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Abstract

Biological systems are noisy by nature. This aspect is reflected in our experimental mea-

surements and should be reflected in the models we build to better understand these sys-

tems. Noise can be especially consequential when trying to interpret specific regulatory

interactions, i.e. regulatory network edges. In this paper, we propose a method to explicitly

encode edge-noise in Boolean dynamical systems by probabilistic edge-weight (PEW) oper-

ators. PEW operators have two important features: first, they introduce a form of edge-

weight into Boolean models through the noise, second, the noise is dependent on the

dynamical state of the system, which enables more biologically meaningful modeling

choices. Moreover, we offer a simple-to-use implementation in the already well-established

BooleanNet framework. In two application cases, we show how the introduction of just a few

PEW operators in Boolean models can fine-tune the emergent dynamics and increase the

accuracy of qualitative predictions. This includes fine-tuning interactions which cause non-

biological behaviors when switching between asynchronous and synchronous update

schemes in dynamical simulations. Moreover, PEW operators also open the way to encode

more exotic cellular dynamics, such as cellular learning, and to implementing edge-weights

for regulatory networks inferred from omics data.

Author summary

The life and decision-making of cells is regulated by a complex web of dynamically inter-

acting molecules. The strength and nature of individual interactions is very diverse, and it

is especially important to understand such diversity when it comes to defects and disease.

For example, the mutation of a protein binding site can critically alter the probability and

strength of its interactions with its binding partners. Boolean network models have

become an increasingly potent tool for understanding the complex dynamical interactions

within cellular regulatory systems, however, there is no straightforward and explicit way

to encode weights on individual interactions. In this paper we offer a way to add weights

to interactions by simple noise operators which alter the behavior of edges (or groups of

edges) in in-silico simulations of Boolean network models. We show with multiple appli-

cations that adding just a few PEW (probabilistic edge-weight) operators dramatically
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improves the biological plausibility of Boolean models and reproduces much more

nuanced experimental results.

This is a PLOS Computational Biology Methods paper.

Introduction

Boolean network models or Boolean dynamical systems have become a standard toolkit for

modeling biological systems of increasing size and complexity [1–7]. The main advantage of

using Boolean models is that they offer a reasonable compromise in complexity: the regulatory

mechanisms and interactions are expressed through logical rules, while the number of parame-

ters remains manageable, even in large systems. The dynamical side of Boolean models is key:

the attractors of validated models correspond to stable phenotypes of biological systems [8,9].

Such a representation of phenotypes can help to understand the underlying mechanisms of the

behavior such as biological phenotypes emerging from local interactions, mutations leading to

pathological phenotypes, etc. [10,11]. Boolean models can also help in identifying the key regu-

latory circuits associated with phenotypic decision-making [12,13] and even help identify con-

trol targets in order to drive the system into phenotypes (e.g. to switch from an unhealthy state

to a healthy one) [14–16]. Boolean models address questions that lie at the core of modern sys-

tems biology, but also of modern medicine and drug development [2].

A large family of Boolean Network models is concerned with modeling biological noise and

uncertainty coming from incomplete measurements or sparsity of data. Some of these methods

introduce uniform noise on a system level (e.g. perturbed Boolean Networks), introduce noisy

function selection on the level of nodes (e.g. Probabilistic Boolean Networks [17], Dynamic

Bayesian Networks [18], Stochastic Discrete Dynamical Systems [19]), or combine system-

and node-level noise (perturbed Probabilistic Boolean Networks) [20]. In this work, we intro-

duce a method that applies noise on the level of individual edges or hyper-edges (edges defined

between sets of vertices) in a biologically meaningful way, through probabilistic edge weight

(PEW) operators. Generally, PEW operators are mathematical objects that can be added to the

regulatory rules of Boolean models to modulate the noisiness of edges. On one hand, PEW

operators offer a way to handle edge-level uncertainty, on the other, they offer a means to

introduce relative edge-strength within a system. Moreover, the noise level can be made a

function of the system’s dynamical state, which is not a common way of introducing noise in

Boolean systems, despite the evidence in literature that in fact noise can be highly dependent

on the dynamical state and environment of the cell [21–23]. For example the dynamical behav-

ior of a node can fluctuate when its regulators are present but their molecular interactions are

noisy. In contrast, it’s less likely to fluctuate from an off state when its regulators are absent. In

the next sections, we place the PEW operator framework within the context of other noisy

Boolean models and demonstrate through two empirical examples that introducing PEW

operators to the Boolean model improves its predictive capabilities.

