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Convolutional neural networks (CNNs) have been widely applied to the motor imagery

(MI) classification field, significantly improving the state-of-the-art (SoA) performance in

terms of classification accuracy. Although innovative model structures are thoroughly

explored, little attention was drawn toward the objective function. In most of the available

CNNs in the MI area, the standard cross-entropy loss is usually performed as the

objective function, which only ensures deep feature separability. Corresponding to the

limitation of current objective functions, a new loss function with a combination of

smoothed cross-entropy (with label smoothing) and center loss is proposed as the

supervision signal for the model in the MI recognition task. Specifically, the smoothed

cross-entropy is calculated by the entropy between the predicted labels and the one-hot

hard labels regularized by a noise of uniform distribution. The center loss learns a deep

feature center for each class and minimizes the distance between deep features and

their corresponding centers. The proposed loss tries to optimize the model in two

learning objectives, preventing overconfident predictions and increasing deep feature

discriminative capacity (interclass separability and intraclass invariant), which guarantee

the effectiveness of MI recognition models. We conduct extensive experiments on two

well-known benchmarks (BCI competition IV-2a and IV-2b) to evaluate our method. The

result indicates that the proposed approach achieves better performance than other

SoA models on both datasets. The proposed learning scheme offers a more robust

optimization for the CNN model in the MI classification task, simultaneously decreasing

the risk of overfitting and increasing the discriminative power of deeply learned features.

Keywords: electroencephalogram, motor imagery, convolutional neural networks, label smoothing, center loss

1. INTRODUCTION

Brain–computer interface (BCI) has been raising interest from the research community. It provides
an important way for the disabled to interact with the outside world without using any muscular
movements (Wolpaw et al., 2002). This technology aims to recognize the user intentions based
on the distinct patterns of neural events. Motor imagery (MI) is one of the crucial topics in the
area of BCI, referring to a cognitive procedure of the motion imagination such as lifting left or
right leg, without any actual moving actions (Ahn and Jun, 2015). The most popular technology
to signalize such cognitive procedures is the electroencephalogram (EEG), being noninvasive and
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relatively easy to set up (Ahn and Jun, 2015; Ni et al., 2020; Zhang
et al., 2020). The principle of the EEG-based MI-BCI system is to
match the type of motion imagination and its corresponding EEG
signals. Suchmatching systems have been practiced in a variety of
applications, including speller (Rezeika et al., 2018), wheelchair
(Kaufmann et al., 2014), and prosthesis (Vidaurre et al., 2016).

Accurate classification of EEG-MI pattern is one of the
most decisive factors to the BCI performance but remains a
significant challenge due to the low signal-to-noise ratio (SNR)
characteristics of the EEG signal (Goldenholz et al., 2009;
Zhang et al., 2019). Convolutional neural networks (CNNs)
have been widely explored and achieved great success in the
MI recognition area (Bashivan et al., 2015; Roy et al., 2019). It
significantly pushes the boundary of the state-of-the-art (SoA)
in classification accuracy compared to the conventional methods
such as band power analysis (Martinez-Leon et al., 2015),
independent component analysis (ICA) (Lee et al., 1999), and
common spatial filter (CSP) (Ramoser et al., 2000). The most
common framework of CNN is to perform feature generation
and label prediction, learning deep features from raw EEG data
by the CNN pipeline, then making label predictions based on the
learned features (see Figure 1A).

