutation that alters selectivity of stop codon recognition
is likely to modulate the structure of the GTS loop, or
even its capacity to switch between different conform-
ations. Indeed, a few point mutations were found to hit
on the residues that constitute the hydrophobic core right
above the GTS loop, e.g. I35, V71, V78 and C127
(18,50,53). Remarkably, the width of this hydrophobic
core is directly related to the differential positioning of
helix a3 as observed in the structures of wt N-domain
and Q122FM(Y)F126 (Figure 1A and Supplementary
Figure S2A). The width, measured as the distance
between the amides of M34 and V71, is reduced from
7.68 Å and 7.38±0.18 Å in the crystal and solution struc-
tures of wt N-domain, respectively, to 6.56±0.13 Å in
Q122FM(Y)F126. In light of these observations, it is at-
tractive to hypothesize that repositioning of helix a3 in
N-domain occurs during stop codon recognition as the
GTS loop is sampling different configurations.
Interestingly, S70 on helix a3 was found to involve in sta-
bilization of the GTS loop in Q122FM(Y)F126 (Figure 1C).
Residue S70 is critical for UGA-decoding, as a point
mutation S70A restricts human eRF1 to recognize UAA
and UAG only. At the same time, the single A70S substi-
tution in Euplotes eRF1 changes stop codon recognition
from UAR-only specificity to omnipotent one (24). These
data verify the assumption that S70A substitution is
associated with UGA reassignment (64).
Besides helix a3, helix a2 could also play a role in

modulating the selectivity of stop codon recognition.
First, M51 and E55 on helix a2 are able to alter stop
codon recognition patterns (18,65). Secondly, the
TASNIKS motif was found to confer distinct requirement
of eRF3 upon eRF1 on decoding UAA/UAG and UGA
(53). As T58 in the TASNIKS motif was observed to
interact with the 15-mer RNA (Figure 5A and B) and
the NIKS motif had also been implicated in ribosome
binding (14), interactions between helix a2 and the
ribosome is highly possible. Furthermore, P41 and P89,
which may be critical for the formation of the b-turns that
connect the core b-sheet to helices a2 and a3, were also
found to affect stop codon recognition (18,25). This hints
at a higher than anticipated degree of complexity in the
stop codon decoding mechanism of eRF1.

Interactions between N-domain and mimics of the
decoding region of Helix 44

With the knowledge of the GTS loop being implicated in
stop codon recognition, we seek to explore possible orien-
tations of N-domain within the ribosomal A site by
investigating the interactions between N-domain and 18S
rRNA. As genetic interactions between eRF1 and the
decoding region of Helix 44 of 18S rRNA were reported
(25), we decided to test if there is any direct interaction
between them. Our model 15-mer RNA intended to mimic

Nucleic Acids Research, 2012, Vol. 40, No. 12 5761

http://nar.oxfordjournals.org/cgi/content/full/gks192/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks192/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks192/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks192/DC1


the decoding region of Helix 44 outside of the ribosome
does interact specifically with helix a1 of N-domain, and
its binding affinity is significantly reduced in the absence
of the internal loop. How far has this somewhat reduc-
tionist’s approach achieved? Our results are well-
supported by previous studies and are able to provide
novel insights. A truncated mutant of eRF1, eRF121–437,
was shown to reduce significantly its own release activity,
as well as the stimulating activity towards eRF3 GTPase,
indicating that N-terminal deletion of eRF1 until residue
I21 is enough to affect its binding to the ribosome (11).
Aminoglycosides are known to reduce the fidelity of

both elongation and termination of protein translation
(66). Although they bind much stronger to the prokaryotic
than to the eukaryotic ribosome, the latter is still suscep-
tible to the nonsense suppression effect of various
aminoglycosides (67,68). Furthermore, those drugs have
been used effectively in alleviating diseases caused by
premature termination codon (69). Most importantly, it
was shown that the nonsense suppression induced
by paromomycin in yeast is likely to be caused by the
interference to the termination process, instead of
compromising the selection of cognate tRNA (70). All
these results support the hypothesis of direct interaction
between N-domain and the decoding region of Helix 44.
A1752G (rdn15), a point mutation in Helix 44 of