Methods

Boolean dynamical systems—Definitions

Boolean regulatory networks can be represented by a graph G = (V, E) consisting of V = (v1,

v2, . . ., vN) vertices and E = (eij|i, j 2 V) directed edges. Each vertex (node) has a binary state, σv
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equal to 1 or 0, often referred to as ON or OFF. The state of the system is the collective state

configuration of all of its constituent nodes in time t. Overall, the model can have 2N different

states, where N is the number of vertices (nodes). The state of each node v is determined by a

unique logical function assigned to it, F = (f1, f2, . . ., fN). We also call these functions Boolean

regulatory functions or Boolean rules. The logical function encodes how every node responds

to the different state-combinations of its regulators. The inputs of each function fi are the states

of the regulators (nodes with edges pointing to vi) of vi in time point t. The value of a node svi

in time-step t + 1 is calculated as:

svi
t þ 1ð Þ ¼ fi σPar við Þ

tð Þ
� �

;

where Par(vi) is the set of parents (regulators) of node vi and σParðviÞ
ðtÞ is their state configura-

tion at time-point t.
Different update schemes determine the order in which the functions are evaluated, i.e. the

state of the nodes is updated. In the case of the synchronous update scheme, all nodes are

updated at the same time, such that the state of the system in time t fully determines the state

of the system in time t + 1. This results in deterministic trajectories, where the emergent

dynamics of the system depend only on the initial configuration. Asynchronous update

schemes update the system one node at a time and emulate different (more granular) time

scales as compared to synchronous update schemes. This is mainly because in the case of syn-

chronous update one time-step represents N node updates, while in the case of asynchronous

updates, one time-step represents only one node update. There are exceptions when t is incre-

mented only after all nodes were updated at least once asynchronously. A certain degree of sto-

chasticity can be added to the system dynamics with randomized update schemes. Random
order asynchronous update picks nodes from a shuffled list of the nodes, updating each once

before reshuffling, while general asynchronous update picks nodes in a random way, allowing

repetition.

The attractors of a Boolean system represent the long-term equilibrium states of their

dynamics. Fixed-point attractors or steady states are states in which all logical functions are sat-

isfied and updating nodes no longer changes the state of the system. Attractors can also be

limit cycles or complex attractors, which, instead of a single state, are a set of states that the sys-

tem keeps visiting indefinitely (a.k.a. an ergodic subset of states).

Boolean models with stochastic properties introduce different varieties of

noise

Scientists have realized early on that completely deterministic Boolean networks (BNs) are

limited in their capability to model real systems [2,17,19,20,24]. There is indeed a spectrum

of noise sources in a biological system, from basic thermodynamic noise to heritable genetic

differences (mutations) among individual cells in a modeled cell population; there is also

measurement noise as well as uncertainty due to lack of data [25,26]. Mirroring this variety

in sources of noise in real systems, there are many types of noise one can introduce into a

BN.

One of the earliest types of noisy BN were the perturbed Boolean Networks (BNp) first sug-

gested in [27] as Kauffman networks with “thermodynamic noise”. In this paper we use the

technical description used in the review article by Trairatphisan et al. [28]. The noise in BNps

is added by a perturbation of a random node-flip with a nonzero probability p in each time

step. Essentially, before each node update one tosses a coin with bias p, which determines

whether the next value of the node is going to be determined by its deterministic function or
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it’s going to flip to its other state, regardless of its function. This simple modification turns

BNs into ergodic Markov Chains, which adds a number of advantages to their use and analysis.

For instance, attractors in BNps still carry most of the probability mass but the system can

leave the attractors with a nonzero probability. One of the drawbacks of BNps is that they

introduce a very general “thermodynamic” stochasticity that does not give much freedom in

fine-tuning node-specific aspects of the noise.

One of the most prominent families of noisy BNs are Probabilistic Boolean Networks

(PBNs) introduced by Shmulevich et al. [17], which address the lack of node-specificity of

BNps. PBNs have a set of functions assigned to each node (instead of a single unique logical

function). The different possible combinations of selected functions give rise to different “real-

izations” of BNs. The total number of realizations is equal to the product of function set sizes.

At each time update, a random binary variable ξ decides whether a new realization shall be

used, or the BN remains the same. If ξ(t) = 1 new functions are chosen for each node from

their individual pool of functions in each time-step. The functions from each set are picked

with a pre-determined probability (adding up to 1 within each set).

PBNs do not necessarily constitute ergodic systems, however, they can contain ergodic sub-

sets of states akin to complex attractors. One can also combine perturbation noise with PBNs

(PBNp), this way there is a non-zero probability of nodes committing “mistakes” and also

changing their function. PBNs have a wide range of applications and are a popular model of

biological systems [28].

PEW models and PBNs can be mathematically equivalent in certain conditions. We discuss

the relationship between the PEW and the PBN frameworks in the S1 Document.

Another popular noisy model that incorporates a dependence of the noise on the system

state is the stochastic discrete dynamical system (SDDS) introduced by Murrugarra et al. [19].

Instead of a set of functions (like in PBNs), nodes in SDDSs are assigned a single function and

two probability values: an activation and a degradation propensity (pup and pdown). The two

propensity values determine whether a node “accepts” its new update value or remains the

same. If a node’s current value x(t) is smaller than its update value, f(x(t)), meaning x is up-reg-

ulated, then the up propensity (pup) will determine by a biased coin-toss if the x(t + 1) will be

equal to f(x(t)) or to x(t). The case of down-regulation works the same way when x(t)> f(x(t)),
with pdown determining the bias of the coin-toss.

A significant innovation of SDDSs, as alluded to earlier, is that the noise is dependent on

the value of the node at time t, and also the probabilities are not necessarily symmetric (e.g.,

piup þ pidown 6¼ 1). This might not carry the same mathematical elegance as previous models but

is very useful biologically, where such asymmetries are common. The method presented in this

paper has a similar principle as the one introduced by Murrugarra et al. [19] in that the noise

is dependent on the state of the system and is not necessarily symmetrical.