The training of CNNs in the MI classification task is mainly
guided by minimizing the cross-entropy (Hertz et al., 2018). This
objective function is “greedy” and encourages the largest possible
logit gaps, making the model less adaptive, and sometimes
overconfident to its predictions (Szegedy et al., 2016). The model
learns to assign a full probability to the ground-truth label
for each training example, even though some noisy data are
mixed in the training set (Müller et al., 2019). This overfitting
phenomenon incredibly easily occurs when the training sample
size is small. Coincidentally, the EEG data have a low SNR and
contains much noise. In addition, the MI-BCI system is usually
designated as subject dependent, so it usually has limited training
data. To reduce the risk of overfitting (overconfidence) issue,
we adopt a label smoothing technique introduced by Szegedy
et al. (2016) in the training scheme of the MI classification.
It computes a modified cross-entropy, called smoothed cross-
entropy, not by using “hard” one-hot encoded labels such as
[0, 0, 1, 0] from training data, but a weighted mixture of these
hard labels with the uniform distribution (Figure 1B). Label
smoothing alternatively encourages small logit gaps and prevent
overconfident predictions. This technology has successfully
increased the performance of CNN models across multiple
tasks, including image classification (Szegedy et al., 2016),
speech recognition (Chorowski and Jaitly, 2016), and machine
translation (Vaswani et al., 2017). It is expected to benefit the
model training in MI classification by tackling the overfitting
problem, leading to a generalizable and adaptive CNN model.

In addition to ensuring the model’s generalizability, we
also aim to increase its discriminative power. As shown in
the common framework of CNN (Figure 1A), the last fully
connected layer acts as a linear classifier, and the cross-entropy
only encourages the separability (Hertz et al., 2018) but does
not guarantee the high discriminative characteristics, where
features have both a large inter-class difference and a tight intra-
class variation (Figure 1C). Therefore, the resulting features

generated by the model trained via the cross-entropy are not
sufficiently effective for the MI classification. To enhance the
discriminative capacity of the deep features, we apply a center
loss (Wen et al., 2016) for the model training. Specifically, the
center of deep features is computed by their means in each class
and updated across every epoch. The distances between deep
features with their corresponding class centers are minimized at
each training iteration. The parameters are optimized by jointly
minimizing the cross-entropy and center loss. Intuitively, the
cross-entropy forces the deep features from different classes to
stay apart, and the center loss pulls the features belonging to
the same class toward their centers. With joint supervision, we
can concurrently enlarge the inter-class difference and reduce the
intra-class variation so as to improve the discriminative power of
deep features.

In this paper, we propose a novel training scheme for CNN-
based model in the MI classification by using a combined
loss with smoothed cross-entropy and center loss. The main
contributions are as follows:

1. To our best knowledge, although structures of the CNN
model are heavily investigated, this is the first attempt
to use the proposed loss to help supervise training in
the context of MI classification. With joint supervision
of the smoothed cross-entropy and the center loss, both
generalizable and discriminative model can be obtained for
robust MI recognition.

2. We present extensive experiments on two famous MI public
datasets, called BCI-competition IV-2a and IV-2b. Our new
approach achieves superior performance compared to other
SoA methods.

3. We also conduct an ablation study to demonstrate the
effectiveness of the label smoothing and the center loss.

The remainder of the paper is organized as follows. In section 2,
conventional and deep learning methods on MI classification are
introduced. Section 3 describes the proposed approach. Sections
4 and 5 present the experiment result and analysis. Section 6
concludes the current study.

2. RELATED WORKS

A sophisticated feature extractor is the key to success in
conventional methods for the MI classification task. One of the
most frequently and widely used approaches is the common
spatial pattern (CSP) (Pfurtscheller and Neuper, 2001; Yu et al.,
2019). It tries to generate optimal spatial filters that have
minimum or maximum variance between classes in a particular
frequency band. The features used in the winner algorithm
of the BCI competition IV are based on the filter bank CSP
(FBCSP) (Ang et al., 2008) that finds a set of optimal spatial
filters in multiple frequency bands. The Naive Bayes Parzen
Window classifier using these features achieved an outstanding
classification performance with an accuracy of 67.75% on the
dataset IV-2a (Ang et al., 2008). After the competition, a novel
method based on the support vector machine (SVM) with
Riemannian covariance achieved a better performance (75.74%)
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FIGURE 1 | Illustration of the concepts in the study. (A) The common framework of convolutional neural network (CNN). (B) Label smoothing. (C) Deep feature

distributions. The CE denotes the cross-entropy calculation. The α denotes the weight of the CE between predicted label and uniform distribution.

