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Abstract: Risk scenarios are caused by the convergence of a hazard with a potentially affected system
in a specific place and time. One urban planning goal is to prevent environmental hazards, such as
those generated by chemical accidents, from reaching human settlements, as they can cause public
health issues. However, in many developing countries, due to their strategic positioning in global
value chains, the quick and easy access to labor pools, and competitive production costs, urban
sprawls have engulfed industrial areas, exposing residential conurbations to environmental hazards.
This case study analyzes the spatial configuration of accidental chemical risk scenarios in three
major Mexican metropolitan areas: Mexico City, Guadalajara, and Monterrey. Spatial analyses use
an areal locations of hazardous atmosphere (ALOHA) dispersion model to represent the spatial
effects of high-risk industrial activities in conurbations and the potentially affected populations
vulnerable to chemical hazards. Complementary geostatistical correlation analyses use population
data, marginalization indexes, and industrial clustering sectors to identify trends that can lead
to comprehensive environmental justice approaches. In addition, the marginalization degree of
inhabitants evaluates social inequalities concerning chemical risk scenarios.

Keywords: land use planning; risk scenarios; environmental risk analysis; multidimensional spa-
tial analysis

1. Introduction

The closeness to the market and the availability of goods and energy commonly
attract industries to urban areas. A wide variety of industrial processes use chemical
substances. This way, chemical flows are vital supplies for economic processes in urban
environments [1]. The location of industries and urban areas within city limits depends
on diverse scales and factors. To understand the risks involved, we should analyze how
societies generate spaces within a specific historical context and what their association is
with each production model [2].

Urban planning seeks to favorably influence the spatial and functional organization
of cities and regions. Multiple traditions ranging from design to health, law, social action,
and economic development have given rise to urban planning. It helps establish the
legislative groundwork, agencies, governments, and professionals who legitimize the field
and provide a framework for action. In contrast, disaster risk reduction is relatively new [3]
and is just recently being incorporated as an urgent factor to consider in urban planning;
however, it is not considered in the urban planning of existing cities.

The coexistence between industrial and urban spaces interconnects risk prevention
and urban dynamics [4]. Accumulation of hazardous sites is increasing with little regard
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for shifting neighborhood demographics or existing regulatory policies. As sites merge into
larger, more contiguous industrialized areas that generate historical hazards, environmental
conditions that put an urban society at risk are created [5]. The government should be
aware of these risks so that it can integrate prevention into all planning levels. Risk
governance pertains to the many ways in which individuals and institutions (public and
private) deal with risks, and it can be transferred to urban planning in the pre-estimation,
interdisciplinary estimation, evaluation, and risk management phases [6].

In many countries, the severity of industrial accidents has led to urban regulation of
risk activities in industrial areas. This issue was raised at the earliest stages of industri-
alization and has been addressed, particularly since the 1970s, by European regulations,
i.e., the Seveso Directives and their national adaptation [7]. It is currently a priority in
the scientific and technological development in the Russian Federation until 2025 [8]. The
European Union (EU) has developed several land use planning (LUP) regulations around
Seveso facilities. These regulations follow multiple approaches: deterministic with an
implicit judgment of risks; consequence based, risk based, or probabilistic; and semiquanti-
tative [9]. Previous studies have developed new approaches and criteria to assist the LUP
implementation in France [10], Italy [11–13], Spain [14], Romania [15], and Greece [16]. In
Mexico, according to the General Law of Human Settlements, Territorial Ordering, and
Urban Development, the location of industrial facilities and the identification and establish-
ment of measures to cushion negative externalities are the responsibility of municipalities.
However, when carrying out this task, the municipalities should promote social and citizen
participation [17]. Thus, each entity carries out LUP through state laws and regulations.
Mexico City does this through the Urban Development Law of the Federal District [18],
Guadalajara through the Urban Code for the Jalisco State [19], while Monterrey bases this
on the Law of Human Settlement, Land Management, and Urban Development for the
State of Nuevo León and its regulations [20]. It is necessary to strengthen the instruments
for the implementation of disaster risk reduction and risk assessment. Doing so ensures
more sustainable urban planning to accommodate the rapid development that goes hand
in hand with the future growth of urban populations [21].

Accidents involving chemicals include explosions and fires. Toxic substances have
severe consequences for human health and the environment [22], so their release is a critical
public health issue. Chemical accidents that have established a precedent for effective
facility regulations include the 1984 release of methyl isocyanate (MIC) gas in Bhopal, India,
and the LPG explosion in San Juan Ixhuatepec, Mexico. One connection between these
two events, which magnified the number of casualties, was the population density around
these facilities [23,24].

The characteristics of the exposed urban systems can magnify or reduce the conse-
quences, based on the level of organization, the emergency response agencies, and the
level of social perception and preparedness [25]. Vulnerability is defined as the state of
susceptibility to harm from exposure to environmental and social stressors and from a
lack of a capacity to adapt [26]. In this context, social vulnerability is an essential factor
related to the attributes and situation of a person or group that influence their capacity to
anticipate, cope with, resist, and recover [10] from the impact of a hazard.