Murphy et al. have shown [18] that Boolean networks are indeed a special case of a broader

class of Dynamic Bayesian Networks (DBNs). DBNs are defined by a set of nodes that repre-

sent random (hidden or known) variables, and directed links are described by the conditional

dependence between the variables. The value of each node is determined by a conditional

probability distribution (CPD), dependent on the parents of the node. Dynamic Bayesian net-

works are a special case of the general Bayesian networks, where the dynamic aspect is encoded

by a different set of N nodes representing each timestep. If all nodes have deterministic logical

functions with a binary output, then the DBN is a Boolean network.

We would argue that the PEW method is a step toward the DBN framework in generality

because the rules of some nodes with PEWs become stochastic and conditionally dependent

on the value of the (subset of) parents. Nonetheless, it’s still more pragmatic to view PEW
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models as a separate framework because, as we show in the empirical applications, probabilis-

tic edge weights are meant as very specific, targeted modifications to Boolean models and are

easily made compatible with existing tools of Boolean network analysis. On the other hand,

DBNs are likely the most general modeling framework of which PEWs models represent a spe-

cial case.

Finally, the work of Poret et al. [29] is worth mentioning, even though their paper has not

been published in a peer-reviewed journal. Their method is close in spirit to what is proposed

in this paper, and they provide great examples of fine-tuning BN dynamics with different

kinds of noise. In their work Poret et al. introduce “fuzzy operators” in their logical functions,

which can evaluate continuous node-states. The use of “fuzzy operators” allows the method to

fine-tune edge responsiveness and edge reactivity, all of which are indeed quite nuanced

interactions.

We have used a similar weakening/strengthening approach on the level of nodes in one of

our recent papers [30] and its follow-up study [31], where we imposed external perturbations

to specific nodes, especially input nodes, setting them to a certain Boolean value with probabil-

ity p in every time-step. This helps to establish a continuous “concentration”-like parameter,

which can influence the downstream dynamics to a great degree. We use this same approach

in this paper to alter the input concentration of TGFB in the applications to the EMT model.

In the following sections, we present the PEW method and we show a few empirical exam-

ples in which we demonstrate its usefulness in recapitulating and explaining experimental

results. Finally, we demonstrate its versatility through reproducing examples from other sto-

chastic methods. Indeed, BNp-s, SDDS (Boolean case), and the simulation results of Poret

et al. [29] are all reproducible in the PEW framework (See S2 Document, S1 and S2

Notebooks).

The PEWs offer an easy way to insert noise to individual edges in a Boolean

network

Let us denote the probabilistic weight operator as Pe, which has two parameters: won and woff.

We also associate a function f to Pe, which describes how the weights determine the outcome

of the operation.

Generally:

Pe f ; won; woff

� �
x ¼

f x; wonð Þ; if x > y

f x; woff

� �
; if x � y

8
<

:
ð1Þ

Here x represents the source of a (hyper)edge in the Boolean model. A hyperedge is an edge

of a hypergraph, a generalized graph, where edges connect sets of vertices (undirected) or

ordered subset pairs (directed) [32]. In a Boolean model, a hyper-edge is a clause of the Bool-

ean function consisting of multiple nodes regulating the target node (e.g. A AND B). The Pe
operator used in a Boolean rule affects the first variable on its right-hand side. This variable

can refer to a single node or to a clause of the Boolean rule involving multiple input nodes (in

which case the operator is followed by parentheses, containing a subset of the logic function).

Such clauses represent hyperedges, as they characterize the relationship between the target

node and several of its inputs. The θ threshold parameter is 0.5 for the Boolean case, but for

continuous or multi-level cases it can be adjusted.

The “grammar” of the Pe operator is the same as of any left-hand side operator (such as

“not”) i.e. it acts on the first mathematical clause to its right. Below we illustrate the rationale

and the exact details of how the PEW operator works in a simple example.
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Consider the Boolean rule A � = B AND C. In biological models, a function such as this usu-

ally encodes that gene A is activated by a protein-complex formed by B and C. Both B and C

are necessary for A’s activation; thus, A will not be activated if C = 0. Next, we assume that the

link between A and C is weakened (e.g., due to a mutation), in other words, we decrease the

weight of the C! A link. Adding a PEW operator we can represent this as A� = B AND Pe C.

The weight is decreased in a probabilistic way by making it noisier. The most extreme case of

weakening an edge is cutting it entirely. In general, cutting a link in a Boolean network implies

a choice between setting the state of the source of the link to 0 or 1. These two choices have

drastically different interpretations. Cutting the C! A link by setting C = 1 yields the Boolean

rule A� = B, which indicates that the necessity of C was eliminated altogether. If the C! A

link is cut by setting C = 0 then the Boolean rule becomes A� = 0, thus A will be locked OFF.

The mechanistic interpretation of A� = B AND C helps explain the need to apply different levels
of noise to the ON vs. OFF states of C. For instance, if C is mutated so that it only binds B 30%

of the time, this probability should only be applied to the cases in which C is ON, i.e. there is

something to bind to B. If C is OFF there is nothing even to attempt the complex formation,

therefore A will be OFF 100% of the time. This is the reasoning behind the conditional update

in Eq (1). In this example won = 0.3, and woff = 0.