for the same database (Hersche et al., 2018). In addition to
these vector-based methods, matrix-form strategies such as the
logistics regression classifier with a nuclear norm regularization
(Zhou and Li, 2014), the rank-k SVM (Lal et al., 2004), and the
support matrix machine (SMM) (Zheng et al., 2018) were also
developed by multiple research groups. The leading edge of these
methods is to directly process the 2-D MI EEG data on a matrix
basis instead of stacking features as a vector input to a classifier,
which preserves the informative structural patterns.

Deep learning (DL) models were also exploited to tackle
the MI classification challenge. For instance, the multilayer
perceptron (MLP) was proposed to generate nonlinear patterns
from CSP features and also to substitute the SVM as a classifier
for MI recognition (Kumar et al., 2016). Similarly, a channel-
wise convolution with channel mixing (C2CM) was introduced
to classify the spatial-temporal features generated by FBCSP
(Sakhavi et al., 2018). Bashivan et al. (2015) converted the
EEG waves into spectral topographies via short-time Fourier
transform (STFT). These topographies were then fitted into
CNNs for further transformation and classification. Tabar and
Halici (2016) also used the STFT approach to extract spatial-
temporal images as the feature input to the CNN-SAE model
for classification. These feature input (FI) models still require
complex feature generation from raw EEG data prior to the
DL modeling. Several research groups investigate raw signal
input (RSI) models to provide an end-to-end scheme for MI
recognition to address this limitation. For example, the two

most well-known RSI networks, EEGNet (Lawhern et al., 2018),
and ConvNet (Schirrmeister et al., 2017), achieved competitive
classification performance without using any pre-processing
techniques. In general, althoughmodel architectures were heavily
investigated, the neural network learning process did not receive
too much attention from the MI community. Rather than
figuring out a more sophisticated architecture, we propose a
potentially efficient objective function for both generalizable and
discriminative learning in the CNN-based model.

3. METHOD

This section first introduces the notations and definitions used in
this work and describes the CNN architecture. Then, the novel
proposed loss is presented in detail.

3.1. Definition and Notations
Assuming that the DL model input is on a per-trial basis,
where the continuous EEG is segmented into labeled trials,
we define the segmented trials of a subject as {[xi, yi]}

n
i=1,

where xi ∈ R
E×T represents ith of EEG trials recorded by

E electrodes and T sampling time points. yi ∈ R
M denotes

the corresponding ith labels of M classes. Let the ground truth
distribution p over labels p(y|xi), and

∑M
y=1 p(y|xi) = 1. We

also define a CNN-based model with θ that predicts label
distribution qθ (y|xi), and certainly

∑M
y=1 qθ (y|xi) = 1. We are

Frontiers in Neuroscience | www.frontiersin.org 3 October 2021 | Volume 15 | Article 760979

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Huang et al. Generalizable and Discriminative Learning for MI

FIGURE 2 | Illustration of the convolutional neural network (CNN)-based model. T = number of the timestamps, E = number of electricodes, F1 = number of filters in

the temporal CNN, D = number of depthwise convolution output channels, F2 = number of spatial filters, P1 and P2 are sizes of the average pooling kernel, and αlsr

and αct are weights of label smoothing regularization and center loss.

motivated to adopt the label smoothing technology and center
loss to improve the generalizable and discriminative power of the
CNN-based model.