In [23], the authors identify the degeneration of equipment, a lack of technical training
and safety precautions, and the absence of legislation enforcement for site emergency pre-
paredness plans as important factors that increase vulnerability in industrializing countries.
Vulnerability analysis is crucial in urban risk assessment, especially in developing countries,
where a predominant model is a fragmented city, leading to complex and heterogeneous
urban landscapes where socioeconomic groups blend due to reduced space [27].

Indicators used in previous studies to assess human vulnerability include popu-
lation density [15,28], gender, age, disability, education [24], sensitive population [29],
socioeconomic status [30], social fragmentation, dependency structure [31], and coping
capacity [32,33]. Human vulnerability assessments are essential to ensure that the equitable
rule of governments carries out environmental justice.
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Environmental justice (EJ) refers to the obligation of the government to ensure that so-
cially vulnerable segments of the population are not disproportionately affected by adverse
environmental impacts (EI) or environmental hazards (EH) [34]. Previous studies have
confirmed racial and socioeconomic disparities in pollution and EH distribution [35–37].
Principal discrepancies include the location of unwanted land use near minorities and poor
people or demographic changes after siting. These discrepancies have led to increased
concentrations of minorities and the poor around these sites due to economic, sociopolitical,
and racial discrimination [38].

1.1. Regulations of Major Hazards and Land Use Planning in Mexico

In Mexico, federal environmental law classifies risk activities into (1) federal high-risk
activities and (2) state-level risk activities based on the severity of outcomes for ecosystems
and the environment. High-risk activities lead to storage of toxic and flammable chemicals
in volumes above those established by the first and second high-risk-activity lists launched
in 1990 and 1992.

The urban development legislation requires that municipalities be responsible for
promoting and executing actions that prevent and mitigate the risk of human settlements
and augment their capacity to recover in the presence of natural and anthropogenic hazards.
Urban development plans and programs should also consider resilience when defining
the intended use for land and reserves. Development plans are essential documents for
presenting strategies that guide future development. Thus, they have the potential to
enhance cities’ resilience [39].

One of the main problems in Mexico related to this issue is the lack of connection be-
tween industrial regulation and land use planning. Although the guide for environmental
risk assessments mentions that identifying risk areas contributes to land use principles at
the municipal level, these areas are not established and query mechanisms do not exist.
Therefore, the guidelines for the development of land use plans do not mention these risk
areas as basic information in municipal regulation. Consequently, relevant information
about risk facilities, such as storage volumes of hazardous chemicals and offsite conse-
quence analysis, is often not available at the local level and therefore is not considered
during land use planning and facilities land use authorization. A transition to risk-based
planning has several challenges, including: how to satisfactorily define acceptable, tol-
erable, and intolerable risks; how to incorporate the views of stakeholders and affected
communities; and how to ensure that potentially controversial decisions over land use
options are robust and defensible [40].

1.2. Industrialization and Mixland Use in Mexican Metropolises during the 20th Century

In the three largest Mexico cities, industrialization and mixland use are more relevant
due to the urban growth and fragmentation that occurred during the 20th century and the
first part of the 21st century. The reason is the complex interactions between industrial
activities, workforce demand, residential real estate market pressures, and a tendency
toward conurbation along transport corridors that made up the Latin-American pattern
of urban development [41,42]. Low-income and informal residential zones developed
due to real estate housing deficits and a rural–urban crisis [43], leading to social housing
developments, satellite suburbs, and slums.

Macroeconomic national and international interactions at the regional level led to
nearby cities [44], industrial development into transport corridors and urban periph-
eries [45], or inter-industry specialization and policy-driven clusterization rather than
favoring competitive/comparative advantages [46]. Urban forms have significant implica-
tions for social, ecological, and economic city functionalities and can play a crucial role in
enhancing their resilience and sustainability [47].

Urbanization refers to the population flow from rural to urban areas that began during
the Industrial Revolution, when workers moved from agricultural areas to cities to obtain
jobs in factories and/or gain access to urban services [48]. This process involved the
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appropriation of agricultural land to produce non-agricultural goods, which is a core part
of urban sprawls and represents a constant expanse of urban land and the formation of
satellite spaces with several complex land use dynamics.

The development of the industry sector and the modes of production were the main
factors that determined the territory organization. The location of industries was key, as
industries sought to minimize costs and maximize profits through the availability and
proximity to energy sources and raw materials. Therefore, manufacturing was subject to
development in rural areas, not urban centers, which is not always the case in current
urban dynamics.

Industries embedded in a global system of production depend, to a lesser extent,
on these factors, and they produce new urban forms because they rely on multinational
software and electronic corporations, government entrepreneurial activities, and amenities
valued by the information-age elite [49].

In his book, Villareal describes this process for Mexico. Industrial capitalism consoli-
dated in 1876 with the prominence of the textile industry. With steam, and later electrical
energy, territorial dependence on water currents ended, making it possible to separate man-
ufacturing companies from natural resources. Road networks developed in all directions,
and the first Mexican rail lines reduced transport times and costs. At the beginning of
the 20th century, a new pattern of territorial distribution emerged. Mexico City expanded
due to an economic policy that eliminated taxes on goods produced by other entities and
attracted foreign investments in mining, railway, and real estate located in privileged
spaces, thus strengthening the centralization of the city. The national armed struggle
between 1910 and 1930 led to an economic crisis due to a weakening of productive forces,
destruction of infrastructure projects and resources, loss of foreign investment, workforce
demolition, and private production [50].