As alluded to in the example above f can be a simple draw from a binary distribution (i.e. a

biased coin-toss) with probability w,

f x;wð Þ ¼ Pr x ¼ 1;wf g:

In summary, the new rule is A� = B and Pe(f, won, woff) C. This means that whenever C is

ON the noise weakens its effect on A as though it were ON only 30% of the time and whenever

it is OFF it is not affected by noise.

Finally, the PEW operator is not restricted to acting on single edges, but it can act on any

hyperedge. This means practically, that any clause of the Boolean rule can be made noisy with

the PEW operator, and any number of PEW operators can be used. In our previous example, it

is possible that the B+C complex itself is noisy. In that case, A� = Pe(B and C) would make the

joint effect of B and C noisy instead of a single node’s.

The exact mathematical framework of the PEW approach depends on the noise function

applied in the operators, nonetheless, adding any kind of noise to a single edge can make the

target node stochastic. Stochastic nodes indeed transform the state transition graph (STG) of

the Boolean model into a discrete Markov chain. However, just as in the case of Probabilistic

Boolean Networks, the Markov chain is not necessarily ergodic, but it can have ergodic sub-

sets, due to the fact that only a subset of nodes is stochastic and other non-stochastic parts of

the network can still lock into states permanently. For the purposes of our paper, we chose

the representation/analysis of the dynamic evolution of models as ensemble averages of states

(started from specific, biologically relevant initial conditions), instead of a more general

STG/Markov chain analysis (e.g. determining the stationary probability of states within ergo-

dic subsets, PageRank, etc.). We do this mainly because the ensemble averages capture rele-

vant time evolution patterns and the stochasticity in the case of certain nodes emerges as a

nonbinary average in the steady state, akin to intermediate concentrations of molecules in

cells.

The application of targeted PEW operators on an ensemble of simulated systems leads to

the fine-tuning of the concentrations of molecules, which otherwise behave non-biologi-

cally in the model. In the next sections, we will show the biological relevance of such fine-

tuning.
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Implementation in BooleanNet

One of our goals with this method is to offer an easy way to use PEW operators without the

need for additional software. Thus, the technical implementation is done as an extension of

the already popular and well-established BooleanNet framework in Python [33]. In the modi-

fied version of BooleanNet PEW operators are implemented within the rule-parsing grammar

of the BooleanNet method (which uses the Yacc framework [34]) and work as left-hand side

operators (the same as not). The syntax of a PEW operator in a Boolean rule is two positive

floating-point numbers [won, woff], separated by a comma within a square bracket. Following

the example used previously:

A� = B and C after applying the PEW operator becomes:

A� = B and [0.3,0] C

Or using the hyperedge:

A� = [0.3,0] (B and C)

To use a PEW operator in BooleanNet only the Boolean rules of the simulated model have

to be modified, following the syntax specified above. All other functions and operations (unless

defined otherwise) follow the BooleanNet standards. The PEW operators also interact intui-

tively with the not operator, so using a PEW operator before or after a not has different effects.

For example:

A� = [0.3, 0] not C

has the same probabilistic outcome as

A� = not [0.7,1] C.

Generally, the not operator to the left modifies a PEW operator [won, woff] to [1 − won, 1 −
woff]. A PEW operator to the left of a not, on the other hand, will act on the outcome of the

negation.

In this paper we follow the logic of the first number being associated with the ON case of

the clause acted upon (x) and the second number is associated with the OFF case. This, how-

ever, can be easily changed in the implementation, along with the threshold parameter θ.

Moreover, future versions of the framework can be expanded to the multilevel case, where

instead of two values one can have a vector of arbitrary length, corresponding to all possible

values of the input nodes.

Using the [won, woff] syntax, the code defaults to the Bernoulli coin-toss as the noise func-

tion. Yet generally one can also specify the noise function in the operator: [f_name, p1, p2],

where the “f_name” is a function defined in a separate Python file and p1, p2 are parameters of

the function. The parser interprets each operator as a separate entity, so operators with differ-

ent noise functions can be mixed in the same model. To see use cases of this general formula

please see the Application Note (S3 Document) and its accompanying Jupyter notebook (S3

Notebook).

The parameters and the noise function of the PEW operators are not time dependent.

Nonetheless, it is technically possible to make them time-dependent (by changing the parsed

rules during a simulation) but we don’t do this in any of our applications. A PEW operator

applied in the rule of a single node will potentially make the target node stochastic. This also

means that all nodes downstream of the stochastic node can behave stochastically as a result.

The combination of noise operators with the complex nature of regulatory networks can have

non-trivial emergent effects, as we see in the applications.

Results

In this section, we are going to demonstrate some applications of the PEW model, where the

PEW enhanced BN performs better in explaining experimental results than the classic Boolean
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model, yet no complex ODE model is needed. To do this we switch from the more general

Pe(f, won, woff) notation to the more pragmatic [pon, poff] notation, where the noise function is

the Bernoulli coin-toss and the weights are determined as probabilities.