3.2. Network Architecture
In the current study, we inherit the CNN architecture of the
EEGNet (Lawhern et al., 2018) but make two modifications,
where the kernel size of the first temporal CNN filter (LA1) is
decreased to attain temporal information above 8Hz, as the alpha
(8–12 Hz) and beta (12.5–30 Hz) band contain most relevant
information of the motor imagery task (Wierzgała et al., 2018).
The illustration of the network is displayed in Figure 2, and the
details of each layer are presented in Table 1. The model begins
with a 2D-CNN directly linked to the raw EEG data with a kernel
size in (K1, 1) to capture temporal patterns in each electrode. A
depthwise convolution layer with a kernel size of (1, E) is followed
and utilized for spatial feature extraction. The separableConv2D
with a kernel size in (K2,1) is then performed to gain deeper
and more abstract temporal information across all electrodes.
As shown in Table 1, it is noted that batch normalization (Ioffe
and Szegedy, 2015), exponential linear unit (ELU) (Clevert et al.,
2015) activation, and average pooling are sequentially followed
after some of these convolutions for covariate shift avoidance
(Bickel et al., 2009), nonlinear transformation, and dimension
reduction, respectively. The deep feature generated by the CNN
pipeline is then flattened as a vector (nodes) by a flatten layer.
The vectors of each training batch are used to compute the center
loss. The dense layer is subsequently connected to these nodes
and acts as a classifier. The softmax function finally performs

the estimation of the probability for each MI class. The cross-
entropy between the probability estimation and the smoothed
label represents the classification loss (standard cross-entropy
+ label smoothing regularization). The weighted sum of the
classification and center losses supervises the training of the
entire network.

3.3. Proposed Loss
To ensure both generability and discriminative power of the
CNN-based model in the context of MI classification, we propose
a combined loss that jointly optimizes the classification loss
(e.g., cross-entropy computed by smoothed labels) and the center
loss. Most models in previous studies performed the standard
cross-entropy for the objective function defined as

Lcl =

n
∑

i=1

Hi(p, qθ )

= −

n
∑

i=1

M
∑

y=1

p(y|xi)log qθ (y|xi)

(1)

Given the p(y|xi) is one-hot encoded in classification task where

p(y|xi) =

{

1, y = yi;

0, otherwise.
(2)
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TABLE 1 | Architecture setting.

Layer Function Filter Kernel Output shape

LA1

Input T,E, 1

Conv2d F1 (K1, 1)
T,C, F1

BatchNorm

LA2

DepthwiseConv2d F1 ∗ D (1,E)

T, 1, F1 ∗ DBatchNorm

ELU Activation

Average pooling (P1, 1) T/P1, 1, F1 ∗ D

LA3

SparableConv2d F2 (K2, 1)

T/P1, 1, F2BatchNorm

ELU Activation

Average pooling (P2, 1) T/(P1 ∗ P2), 1, F2

LA4 Flatten (T ∗ F2)/(P1 ∗ P2)

LA5 Fully connected
number of classes

LA6 Softmax (CEL)

LA7 Lambda (CL) 1

(1) T = number of the timestamps, E = number of electricodes, K1 = kernel size of the first CNN, D

= number of depthwise convolution output channels, F1 = number of temporal filters, F2 = number

of spatial filters, K2 = size of th kernel in the spatial filer, and P1 and P2 are sizes of average pooling

kernels.

(2) CEL stands for cross-entropy computed by smoothed labels. CL stands for center loss. Lamda

layer is a self-customize layer for the calculation of the center loss.

We can further reduce (1) as

Lcl = −

n
∑

i=1

log qθ (yi|xi) (3)

For each training sample i, the qθ (yi|xi) is usually calculated by
the softmax function as follows:

qθ (yi|xi) =
exp(zyi )

∑M
j=1 exp(zj)

(4)

Here, zj is the logit value or unnormalized log-probability for
each label j. By using the one-hot ground-truth label, minimizing
the objective function Lcl is equivalent to do the log-likelihood
maximum. The maximum is not achievable with finite data, so
it can only be estimated in the case when zyi >> zj for all
j 6= yi (e.g., the logit of the ground-truth label is much larger
than all other logits) over the training dataset (Szegedy et al.,
2016). In such a case, the model learns to classify every training
sample correctly with a confidence of nearly 1, which is the signal
of overfitting. This phenomenon relatively easily occurs in the
scenario that the MI EEG task often only contains a small sample
size of training data.