Import substitution industrialization (ISI) policies guided the economy during this
period, transforming Mexico from a mainly agricultural economy with a rural population
to a semi-industrialized and highly urban country with steady economic growth. The
development was based on decisive government intervention and a clear public policy
that promoted manufacturing for export and supply chain diversification during the past
three decades [51]. Small urban spaces were mixed with industrial corridors, providing a
nearby workforce and consequently contributing to economic development, which was
imperative to sustaining the national economic policies.

The years from 1980 to 2010 were challenging for the national economy in terms of
per capita income, gross domestic product, and annual manufacturing growth. During
these decades, the per capita income staggered at USD 1000/year, while the gross domestic
product and yearly manufacturing growth barely went over 5% [52]. During this time, the
North American Free Trade Agreement (NAFTA) increased international trade rapidly,
while decreasing export taxes. Government regulation of prices for intermediate materials
reduced hand in hand with temporary import policies that benefited global manufacturing
in several areas: primarily automobiles, textiles, shoes, electronics, steel, canned products,
and petrochemicals. This led to a further increase in industrial activity and the dispersion of
industrial zones to connect supply chains to road or rail corridors, leading to a dependence
on international markets [51]. Furthermore, the growth of major cities that integrated small
urban centers into their structure without a formal urban planning strategy led to a mixture
of environmental risk areas (ERA)—industrial activities and residential zones—that directly
reflected the regional dynamics [42].

These complexities clarify the interactions between population, risk, and marginaliza-
tion as some of the critical elements that form a reference framework of urban
risk management.

This study evaluates the population and marginalization characteristics of chemical
risk scenarios to understand their geographic relationships and assesses environmental
justice approaches to the spatial distribution of these phenomena.
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1.3. Area of Study

Mexican metropolitan areas are defined as a group of municipalities that interact
around a major city with more than 50,000 inhabitants. The metropolitan area of Mexico
City comprises Mexico City and 60 adjoining municipalities, with an area of 5954 km2.
Mexico City is one of the most populated cities in the world; in 2020, the population was
around 22 million. The main economic activities are commerce, financial and insurance
services, transport, and tourism.

The Monterrey metropolitan area, in northeast Mexico, is formed by Monterrey City
and 17 municipalities. It is the second-most populated area in Mexico, with more than
5.3 million inhabitants in an area of 7657 km2. The main economic activities in the Monter-
rey metropolitan area are services and manufacturing.

The Guadalajara metropolitan area is located in central Mexico and comprises Guadala-
jara City and 10 municipalities with 5.2 million inhabitants in an area of 2735 km2. Its main
economic activities are industry and services.

2. Materials and Methods
2.1. Chemical Hazard Assessment Map

Ammonia, chlorine, and liquefied petroleum gas (LPG) were the chemicals selected
to develop offsite consequence scenarios in the studied area. The selection considered the
storage of high volumes in refrigerated facilities, wastewater treatment plants, and fuel
distribution plants, in addition to spatial patterns. Economic activities spread throughout
the three metropolitan areas use ammonia storage and, therefore, may be linked to a more
extensive urban exposure. In contrast, chlorine and LPG storage located outside urban
areas coincide with patterns of marginalization and informal settlements.

The three selected chemicals have several effects on human health. Gas and liquid
ammonia are irritating to the eyes (conjunctivitis, calcific band keratopathy, and/or per-
manent damage), respiratory tract (irritation, laryngospasm, tracheitis, bronchitis, asthma,
chemical pneumonitis, or pulmonary edema), and skin (irritation and rashes) [53–55].
Low doses of chlorine can cause mild injury to the airways, while high doses can cause
dyspnea, airway obstruction, cough, cyanosis, nausea, and vomiting; the eyes, skin, and
heart can also be affected [56,57]. Inhaling propane gas (the main component of LPG)
causes dizziness, nausea, vomiting, confusion, hallucinations, and feelings of euphoria and
suppresses the function of the central nervous system (CNS). Prolonged exposure can lead
to CNS damage, nosebleeds, rhinitis, halitosis, oral and nasal ulcerations, conjunctivitis,
bloodshot eyes, anorexia, thirst, lethargy, weight loss, and fatigue [58].

Federal risk facilities used the National Statistics Directory of Economic Activities
(DENUE), based on the 2018 National Institute of Geography and Information (INEGI)
economic census. DENUE provides information about the type of economic activities
in Mexico, their geolocation, number of personnel, and addresses [59]. According to the
three offsite consequence scenarios analyzed, facilities selection used the North American
Industry Classification System (NAICS) (Table 1).

Table 1. NAICS classification of facilities studied.

Substance NAIC Code Description Number of Personnel

Ammonia

311511
312111
312113
312120
493120

Production of milk
Production of soft drinks

Fabrication of ice
Production of beer

Refrigerated storage

≥250

Chlorine 221311
221312

Treatment of water carried out by the
public or the private sector ≥250

LPG 468413 LPG retail trade ≥250
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Geolocation of wastewater treatment plants and fuel distribution plants was confirmed
using Google Earth.

An alternative-release scenario was established according to the Health and Safety
Executive’s (HSE) failure rate and event data for general-pressure vessels, as shown in
Table 2.

Table 2. Hazard scenarios modeled.