Noisy feedback-loops explain the loss of M attractor stability in epithelial

to mesenchymal transition (EMT)

The transitions between epithelial and mesenchymal cellular phenotypes are encountered in

embryonic development, wound healing, and cancer metastasis [35–37]. One of several pro-

teins that trigger the signaling network that leads to epithelial-mesenchymal transition (EMT)

is Transforming growth factor-beta (TGFB), an extracellular signaling molecule, which can

trigger EMT but is also secreted by cells that underwent EMT. At the core of the EMT is a

mutually repressive positive feedback loop between the Zeb transcription factors expressed in

mesenchymal cells (M state), and the miR-200 microRNA expressed in epithelial cells (E

state). This system acts as a bistable switch; once flipped from E to M, cells lose expression of

E-cadherin, a critical adherens junction molecule required for forming epithelial monolayers

and maintaining an epithelial phenotype [6,16,38]. Celia-Terrassa et al. [39] showed in a fasci-

nating study that a single mutation that weakened Zeb’s ability to repress miR-200 expression

radically altered the commitment dynamics of TGFB-induced EMT, and sped up the mesen-

chymal to epithelial transition (MET). Here we propose a very simple Boolean model, which

qualitatively reproduces most of the results of the Celia-Terrassa study. Moreover, we show

that the addition of two PEW-operators to the model significantly improves the model’s quali-

tative results.

First, Celia-Terrassa et al. [39] showed that with increased TGFB concentration their cell

lines exhibited a bistable behavior where the epithelial marker E-cadherin showed two distinct

concentration peaks; one at a high concentration associated with a population of epithelial

cells and one at a low concentration of a population of mesenchymal cells. This can be

explained by the lock-in of the Zeb—miR200 mutual inhibition loop, which becomes self-sus-

taining (hysteresis). In Boolean modeling, we identify self-sustaining positive feedback loops

as stable motifs [12], patterns of node activation that permanently lock in within the dynamics

of the system. The authors created a separate cell line, where, using CRISPR technology, they

weakened the Zeb-miR200 feedback loop by mutating the binding site of Zeb1 on miR200.

This led to the disappearance of the previously observed bistability, where the E-cadherin peak

changed linearly with increased TGFB concentration (instead of switching from low to high

and never stabilizing between the two bistable peaks). In the following text, this Zeb1-miR200

edge knock-out line variant will be simply referred to as “mutant”.

Second, they showed that in wild-type cell lines even a short (5 min), high concentration

TGFB pulse can commit cells to EMT (even after washing off TGFB). The commitment only

happens in mutant cells after a much longer (1 h) pulse, suggesting some other self-sustaining

feedback loop downstream (other than the ZEB-miR200), which gets activated only with a lon-

ger pulse. Third, the authors showed that mutant cells left unperturbed transition back into

the epithelial state much quicker (~3–6 days) than wild-type cells (~12 days). The authors pro-

posed a simple 4 node ODE model which explains the bistable behavior due to the ZEB-

miR200 feedback loop and other related phenomena [39]. In this paper, we show that most

results can also be explained using a simple PEW-enhanced Boolean model, with a minimal

number of parameters.

There are a number of well-established Boolean models for EMT [6], however, for the

reproduction of these results we propose a simplified model with an important update to pre-

vious models, namely, that TGFB has to have a shorter, direct path to ZEB, which does not
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involve SNAI1 (in Steinway et. al. [6] all TGFB—ZEB paths go through SNAI1). The evidence

that supports this shortcut is clear in the order of activation in response to the TGFB signal

reported in the Celia-Terrassa paper (Fig 3C in [39]): SNAI1 turns on 5 hours after ZEB1. In

our model, we represent this delayed signal from TGFB to SNAI1 with n artificial intermediary

nodes. We model the delayed feedback loop suggested by the experimental evidence with a

SNAI1 local positive feedback loop; such feedback loop has support in the literature (see S4

Document). We also add an alternate inhibitory pathway from TGFB to miR200 with m< n
intermediary nodes. For the Boolean rules of the model and additional references see S4

Document.

One potential disadvantage of Boolean models is that self-sustaining feedback loops (stable

motifs) lock in permanently in the model dynamics, not encapsulating the fact that often there

is a natural decay in the self-sustaining nature of the feedback loop after the termination of the

initial signal. Simulating the model proposed above with classical Boolean dynamics perma-

nently locks it into the mesenchymal state, given a long enough initial TGFB pulse. With the

PEW framework, we can make stable motifs slightly more reversible, resulting in more

nuanced dynamics. In the “wild type” version of our model, we add a very slight noise to the

edges highlighted in red in Fig 1, namely to the local feedback loop of SNAI1 and the ZEB—

miR200 link. The consequence of this noise is that after the termination of the TGFB signal the

system will slowly converge back into the epithelial state (i.e. it will undergo MET). Simula-

tions with an ensemble of Boolean networks are shown in Fig 2. In Fig 3 we show that despite

the edge noise the bistability due to the positive feedback loop is still maintained, i.e., the noise

does not destroy the nonlinear effect of the transition.