We adopt the label smoothing mechanism where a noise
distribution u(y|x) is added to the one-hot ground truth label to
prevent the model from having overconfidence and to reduce the
risk of overfitting. Then, the new ground truth label distribution
is p′(y|xi) = (1− ε)p(y|xi)+ εu(y|xi), where ε is a weight factor,

TABLE 2 | Hyperparameter settings.

Hyperparameter CNN for IV-2a CNN for IV-2b

T 1,000 1,000

E 22 3

F1 8 8

F2 16 16

K1 32 32

K2 16 16

D 2 2

P1 8 8

P2 8 8

ε ǫ [0, 1]. By replacing p(y|xi) with p′(y|xi) in (1) and (2), the
new classification loss L′

cl
computed by smoothed labels can be

written as

L′cl =

n
∑

i=1

M
∑

y=1

p′(y|xi)log qθ (y|xi)

= −

n
∑

i=1

M
∑

y=1

[(1− ε)p(y|xi)+ εu(y|xi)] qθ (y|xi)

= (1− ε)

n
∑

i=1

Hi(p, qθ )+ ε

n
∑

i=1

Hi(u, qθ )

(5)

The first half of (5) is the weighted standard cross-entropy
Lcl. Let the second half is weighted loss of label-smoothing
regularization (Llsr), which penalizes the deviation of predicted
label distribution p from noise distribution u with a relative
weight ε/(1 − ε). We set the noise as the uniform distribution
u(y|x) = 1/M (Szegedy et al., 2016). Then, the Hi(u, qθ )
measures the dissimilarity between predicted label distribution
p to uniform. Therefore, Llsr heavily penalizes overconfident
predictions and prevents poor generalization during the training.

Let the weight of Lcl is fixed as 1, and the relative weight ε/(1−
ε) of Llsr is redefined as αlsr . Therefore, L

′
cl
can be elaborated as

L′cl = Lcl + αlsrLlsr (6)

In addition to the generalizability, we also try to ensure the
discriminative ability of the deep learned features extracted by
the CNN pipeline. Intuitively, simultaneously maximizing the
inter-class distance and minimizing the intra-class variation is
the fundamental strategy to keep features of different classes
divisible. The cross-entropy minimization only assures to enlarge
the inter-class distance, so we further employ a center loss to
achieve intra-class variation reduction. We follow the equation
proposed by Wen et al. (2016), and the center loss is defined as

Lct =
1

2

n
∑

i=1

||xi − cyi ||
2
2 (7)
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where cyi denotes the yi center of the feature extracted by the
CNN pipeline. Minimizing the distance between each deeply
learned feature and its class center naturally decreases the intra-
class variation. Finally, the objective function L is to jointly
optimize the classification loss L′

cl
and Lct , defined as

L = L′cl + αctLct (8)

where αct is the weight of center loss. Based on (6), L can be
re-defined as,

L = Lcl + αlsrLlsr + αctLct (9)

4. EXPERIMENTS

The BCI competition IV-2a and IV-2b datasets are used to
evaluate the proposed approach. These two datasets are publicly
available. The people involved in the datasets have obtained ethic
approval. Users can download the data for free for research and
publish relevant articles, so the ethical review and approval were
waived for the current study.

4.1. Dataset Description
The BCI competition IV-2a (Tangermann et al., 2012) was
recorded from 9 healthy individuals (A01-A09) by 22 EEG and
3 EOG channels in a sample rate of 250 Hz. The cue-based
paradigm is used during the data collection. It consists of four
MI classes, including the imagination motions of the left hand,
right hand, tongue, and both feet. Two separate sessions were
implemented for each subject. Each session comprises a total of
4*72 (a single MI class) = 288 trials. For fair comparisons with
other approaches, the same data division scheme as that in the
competition was used in our experiment. The first section is for
model training and the second for model testing. Only the 4-
s temporal segment (from the start of the cue until the end of
the MI) in each trial is used in our model. Given the 250 Hz
sample rate, our experiment’s training and testing data are on a
1,000-sample series basis.