Substance Storage Release Source HSE Failure
Probability

Thread
Modeled

Level of Concern
(LOC)

Ammonia

Horizontal tank
Volume: 5000 L
Length: 3.070 m

Diameter: 1.620 m
Pressure: 13 kg/cm2

State of chemical: liquefied gas

19 mm valve
failure 3 × 10−2 Toxic gas

dispersion

ERPG-1 > 25 ppm
ERPG-2 > 150 ppm

ERPG-3 > 1500 ppm

Chlorine

Horizontal tank
Volume: 730 kg

Diameter: 0.762 m
Length: 2.02 m
Pressure: 5 atm

State of chemical: liquefied gas

6 mm hole 4 × 10−5 Toxic gas
dispersion (heavy)

ERPG-1 > 1 ppm
ERPG-2 > 3 ppm

ERPG-3 > 20 ppm

LPG

Vertical tank
Volume: 110,000 L
Diameter: 3.378 m
Length: 14.078 m

Pressure: 17 kg/cm2

State of chemical: liquefied gas

Boiling liquid
expanding vapor

explosion (BLEVE)
1 × 10 −5 Thermal radiation

from fireball

LOC-1 2 kW/m2

LOC-2 5 kW/m2

LOC-3 10 W/m2

The American Industrial Hygiene Association (AIHA) Emergency Response Planning
Guidelines evaluate the distance to the endpoint of alternative scenarios. Table 3 shows the
results of modeled scenarios.

Table 3. Distance to endpoint of modeled scenarios.

Substance Level of Concern
Distance to Endpoint

Ammonia Chlorine LPG

Monterrey
LOC-3
LOC-2
LOC-1

551 m
2.0 km
4.1 km

543 m
1.5 km
2.6 km

482 m
680 m
1.1 km

Guadalajara
LOC-3
LOC-2
LOC-1

531 m
1.9 km
3.9 km

571 m
1.5 km
2.7 km

506 m
714 m
1.1 km

Mexico
City

LOC-3
LOC-2
LOC-1

525 m
1.5 km
3.1 km

704 m
1.9 km
3.4 km

495 m
698 m
1.1 km

Emergency Response Planning Guidelines (ERPG) show the estimated concentrations
nearly all individuals could be exposed to for up to 1 h without mild or transient adverse
health effects (ERPG-1), irreversible or other serious health effects or symptoms (ERPG-2),
or life-threatening health effects (ERPG-3) [60]. In thermal radiation consequence scenarios,
LOC-1 is related to pain within 60 s, LOC-2 is associated with second-degree burns within
60 s, and LOC-3 is potentially lethal within 60 s [61].

The Environmental Protection Agency’s (EPA) ALOHA software was used to de-
termine the distance to the endpoint of alternative scenarios. ALOHA uses a Gaussian
dispersion model to describe neutral buoyant gas dispersion using meteorological condi-
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tions of Table 4. The areas potentially affected in the modeled scenarios were calculated
using GIS software ArcMap 10.2.2 (ESRI, Ottawa, Ontario, Canada).

Table 4. Meteorological condition of studied areas.

City Wind Direction Wind Speed

Monterrey East 3 m/s
Guadalajara East 2.5 m/s
Mexico City Northeast 1.6 m/s

2.2. Vulnerability Assessment

The Urban Marginalization Index (UMI) developed by the Mexican Population Coun-
cil (CONAPO) [62] was used to identify population sectors that exhibit deficiencies due
to social inequalities. This index groups different indicators into four dimensions using
principal component analysis, as shown in Table 5.

Table 5. Indicators used in the Urban Marginalization Index [62].

Dimension Indicators First Component Coefficient

Education
Percentage population from 6 to 14 years that does not attend school 0.101

Percentage population aged 15 years or over without complete basic education 0.151

Health
Percentage population without access to health services 0.096

Percentage deceased children of women between 15 and 49 years 0.098

Housing

Percentage inhabited private homes without drainage 0.125

Percentage inhabited private dwellings without a toilet with a water connection 0.165

Percentage inhabited private dwellings without piped water 0.151

Percentage inhabited private dwellings without a floor 0.134

Percentage inhabited private dwellings with some level of overcrowding 0.145

Goods Percentage inhabited private dwellings without a refrigerator 0.154

The analysis employed the UMI at the local disaggregation level using basic geosta-
tistical areas (AGEB). An urban AGEB is a geographic area occupied by a set of blocks
perfectly delimited by streets, avenues, walkways, or any other easily identifiable feature
of ground and whose land use is mainly residential, industrial, services, or commercial.

2.3. Analysis

Metropolitan areas from the national urban system were taken as an initial spatial unit
and then adjusted to conurbation based on data availability, continuity of spatial sampling
units, and road connectivity.

Descriptive statistics were calculated (Table 6), observing left skewness for all variables
in each city in a similar pattern, so Box–Cox data transformation was used to adjust data
into a normal distribution (Figure 1) to optimize the geostatistical models according to
specific lambda values for each dataset.



Int. J. Environ. Res. Public Health 2021, 18, 5674 8 of 26

Table 6. Descriptive statistics of analyzed variables and their normalization process for Guadalajara
(GDL), Monterrey (MTY), and Mexico City (CDMX).