In the “mutant” version of our model instead of severing the ZEB—miR200 edge

completely we create an almost severed noisy edge, assuming that the mutation does not fully

Fig 1. A simplified Boolean model of the EMT with PEW edges. Compared to another popular Boolean model of the

EMT [6] this version has a shortcut from TGFB to ZEB (independent of SNAI1) which we implemented through

SMAD (evidence for a direct path in [40]). This shortcut is also justified by SNAI1’s delayed activation compared to

ZEB after the initial TGFB pulse in [39]. Edges ending in circles represent inhibition, edges ending in arrows represent

activation. The black edges with dashed lines represent chains of intermediate dummy nodes which emulate the

delayed signal (n = 6, m = 3). The red dashed edges represent the feedback edges that have noise operators applied to

them in both the wild type and the mutant case.

https://doi.org/10.1371/journal.pcbi.1010536.g001
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abolish Zeb’s ability to repress miR200. This is also a great example of why the noise should be

dependent on the state of the node: When ZEB1 is ON there is still a slight chance for it to

inhibit miR200 (imperfect loss of repression due to the mutation), but when it is OFF (e.g., in

the absence of a TGFB signal), the chance of it turning miR200 OFF should be 0 (as is in the

wild-type case).

Figs 2 and 3 show two additional model results that recapitulate the experimental data: first,

the MET is significantly quicker in the mutant system compared to the wild type, and second,

the mutant version loses its bistability, shown by the red median line of the E-cadherin

distribution averaged in the interval of timesteps between 100 and 150. However, the small

amount of added noise in the “wild type” version on the edge ZEB—miR200 edge preserves

the bistable transition with the increased TFGB concentration (Fig 3 left panel) we expect with

Fig 2. The “mutant” model has a faster MET compared to the wild-type version. Both panels represent the average

node values of 200 independently simulated EMT models with a single strong initial TGFB pulse. The wild-type model

(top) has a slight noise on both edges highlighted in red in Fig 1 (pon = 0.95, poff = 0). The mutant (bottom) version has

a stronger noise on the Zeb—miR200 edge (pon = 0.05, poff = 0) making the link almost severed. Due to the noise on the

feedback loops, both assemblies return to the epithelial attractor, but the mutant does it a few hundred steps sooner

due to the faster loss of ZEB, qualitatively matching the experimental results of [39].

https://doi.org/10.1371/journal.pcbi.1010536.g002
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a noiseless stable motif, while still allowing the MET to happen because the feedback loop is

not irreversibly locked in. The initial state of the simulated networks is the epithelial attractor

(Ecaderin = miR200 = ON; all other nodes OFF).

Reduced CyclinB-Cdk1 induced apoptosis improves asynchronous cell

cycle model

In 2019 we published an 89 node modular Boolean cell cycle model, which explained a wide

range of healthy and pathological cell cycle behaviors, from the aberrant cell cycle driven by

hyperactive PI3K, to the different effects of timed knockout of Polo-kinase 1 (Plk1), such as

mitotic catastrophe or polyploidy [30]. The model has the most robust cyclic behavior when

simulated with the synchronous update scheme. In Sizek et al. [30] we also considered multiple

kinds of asynchronous update schemes and found that the model had a few non-biological

behaviors when simulated with the general asynchronous update scheme. These behaviors

were resolved when using a biased order asynchronous update scheme, which guaranteed that

a critical subset of node updates are made in their biologically observed order. However, the

biased order asynchronous update scheme needs a number of additional parameters and its

implementation is rather non-intuitive and hard to link to biology in a straightforward way.

Fig 3. The mutant EMT model loses its nonlinear bistability in the function of the TGFB pulse concentration. The figures show the distribution of average E-

cadherin between steps 100–150 in the models of wild type (left) and mutant cells (right). The red vertical line represents the median of the distribution. Despite the noisy

edge the wild type still exhibits a sudden bistable transition between epithelial and mesenchymal states. The mutant, however, shows a much more gradual transition.

This also fits some of the experimental results of [39]. This result also shows that self-sustaining feedback loops (stable motifs) don’t necessarily lose their nonlinear

attributes with some added noise.

https://doi.org/10.1371/journal.pcbi.1010536.g003
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Here we propose a simpler solution to some of the model’s problems posed by the general

asynchronous update scheme and a few PEW operators, while also keeping the wide range of

model behaviors that match experimental data.

In Fig 4 we show an extended ensemble simulation of the original cell cycle model with

constant high growth factor stimulation. This model focuses on cell cycle dynamics and

assumes healthy growth conditions, i.e. no external damage or perturbation is induced. In the

figure we track the concentration of only a few key nodes out of all 89. The cell cycle driver

kinases and cyclins turn on early and drive the cell cycle, however, one can notice that the apo-

ptotic nodes, such as Casp3, Casp2, and most notably CAD (which signals the execution of

apoptosis) gradually increase in time—i.e. more and more cells in the ensemble die. This is

Fig 4. The rate of cells committing to unsolicited apoptosis drops significantly after the introduction of PEW

operators. The figures show the average node values of 100 independently simulated Cell Cycle models with High

growth factor stimulation and no external damage. On the top figure (original model) after 10000 steps, roughly 20%

of the cells have CAD active, meaning that they committed to apoptosis. On the bottom figure (4 PEW operators

added to the edges from the CyclinB-Cdk1 complex to the anti-apoptotic nodes–see S4 Document), this rate is about

half of that. The same difference in apoptosis commitment rate is also visible in the evolution of anti-apoptotic nodes

(MCL-1, BCLXL, BCL2). Otherwise, there is no qualitative difference in the cell cycle progression (the cell cycle

markers such as CyclinA and CyclinB still fluctuate within the same boundaries, i.e. the same proportion of cells are

active in the cell cycle over time).

https://doi.org/10.1371/journal.pcbi.1010536.g004
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due to the several faulty behaviors related to the update scheme, which ultimately lead to apo-

ptosis instead of continued cycling. These behaviors are discussed in Sizek et al. [30] in more

detail, along with ways to overcome them using a biased update scheme.