Saccharomyces cerevisiae 18S rRNA (refer to 18S rRNA
of Thermomyces lanuginosus in Figure 4A for the nucleo-
tide position), is able to rescue cell lethality caused by a
mutant eRF1, Sup45p-P86A, at 37�C (25). The point
mutation P86A was thought to reduce Sup45p’s efficiency
in stop codon recognition, rather than inhibiting it com-
pletely. The rescue mechanism by rdn15 is far from clear,
but was postulated to prolong the residence time of the
mutant eRF1 at the ribosomal A site. Interestingly, we
have found that 15-mer-GAG, having a larger internal
loop than the rest, binds significantly weaker to
N-domain. As rdn15 effectively reduces the native 3-nt
to a 2-nt internal loop, the inverse correlation between
RNA-N-domain binding affinity and the size of the
internal loop provides a possible explanation for the com-
plementary between rdn15 and Sup45p-P86A.

A model of N-domain bound in the
pre-termination complex

Prior to solving the high-resolution structures of
eRF1-bound pre-termination complex (pre-TC), under-
standing of the mechanism of translation termination in
eukaryotes will have to rely on piercing together biochem-
ical, structural and genetics data from different studies.
Our structural study of N-domain led us to suggest that
eRF1 might decode different stop codons by adopting
distinct GTS loop conformations, thus implying direct
access of the GTS loop to the stop codon. In addition,
the data on N-domain-RNA interactions have shown that
N-domain potentially interacts with Helix 44 of 18S
rRNA. Based on these results, we propose a structural
model that encompasses currently known interactions
between N-domain of eRF1 and the A site of eukaryotic
ribosome (Figure 7).

The model shows that it is possible for the GTS loop to
contact the stop codon while helix a1 is positioned next to
the decoding region of Helix 44. Although helix a1 is not
in the exact position to interact with Helix 44, a slight
forward movement of the stop codon towards the P site
will compensate for this discrepancy. Interestingly, it was
reported that 2-nt toe-print shift occurs when the
eRF1·eRF3·GTP complex binds to the pre-TC (71). On
the other side of N-domain, the side-chains of A53, N61,
R65, R68 and Q79 are facing 18S rRNA. Residues R65
and R68 affect the binding of eRF1 to the ribosome (14),
while each of the point mutants, A53K, N61K and Q79K/
R, was shown to substantially reduce the level of stop
codon readthrough in comparison to wild-type, indicating
enhanced ribosome binding due to the lysine or arginine
substitution (72). In our model, the GTS loop is close
enough to the stop codon to allow photoactivatable
cross-linking with the second and third stop codon pos-
itions (17). In the eRF1/pre-TC cross-linking experiments,
the KSR loop (positions 63–65) and V66 were suggested to
be in contact with the first stop codon position (16,17).
Although within margins of cross-linking experiments, in
our model these residues are not located in the direct prox-
imity of the uridine of the stop codon, thereby requiring
further experiments to resolve.

Helix 44

A1753
A1754

A53A53
Q79Q79

R65R65
R68R68N61N61

G577
18S rRNA

P-site tRNA

GTSGTS
looploop

helixhelix
a1

N-domainN-domain

M-domainM-domain

3’-CAA
tail

GGQ motif

Figure 7. A model of eRF1 bound to the A site of eukaryotic
ribosome. NM-domain of eRF1 (green and orange) was docked onto
the A site of 18S rRNA (blue) with P-site bound tRNA (purple) and
mRNA (pink; PDB ID: 3IZ7), based on the insights derived from the
interactions between helix a1 of N-domain and the decoding region of
Helix 44 (cyan), as well as the putative role of the GTS loop in stop
codon recognition. The corresponding nucleotides critical for tRNA
selection in prokaryotic ribosome and selected residues of eRF1 are
highlighted in red and yellow, respectively.
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With the orientation of N-domain in our model, a hinge
motion between N-domain and M-domain would
allow the GGQ motif to reach the 30-CAA tail of P-site
tRNA as had been suggested earlier (17,50), while
C-domain would be required to move away from helix
a1 (Figure 7). The latter is well demonstrated by the com-
petitive binding experiments, albeit in a reductionist’s
approach (Figure 6D). Hence, a major domain rearrange-
ment between N-domain and C-domain is likely to occur
in translation termination during which N-domain accom-
modates itself into the A site.
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