The BCI competition IV-2b (Tangermann et al., 2012) was
also collected from nine healthy people (B01–B09) but only
with 3 EEG channels (C3, Cz, and C4) attached to the frontal
cortex. The dataset comprises two MI classes, including left-
hand and right-hand movement imagination based on a cue-
based BCI paradigm. Five independent sessions were recorded
for each individual. We also keep using the same data division as
that in the competition. The first three sessions are for training,
and the remaining two are for evaluation. The 4-s temporal
interval, from the starting point of the cue until the end of the
MI, is used as a trial in our experiment. Given the recording
frequency of 250 Hz, each training or testing trial is also on
a 1,000-point basis.

4.2. Experimental Setup
Our approach is performed on a Tesla V100-SXM2GPU running
on Google online platform (Colab). The CNN network and the
proposed loss function are implemented by Keras. The model
is trained with Adam (Kingma and Ba, 2014) optimizer using
a learning rate of 0.001, mini-batch size of 64, and 750 epochs.
According to the result of the ablation study stated in section 5.2,

the loss weights αlsr and αct are set as 0.5 and 0.5, respectively.
Other hyperparameters of the model architecture are shown in
Table 2.

To evaluate the effectiveness of the proposed approach, we
compare our strategy against existing SoA methods, including
two conventional approaches [a vector-based method, e.g., the
competition winner algorithm FBCSP (Ang et al., 2008), and a
matrix-based method, SMM (Zheng et al., 2018)], two compact
well-known DNN methods [EEGNet (Lawhern et al., 2018) and
shallow ConNet (Schirrmeister et al., 2017)], and one more DNN
methods (DRDA, Zhao et al., 2020) with complex architecture.
The evaluation metric is the classification accuracy (acc).

5. RESULTS

5.1. Comparison With State-Of-The-Art
Methods
The comparisons between the proposed methods and other
models on the BCI competition IV-2a and IV-2b datasets are
shown in Tables 3, 4, respectively. The classification accuracy
of each subject and the average accuracy are reported in a
subject-dependent basis (e.g., training and testing data are from
the same subject) as the same as the competition data division
scheme. The model that has the best performance for each
subject is highlighted in boldface. Tables 3, 4 clearly show that
the proposed strategy has the best classification accuracy for
nearly all subjects on both datasets with a maximum of 14.16%
(subject A05) better than the second-best on IV-2a and of
11.43% (B02) better than second-best on IV-2b. On the average
level, the classification average accuracies of our method have
improvements of around 5.33 and 3.54% on IV-2a and IV-2b
compared to other SoAs. We conduct paired t-tests between our
approach and other SoA strategies to verify if the improvements
are statistically significant. The p values obtained from the tests
are indicated in Table 5. We can see that all p values are <0.05,
which advises that the performance improvements of ourmethod
against others are statistically significant. In addition, it also can
be seen that the corresponding standard deviations (SDs) of our
method are 10.07 and 8.54%, which are both the smallest SD on
the respective datasets. This result suggests that our method is
a more robust classifier in a subject-independent manner than
other models. All these results, as mentioned earlier, demonstrate
that the CNN model trained using the proposed loss provides
a more accurate and stable classification outcome for the MI
recognition task.

5.2. Ablation Result Analysis
Ablation studies are carried out to study the contributions of the
label smoothing technique and center loss to the CNNmodeling.
The hyperparameter αlsr controls the degree of the smoothness
on the label, and αct dominates the intra-class variations of
the deep features. They are both significant. Therefore, two
experiments on dataset IV-2a are explored to investigate the
sensitiveness of these two hyperparameters.

5.2.1. Label-Smoothing Regularization
In the first experiment, we fix the αct as 0, where no center loss is
applied, and vary αlsr from 0 to 1 (inclusive) to train different
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TABLE 3 | Classification accuracies (%) obtained with the dataset BCI competition IV-2a.