Most often the unexpected apoptosis is the result of the perturbed balance between pro-

and anti-apoptotic influences during metaphase. In metaphase cells are sensitized to apopto-

sis in the event of a failure to assemble the mitotic spindle and pass the spindle assembly

checkpoint. There is evidence that the CyclinB-Cdk1 complex phosphorylates a part of the

pool of anti-apoptotic proteins, such as MCL-1, BCLXL, and BCL2. A prolonged mitotic

phase leads to a high degree of phosphorylation, which then degrades the anti-apoptotic pro-

teins and initiates apoptosis [41–44]. This happens very rarely in healthy cells, yet with asyn-

chronous updating, the in-silico time scales at which the event occurs are often not

proportional (significantly shorter) to the time scales in real cells. To counter this we propose

a weakening of the inhibitory links from the CyclinB-Cdk1 complex to the anti-apoptotic

links. This modification will have no effect on the incredibly important role of the

CyclinB-Cdk1 complex in driving the cell cycle, nor will it completely remove its influence

on the anti-apoptotic nodes. Also, we did not alter the protective (anti-apoptotic) effects

Cdk1/CyclinB has during normal cell cycle progression, where it blocks Caspase 2 activity.

This means that if the cycle is indeed stopped during mitosis due to external damage, the

CyclinB-Cdk1 complex can still prime cells for apoptosis, only it will take relatively more

time (update steps). This, however, should happen very rarely in wild-type behavior (no

external perturbation).

In Fig 4 (bottom) we show the effect of introducing a [pon = 0.5, poff = 0] weight on three

hyperedges from the CyclinB and Cdk1 complex to the three anti-apoptotic nodes mentioned

above (MCL-1, BCLXL, and BCL2). Due to this modification, the number of cells committing

to apoptosis during the same time period drops to half. In Fig 5 we present a more detailed

analysis of how the ratio of apoptotic cells changes as a function of the pon parameter. One can

Fig 5. The propensity of CAD = 1 (apoptosis commitment) drops with the decrease of the pon (increase in state-

dependent noise) on the selected edges. Each data point represents a simulation done on an ensemble of 500 models

for each pon value with 10000 simulation steps, as a function of pon in the PEW operator [pon, 0] acting on the CyclinB

+Cdk1 complex’s links inhibiting the anti-apoptotic nodes (MCL-1, BCLXL, and BCL2). The same pon value is applied

for all three hyperedges (CyclinB and Cdk1 clauses). The “default” behavior is at pon = 1, while pon = 0 is the special

case of severing the link with the clause “Cdk1 and CyclinB “always being 0. Error bars represent the standard error

within the ensemble.

https://doi.org/10.1371/journal.pcbi.1010536.g005

PLOS COMPUTATIONAL BIOLOGY Probabilistic edge weights fine-tune Boolean network dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010536 October 10, 2022 13 / 20

https://doi.org/10.1371/journal.pcbi.1010536.g005
https://doi.org/10.1371/journal.pcbi.1010536


notice that a 50% reduction in the CAD activity can be achieved with pon = 0.6 and further

weakening the links (which might compromise their intended function) no longer reduces the

CAD activity in a significant way.

It is beyond the scope of this paper to address all the issues that are caused by the noisy

update scheme in this cell cycle model. The fact that a nonzero fraction of cells still commit to

apoptosis without simulated damage is due to other unintended effects of the general asyn-

chronous update, such as aneuploidy and skipped cytokinesis. (For further details on the mod-

el’s errors and explanations see Suppl. Fig 6 in [30]).

However, one can see from these simple examples, that with slight modifications of edge

weights one can achieve a high degree of improvement in the quality of the emergent behavior.

The method achieves this by effectively reducing the number of non-biological update orders

otherwise allowed by the general asynchronous update scheme, which is especially problematic

when in the real system different links work on significantly different time scales.

All the above results, for both applications, can be reproduced in the supporting S4

Notebook.

For further use-cases and applications please see the Application Note (S3 Document) and

the Jupyter notebooks accompanying this manuscript (S1, S2, S3, S4 Notebooks).

Discussion

In this paper, we have presented a method of introducing different levels of state-dependent

edge-noise into Boolean models of biological systems via probabilistic weight operators. The

goal of this method is not necessarily restricted to modeling the intrinsic stochasticity of sys-

tems (even though adding general noise is possible within this framework). The canonical sto-

chastic methods discussed in the paper have a wide variety of ways of introducing system-wide

as well as node-level biological noise. The goal of the PEW method is threefold.