Pre-Processed Data Box–Cox Normalization

IMU RiskLv POP IMU RiskLv POP

GDL

Min. –1.54 1.00 53.00 0.00 0.00 12.73

1st Q. –0.98 1.00 1389.00 0.41 0.00 74.56

Median –0.56 2.00 2648.00 0.61 0.58 104.05

Mean –0.43 3.382 2813.00 0.60 0.62 99.89

3rd Q. –0.02 3.00 3927.00 0.79 0.84 127.40

Max. 3.47 39.00 17,503.00 1.34 1.67 273.22

Std. dev. 0.73 3.74 1902.93 0.25 0.46 40.04

λ (lambda) N/A N/A N/A –0.3434 –0.5051 –0.3434

MTY

Min. –1.61 1.00 1.00 0.00 0.00 0.00

1st Q. –1.16 1.00 983.00 0.32 0.00 62.30

Median –0.91 2.00 2,482.00 0.42 0.53 100.64

Mean –0.76 2.60 2,526.00 0.43 0.39 91.68

3rd Q. –0.46 3.00 3,785.00 0.56 0.74 125.01

Max. 3.21 26.00 8,751.00 0.90 1.17 191.93

Std. dev. 0.58 2.76 1,775.86 0.16 0.39 44.49

λ (lambda) N/A N/A N/A –0.8687 –0.7879 0.5051

CDMX

Min. –1.6 1.00 1 0.00 0.00 0.00

1st Q. –0.92 4.00 1901 0.49 1.44 110.80

Median –0.44 4.00 3291 0.70 1.44 150.10

Mean –0.33 2.40 3605 0.69 1.37 147.40

3rd Q. 0.08 5.00 4959 0.87 1.69 188.20

Max. 3.03 73.00 22,876 1.39 4.90 435.80

Std. dev. 0.73 5.35 2393.63 0.25 0.92 61.63

λ (lambda) N/A N/A N/A –0.2626263 0.1 0.5454545

Figure 1. Raw and transformed data for risk level, marginalization index, and population.
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The experimental semivariogram and variogram were calculated for single variables
and pairs of variables, respectively, using the transformed data (Table 6) in the ArcGis
10.2.2 geostatistical extension. Each experiment compared univariate and bivariate theoret-
ical and empirical models, calculating nugget, partial still, and range values adjusting LAG
distances until an optimal model was obtained.

3. Results
3.1. Guadalajara City

Guadalajara City has a specific center–periphery urban growth, reflected in the three
variables studied. Risk levels form small, continuous east–west corridors in relatively
compact areas (Figure 2), due to not only the dispersion of pollutants but also clusters of
industrial activity and spatial population distribution. The location of selected federal risk
facilities in Guadalajara shows that only 46.7% are in industrial areas (Figure 3).

Figure 2. Guadalajara City risk level by AGEB. Developed by the authors.
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Figure 3. Guadalajara City urban area. The presence of industrial risks and their spatial relationship
with industrial coverage. Developed by the authors with data from [59,63–65].

According to the estimated maximum range of the semivariogram (Figure 4) for this
variable, the reach of the continuously decreasing risk tends to spatially correlate in 5.2 km
ranges. The exception to this pattern is a risk corridor related to the south bypass road that
extends to the west city limit, in the southern border of the Zapopan and Tlajomulco de
Zúñiga municipalities.

This corridor also divides the very low UMI into a centric pattern with high spatial
clustering and a south-west satellite cluster (Figure 5), formed mainly through high-income
suburbs and country club residential homes limited in the east by Federal Highway 80,
with a mid-UMI cluster within the city limits. There is also a significant concentration
of a very low UMI in the centric west part, while low and mid UMIs form a ring, mixed
tightly together, that follows the main roads to the city highway exits. The high and very
high UMIs are concentrated in peripheral AGEB units, mainly in the southeast part of the
metropolitan area, further away from the bypass road.
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Figure 4. Semivariograms of each city and variable.
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Figure 5. Guadalajara City Urban Marginalization Index (UMI) by AGEB. Developed by the authors
with data from [62].

The UMI semivariogram (Figure 4) shows that this autocorrelation pattern has statis-
tical significance until 7.4 km in the first quintile. Compared to a penta-spherical model,
the second and third quintiles have a more comprehensive range of 14.15 and 22.17 km,
respectively, i.e., while AGEBs with a low UMI tend to be close to each other, the high-
marginalization areas spread out over the city in tight, small clusters but in a constant
gradient of exclusion from low-marginalization areas. There is a typical spatial distribution
of marginalized spaces, such as slums and informal settlements, in growing cities, with
gentrification processes that lead to expulsions [43,66].

The risk level–UMI spatial interaction is limited to an extension of 11.19 km, with
an average negative correlation limited to a range of 8 km and a wholly negative corre-
lation with only 2.5 km (Figure 6). Therefore, even when the risk is sparse in the urban
environment, there is a progressive pattern of correlation, from middle negative to low
positive, between the UMI and the presence of risk influenced by regulations. However,
marginalization is still related to the risk area borders regardless of the population density
in the surroundings.
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Figure 6. Correlograms of each city and pair of variables.
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The tendency for a close-gated community type of urbanization dating from the
1970s is one key element of the population distribution of Guadalajara (Figure 7). Its
interaction with the garden city urbanization design of the mid-1940s to 1970s also adds
to the complexity of the variables’ interaction [67,68]. Small-scale densification is isolated
from the surroundings, which eventually form larger clusters rather than keeping low-
density urban islands. This pattern is seen in the respective semivariogram (Figure 4)
through an increased and constant variance until a maximum range of 8.57 km is reached,
where spatial autocorrelation is no longer present.