Methods Subject Average (SD)

A01 A02 A03 A04 A05 A06 A07 A08 A09

FBCSP 76.00 56.50 81.25 61.00 55.00 45.25 82.75 81.25 70.75 67.75 (12.94)

SMM 81.94 59.38 81.60 62.85 59.03 49.36 86.11 77.78 78.47 70.72 (12.35)

EEGNet 85.76 61.46 88.54 67.01 55.90 52.08 89.58 83.33 86.81 74.50 (14.36)

ConNet 76.39 55.21 89.24 74.65 56.94 54.17 92.71 77.08 76.39 72.53 (13.42)

DRDA 83.19 55.14 87.43 75.28 62.29 57.15 86.18 83.61 82.00 74.75 (12.22)

Ours 89.32 66.78 94.14 74.56 76.45 62.33 86.28 85.61 85.23 80.08 (10.07)

Highest values are highlighted in boldface.

TABLE 4 | Classification accuracies (%) obtained with the dataset BCI competition IV-2b.

Methods Subject Average (SD)

B01 B02 B03 B04 B05 B06 B07 B08 B09

FBCSP 70.00 60.36 60.94 97.50 93.12 80.63 78.13 92.50 86.88 80.01 (13.06)

SMM 67.81 51.79 53.44 93.31 82.81 74.69 72.19 82.50 75.62 72.68 (12.77)

EEGNet 68.44 57.86 61.25 90.63 80.94 63.13 84.38 93.13 83.13 75.88 (12.57)

ConNet 76.56 50.00 51.56 96.88 93.13 85.31 83.75 91.56 85.62 79.37 (16.27)

DRDA 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98 (11.94)

Ours 83.33 74.29 72.65 96.09 95.97 88.84 92.24 96.09 88.16 87.52 (8.54)

Highest values are highlighted in boldface.

models. The verification accuracy for each subject and the
averaged accuracy across these models are displayed in Table 6.
From the average accuracy column, it is clear that only using the
standard cross-entropy (in the case of αlsr = 0) for the model
training is not an excellent choice. Proper selection of αlsr can
improve the CNN-based model’s verification accuracy on the MI
recognition. Second, we also observe that the model performance
remains relatively stable across different values of αlsr in a range
of [0.25, 1]. This phenomenon suggests that different levels of
smoothness on labels may have a similar effect on the model
performance in the MI area. Finally, it can be seen that the model
has themost remarkable improvements on subjects A02 and A05,
who have low predicting accuracy, by using the smoothed cross-
entropy compared to using the standard one.We further visualize
the training and testing loss during the optimization of these
two subjects in Figure 3. It is recognized that the models using
standard cross-entropy suffer from an overfitting issue where the
training loss decreases at the beginning and flattens gradually,
but the testing loss decreases at the beginning while increases
after several epochs. On the contrary, the models using smoothed
cross-entropy have a good learning curve. Both training and
testing errors decrease at the beginning and then flatten until
the end of optimization. Together with the verification accuracy
improvement, this finding suggests that the label smoothing
technique can degrade the influence of the overfitting on the
CNN model in the MI classification.

5.2.2. Center Loss
In the second experiment, we fix the αlsr as 0.5 (performing the
best in the first experiment) and vary αct in a range from 0

TABLE 5 | Paired t-test (p-values) between our method and others.