Figure 7. Guadalajara City population density by AGEB. Developed by the authors with data
from [63].

3.2. Monterrey City

Analysis of federal risk activities in Monterrey City shows that only 51.72% are in
industrial zones of the metropolitan areas (Figure 8). The three variables studied show
a completely different spatial distribution compared to Guadalajara. While both cities
have had sprawling processes, the way the population of Monterrey scattered into the
urban form created urban sectors limited by topological constraints. Meanwhile, highway
connectivity was concentrated in the northern parts of the city, leaving the downtown area
unpopulated to a great extent (Figure 9). The southernmost corridor and some parts of the
central area of the metropolitan urban areas also have low population densities.
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Figure 8. Monterrey City urban area. The presence of industrial risks and their spatial relationship
with industrial coverage. Developed by the authors with data from [59,63,65].

Figure 9. Monterrey City population density by AGEB. Developed by the authors with data from [63].
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Population corridors have a maximum range of 11.70 km and tend to be dense in the
inner parts of theory corridors but have a low population density in their extremes, either
in the urban borders or in regions that connect with the central urban space (except for
the southeast corridor, where a sustained low density is present). Density differences are
balanced, with minimum variation in the first 3.0 km and minor variation increments from
this distance to the maximum range, where variations start to become incrementally sparse,
as shown in the semivariogram for this variable (Figure 4).

Urban clusterization of risk levels follows a clear transversal path to the north and
west urban corridors, connecting the extreme southeast of the city with its western corridor
through the northern part of the city center (Figure 10). A secondary corridor with lower
risk levels forms, connecting the downtown regions of the Santa Catarina, Monterrey, and
Guadalupe municipalities (Figure 10), and borders the southern part of the urban city
space. The spatial consistency of this phenomenon is present in a maximum range of
15.03 km, with low variations in the first 2.1 km, which means that some risk levels tend to
be together and mutually isolated between extreme higher values. Still, mid-risk values
are cohesive, thus backing up the corridor’s spatial distribution pattern.

Figure 10. Monterrey City risk level by AGEB.

Marginalization patterns are also affected by corridor sectorization (Figure 11), but
spatial variation increases rapidly as the distance increases, making spatial consistency
meaningless for distances higher than 4.04 km. LAG differences show an exponential
pattern of variation inside this range, and the maximum UMI is exceptionally high in the
urban borders of isolated AGEBs that do not share boundaries.
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Figure 11. Monterrey City Urban Marginalization Index (UMI) by AGEB. Developed by the authors
with data from [62].

The risk level–UMI correlation is minimal. Only in the 4 to 6 km range does there exist
a little negative mean correlation between both variables (−0.019), but it is not enough to
sustain interaction between both phenomena. A similar relationship is found in the risk
level–population correlation (Figure 6). Between 4 and 8 km, eigenvector values show a
minimal positive correlation (0.031). This also applies to UMI–population correlations,
with a minimal negative correlation in 2 to 3 km eigenvector values (−0.014).

This means that the three elements studied are not deeply related or that Monterrey
City has a more complex process of urbanization and social segregation [69] than can be
observed in detail by UMI components, but further analysis could better address some low
spatial correlations.

3.3. Mexico City

As the biggest and most complex city in the country, Mexico City has undergone
several sprawling and densifying processes, evident in its urban form and population
distributions. Analysis of high-risk facilities shows that only 58.8% are inside industrial
areas (Figure 12). De-industrialization has been part of the public territories policy since
the 1970s in a constant expulsion of industrial activities, migrating them from the Federal
District to the nearby municipalities of Mexico and exerting enormous productive pressure
on immediate rural and urban areas [70]. Nevertheless, the urban sprawl and regional
metropolis eventually re-integrated the new industrial clusters into the urban fabric in
more complex ways, mainly because those industrialization spaces were now dependent
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on suburban peripheral developments and urban subcenters. Furthermore, industrial
activities did not completely relocate during this process; some remained even after the
1993–2008 NAFTA intern ational integration [45]. This explains the cluster and corridor
patterns in risk levels (Figure 13), with higher levels inside industrial zones, while mid-level
risks tend to follow the road infrastructure that connects them to the more residential areas.
The spatial correlation of this continuity is limited to 4.34 km for low variance and 14.64 km
for mid-variance according to the respective semivariograms in Figure 4.

Figure 12. Mexico City urban area. The presence of industrial risks and their spatial relationship
with industrial coverage. Developed by the authors with data from [59,63,65].

The risk level–UMI spatial covariance is significantly similar in different distance
ranges up to a 9.61 km limit, with a penta-spherical model, according to the respective
correlograms (Figure 6). However, more significant autocorrelations can be obtained for
the joined variance fit in a penta-spherical–Gaussian–spherical model, with statistical
significance for a 28.05 km extent. This model has a better fit for the population–risk
level correlogram, showing a closer relationship between the empirical and theoretical
correlograms compared. A hole effect is present in a 2.02 km range, with a high negative
covariance for the first kilometer but a positive covariance from the second kilometer on
and up to a 25.74 km distance range, showing the high population dependence on these
services even when ER or EH is present in the vicinity.
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Figure 13. Mexico City risk level by AGEB.

Like Monterrey City, Mexico City shows UMI trends that form gradients with higher
marginalization in the urban periphery (Figure 14). In addition, a low spatial variance in
short ranges is observed in the 2.02 km range for the same UMI value, while middle and
low UMIs tend to remain constant in corridors and widespread clusters. Long-distance
autocorrelation exists in an 18.07 km range, but positive correlations are only present in
8.2 km limits and at distances of 25 km or more, indicating that the same marginalization
levels tend to be closer, with fewer variances between bordering AGEBs.

Population density has the most fractured pattern of all the variables studied
(Figure 15), with only 1.15~4.14 km ranges of cluster consolidation, while the city as
a whole presents a 26.49-km-wide hole effect, mostly because of the presence of a central
business district (CBD) and its importance for the national and local economy.
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Figure 14. Mexico City Urban Marginalization Index (UMI) by AGEB. Developed by the authors
with data from [62].

Figure 15. Mexico City population density by AGEB. Developed by the authors with data from [63].
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4. Discussion

The industries selected to evaluate the offsite consequence analysis in this work
are relevant, considering that LPG and wastewater treatment plants are typically in the
outskirts of urban areas. Meanwhile, ammonia facilities are widespread, not limited to
urban peripheries or industrial zones.

The three cities studied have entirely different growth patterns, risk locations, urban
marginalization, and populations. Nevertheless, there are consistent patterns of spatial
exclusion for marginalized areas in the urban periphery that do not always correlate with
risk levels or the population in short distances. Still, they reflect the complex development
of the industrial sprawl and activity [23].

Mexican water treatment is a heterogeneous issue that comes within the limits of
both state and urban administration. There is national legislation regarding it and a
decentralized institution to regulate national water management, but the operational issues
remain under local jurisdiction. Since 1994, the water treatment capacity has tripled in
volume. In 2011, about 97.6 cubic meters per second were treated at the national level, and
the overall capacity limit was 137 cubic meters per second [71]. However, the national goals
did not meet the milestones set, primarily because of infrastructure delays and operational
limitations. The goals for 2015 estimated that only 69.4% of the total effluent volumes were
treated, and a new set of facilities was needed to be embedded within urban areas in order
to increase these volumes.

Nuevo León, the state in which the Monterrey metropolitan area is, was one of two
states with 100% wastewater treatment coverage up to 2011, despite having only four large
facilities inside the metropolitan area and a few in the peripheral unurbanized areas. These
latter facilities were not included in this study because their risk dispersion did not affect
the AGEBs. However, the reality in Jalisco, Mexico State, and Mexico City is different, with
only 36.8%, 27.4%, and 15.1% wastewater treatment coverage, respectively. These values
indicate that both cities should address wastewater treatment facilities in their urban areas
and, more importantly, in the major metropolitan areas. Different scenarios should be
considered to include metropolitan growth and informal settlement integration/regulation
for an integral urban planning approach.

Ammonia risks are present in industrial zones and also in more centric locations in
cities such as Guadalajara and Mexico City. These facilities can be considered as those
connecting the risk corridors, even when they are not attached to industrial land use zoning;
however, there is definitely an economic interaction explaining their strategic location.

Population disaggregation and its interaction with risk distribution also raise concerns
that should be addressed by urban planning policies. The three cities analyzed have
positive covariances in the estimated hazard dispersion areas that exceed risk dispersion
distances, with Mexico City being the most problematic. High covariance values continually
increase over long distances from the hazard-affected areas, forming corridors with complex
interactions that oscillate in a 9.6 km range but maintain a Gaussian covariance pattern
up to a 28.06 km range. This pattern is a clear example of how risk-related areas expand,
interconnect, and surpass industrial zones and designated land use areas [5]. Furthermore,
this pattern adds complexity to the constant exposure to environmental hazards in transport
corridors that are already present in the city [72] and tightly bound by commuting and
industrial zones.

Mexico City also faces significant challenges related to chemical risk management,
due to urban gentrification and the pressures of peripheral, highly competitive economic
poles, thus reducing safety buffers within high-exposure ranges, even when there is no
correlation with high marginalization [70].

In the analyzed cities, only 5.1% of social-environmental conflicts are related to very
high urban marginalization, 34.6% are related to mid-marginalization, and 26.9% to low
marginalization. Most of these conflicts are related to water scarcity, urban waste dis-
posal, and irregular disposal of high-toxicity substances, in that order. Overall, even when
identified environmental conflicts are present in the urban space, potential environmental
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hazards are not considered as part of urban territory planning or integral urban manage-
ment policies. This is either because risk management is not properly addressed or because
urban pressures are more intense for facilities needed for urban functionality and market
accessibility, especially in the periphery of global cities and even more so in the global
south [73].