Model IV-2a IV-2b

FBCSP 0.0002 0.0058

SMM 0.0005 0.0001

EEGNet 0.0443 0.0013

ConNet 0.0168 0.0228

DRDA 0.0120 0.0479

to 1 (inclusive) to train different models. The performances of
these models are displayed in Table 7. When the αct is larger
than zero, the center loss is activated, and the performance
improves across almost all subjects and in the averaged level.
This result suggests that the involvement of the center loss
increases the discriminative power of the model. For a clear
illustration and intuition, the principal component analysis
(PCA) (Jolliffe and Cadima, 2016) is further employed to convert
the high dimensional features of the second last layer in the
model for subject A07 (randomly selected) into 2-D vectors. The
distributions of these vectors are shown in Figure 4. It is clear
that, without the center loss (Figure 4A), the deep features within
each class are dispersive and have a larger intra-class variation.
Alternatively, with the center loss in the joint supervision
(Figure 4B), the features have both a compact intraclass distance
and a clear interclass boundary. These results suggest that the
center loss is beneficial to the discriminative feature learning for
MI classification modeling.
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TABLE 6 | Classification accuracies (%) of models with different αlsr values on the BCI competition IV-2a.

αlsr A01 A02 A03 A04 A05 A06 A07 A0 A09 Average

0 84.34 52.65 93.04 66.67 52.90 57.00 87.73 81.55 80.3 72.91

0.25 80.78 64.66 92.67 67.54 69.57 60.00 85.92 80.07 78.79 75.58

0.5 84.34 61.48 90.84 72.37 73.19 59.53 85.56 82.66 81.44 76.82

0.75 82.92 63.60 90.11 66.23 72.46 53.49 85.92 82.29 81.44 75.39

1 81.14 62.19 91.94 64.04 69.20 58.14 89.53 80.07 82.58 75.43

The αct is fixed as 0. The best accuracy for each subject is highlighted in boldface.

TABLE 7 | Classification accuracies (%) of models with different αct values on the BCI competition IV-2a.

αct A01 A02 A03 A04 A05 A06 A07 A08 A09 Average

0 84.34 61.48 90.84 72.37 73.19 59.53 85.56 82.66 81.44 76.82

0.25 87.54 64.31 94.14 73.25 74.64 63.26 86.64 80.07 81.82 78.41

0.5 89.32 66.78 94.14 74.56 76.45 62.33 86.28 85.61 85.23 80.08

0.75 89.32 66.43 93.77 73.68 71.38 60.47 89.17 84.5 0 85.23 79.33

1 87.9 59.72 93.77 71.49 74.64 57.67 89.89 83.39 81.82 77.81

The αlsr is fixed as 0.5. The best accuracy for each subject is highlighted in boldface.

FIGURE 3 | Training and testing losses of the models using standard cross-entropy (top) and smoothed cross-entropy (bottom). (A) Learning curve of the model on

A02. (B) Learning curve of the model on A05.

6. CONCLUSION

This paper proposes a new deep learning scheme for the CNN-
based model in the MI classification. By jointly combining the

smoothed cross-entropy with center loss, the robustness and
discriminative power of the model can be highly enhanced
for the classification. Extensive and systematic experiments
are conducted to validate our strategy on two well-known
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FIGURE 4 | Visualization of deep feature distributions of subject A07 on dataset IV-2a under two conditions. (A) Model with αlsr = 0.5 and αct = 0. (B) Model with

αlsr = 0.5 and αct = 0.5.

benchmarks. Several suggestions have been made based on
experimental findings. First, the label smoothing technique can
degrade the overfitting issue caused by the scarcity and low
SNR of the EEG data on the CNN model training. Second,
the center loss along with the cross-entropy efficiently decreases
the intra-class variance and thus increases the discriminative
ability of the deep features by pulling them toward their
corresponding latent class centers. It reduces the negative
impact of the non-stationary characteristics of the EEG data
on the MI classification task. Finally, the proposed loss offers
a robust and discriminative training scheme for CNN-based
modeling in the MI area. This phenomenon uncovers the fact
that, in addition to sophisticated model structure development,
implementing an efficient loss function for the learning guidance
is also beneficial to model performance in MI recognition. This
research has thus encouraged more attempts on the objective
function innovation for the deep learning model in the MI
field. It can be an interesting alternative for overcoming the
bottleneck performance to the model architecture that has been
heavily investigated.
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