Guadalajara and Monterrey do not present these kinds of pressures despite being
the second and third main cities in Mexico. The significance for covariance ranges is
wider, even reaching the urban borders of both cities. This is not the case for Mexico City,
where negative values are in the first kilometer. A low positive correlation is present in
Guadalajara and Monterrey, and a negative correlation appears only after 10 and 13 km,
respectively, meaning that facilities are considered centric spaces on a broader range and
the population tends to densify in distances between 5 and 8–11 km from the risk locations.
The real estate and housing markets are present in these areas despite the presence of
chemical risk sources that make the neighborhood less desirable and decrease the overall
value of its properties [36]. These elements can be explained by economic attractiveness
and metropolization [74] or sprawling that keeps industrial activities clustered even after
de-industrialization public policies are implemented, mostly because of technological
specialization [75–77]. If these problems are left unchecked or not considered in land use
planning, Guadalajara and Monterrey will face these problems in the near future, with the
same or worst consequences than in Mexico City.

Guadalajara has also seen industrial migration to surrounding municipalities, mainly
due to the increasing value of housing and close-gated community development [68].
While this explains the lack of interaction between industrial risk areas and the population
variables studied, it does not prevent further interactions between variables, especially
those that cause safety areas to be urbanized. In addition, even when there are several
high-marginalization clusters in the city, they are mutually exclusive and isolated in the
periphery, where new risk-related facilities can be established in the future.

Forced commuting dynamics, automobile dependency, and public transport connectiv-
ity also should be considered [78] in order to better understand the complex interaction of
industrial risks, marginalization, and the location of commercial services in the metropolis,
because future scenarios based on the present analysis could lead to suburb dynamics
where industrial and environmental risks can emerge without proper land use regulations,
deliberate EH concentration for specialized competitiveness, or even more complex issues
between ER and transport-related environmental pollution.

Trends in population density are explained by the heterogeneous growth model of
Mexican cities [79] (extensive and fragmented) and the deployment of multiple specialized
centralities [77]. The highest population densities are now in peripheral population centers
and clustered, close-gated housing development areas with their own peripheries where
new marginalized spaces (such as slums and informal settlements) tend to form. According
to [76], one primary attribute of Latin-American capitalist development has been the
constant presence of a whole urban economic sector constituted by a great mass of the
unemployed, underemployed, self-employed, or precariously employed, known as the
informal sector. This should be considered as the main social group affected by unregulated
urban dynamics, as well as the one that may eventually suffer the consequences of a
territorial planning policy that hides environmental risks.

5. Conclusions

This paper evaluated spatial patterns of the potential hazards of ammonia, chlorine,
and LPG in three main Mexican metropolitan areas: Mexico City, Guadalajara, and Mon-
terrey. Clustering of such hazards in the study areas is related to the industrial corridors
that permit the access and exit of materials and finalized products. Marginalization areas
in Mexico City and Monterrey show gathering trends, followed by exclusion tendencies
between low and high indexes and the expulsion of these to the limits of the urban sprawl.
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Incorporating anthropogenic risk analysis, especially that of a chemical nature, into
the urban planning process is significant in guaranteeing the safety of the inhabitants of
urban settlements. Even when hazards are not always spatially correlated, specific sectors
of the studied metropolitan areas with a medium to low marginalization index and a
high-population-density area are potentially exposed to chemical hazards. These must
be subject to integral risk management strategies through a close collaboration between
federal and local levels to prevent, regulate, control, and respond to emergencies due to
environmental risks related to industrial activities.

Sprawling and conurbation play a crucial role in how risks are incorporated into the
urban space based on social, economic, and spatial elements. Marginalization and the popu-
lation do not always explain these patterns, but they definitely interact with environmental
and industrial risks in several ways, e.g., the tendency to reduce safety buffers, depending
on urban pressures such as gentrification, informal settlements, economic dynamics, urban
restructuring, a lack of integrated planning, and topological constraints. Nevertheless, geo-
statistical analysis can make a substantial approximation for understanding key variables
and their spatial interaction. This would establish more specific methodologies involving
multidimensional and multiscale approaches to better land use planning and territorial
development programs in areas with early sprawling and metropolization, as well as in
already consolidated urban areas where the real estate market could try to develop and
industrial risks are already present.

Mexican territorial planning tends to create environmental risks outside of the plan-
ning process. However, the key elements of land use planning and urban forms should
be tackled in an integral manner. For example, issues such as fixed air emissions should
be included as latent hazards in the set of human exposure risks considered for territorial
planning, commercial activity location, housing, and transportation.

All three of the studied cities should consider safety buffers for the industrial hazards
analyzed in order to ensure negative covariances between risk levels, population densi-
ties, and marginalized areas, in at least a 5 km range. Ideally, future land use planning
instruments should also consider implementing strategies for relocation of industrial clus-
ters related to environmental risks in order to ensure resilience for their cities. This can
be possible by creating risk corridors spatially separated from residential areas and new
housing developments or by reducing the level of hazard that each industry represents to
its surroundings. Implementation of emergency systems should also be considered in areas
where economic and urban agencies limit relocation processes to avoid further developing
marginalized areas with industrial activities.

How these issues will affect urban growth and land use change depends on how these
approaches are included in future territorial planning and urban policies. Effects at the local
level (neighborhood and urban corridors) and the necessary changes required to address
those effects requires additional analysis, longitudinal approaches, and sub-regionalization
based on observed patterns in the semivariograms (Figure 4) and correlograms (Figure 6).
These will be the next steps taken in future studies, which may eventually lead to preventive
management strategies for industrial environmental risks, their impact on the urban
structure, and their impact on the population.
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