First, to introduce stochasticity to the level of edges and thus introduce relative weight to

edges and hyperedges through noise operators. With this, one can emulate very specific muta-

tions, changes in binding site affinities, differences in interaction time scales, etc., and also

offer a way to implement edge-level uncertainty.

Second, to offer a technical implementation for in-silico simulations which is easy to use;

thus the method is implemented as an extended version of the well-established BooleanNet

tool [33]. The third goal is to reproduce the noisy dynamics of several canonical methods (dis-

cussed in more detail in S2 Document). Thus, the PEW framework shouldn’t be thought of as

a new modeling framework, instead, as a toolkit for fine-tuning Boolean models with the tar-

geted placement of PEW operators. Using our method one can introduce an increased uncer-

tainty for certain connections, or conversely given a non-zero base noise, increase the relative

certainty of regulations and even emulate a short-term adaptation akin to cellular learning.

Cellular learning has been increasingly discussed in recent studies as a way of cells acclimatiz-

ing to repeated signals with faster phenotype convergence [45]. In this framework, we can

think about learning as the reduction of noise, i.e., one could model the more optimal reaction

of learning cell cultures with changing weights from noisier to less noisy parameters. Changing

levels of noise within positive feedback loops could be especially effective, as we have shown in

the application to the EMT study, where a less noisy edge (Zeb—miR200 in the wild type case)

produced a faster epithelial convergence than the more noisy edge (mutant). In fact, there is

evidence to suggest that intrinsically disordered proteins (IDPs) do exactly that, namely, accli-

matize to repeated signals and shape their originally disordered (more noisy) structure to one

more responsive to the signal (less noisy) [45–48].
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Another reason to target self-sustaining positive feedback loops (stable motifs) with PEW

operators is to counteract their intrinsic irreversibility in permanently committing the system

to certain paths. For example, autocrine signaling loops involving the secretion of signaling

molecules that drive their own production can create stable motifs that irreversibly lock a

modeled cell into a particular self-sustaining state. Inherent in such a model is the assumption

that a cell secretes a sufficiently strong signal to saturate its own autocrine signaling pathway;

an assumption that may not be realistic in micro-environments that do not help concentrate

these signals [22]. With PEW operators one can implement this effect without losing the non-

linear effects of feedback mechanisms, as we have shown in the EMT commitment. Even hav-

ing a single link made slightly noisier in a stable motif can act as a natural decay parameter as

it gradually unlocks a self-sustaining feedback loop and allows different pathways to engage.

One more potential application is encoding uncertainty in data-driven regulatory network

building. Many of the emerging network medicine methods generate weighted networks from

combining information from different omics data sources [49,50]. Combining expression data

with such regulatory networks in order to produce dynamic models is an important challenge

as more and more clinical research is focused on finding therapeutic targets through the con-

trol of dynamical networks. Binarizing the weights of such data-driven networks might involve

a lot of costly compromises, thus having a way of encoding edge-weights in the form of noise

in a dynamic model could be a handy tool.

We would like to emphasize that this method is not necessarily restricted to the Boolean

case. Indeed, a case using continuous variables was already implemented to reproduce the

results of [29] (see S2 Notebook). Moreover, discrete, multi-level versions are also possible. In

this case, however, one might want a different weight parameter for all possible node values if

the state-dependent aspect of the method is meant to be kept.

Finally, this paper does not offer any concrete way to methodically determine the weights

in the PEW operators. We believe that this is a highly context-dependent task and if the num-

ber of PEW operators introduced in a model is relatively low (like in the applications presented

in this paper) the weights can be fine-tuned manually. Having too many PEW operators with-

out a systemic source for the weights will eventually pose the same problems ODE models

face, of having to fine-tune too many parameters. The collective behavior of many interacting

PEW-enhanced edges should be the subject of further research.

There is an important body of work focusing on parameter estimation and control, which

can be readily applied to this framework. In the case of stochastic dynamics in Boolean net-

works the state space is not necessarily ergodic (though it can have ergodic subsets [51]), how-

ever it can be made ergodic by adding a sort of thermodynamic noise (such as in the case of

BNp) or a damping factor used in the PageRank algorithm [52], where the system can jump to

random states with a nonzero probability. Murrugarra et al. [53] uses the PageRank approach

to estimate the stationary probability distribution of states and then applies a genetic algorithm

to estimate the node propensity parameters (akin to the PEW tuples) of the SDDS model,

given a desired final probability distribution on the state space, such as more balanced attractor

basins. We argue that this method can be expanded to our PEW model in a straightforward

way, to estimate edge-weights.

Controlling stochastic dynamic systems is a challenging task. Aguilar et al. proposes a near

optimal method in [54] for estimating control policies in stochastic Boolean networks, which

similarly to the parameter estimation method by Murrugarra et al. [53], can theoretically be

expanded to the PEW framework. In both the parameter estimation and the control methods

the state-space of PEW Boolean models have to be made ergodic. One way of doing that is the

one proposed in S2 Document where we reproduce the BNp variant with a universal noise.
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Investigating the different methods of stable motif control [15,55] combined with PEW

Boolean models could be a relevant next step. We show that noisy edges in stable motifs have a

significant impact on the emergent dynamics, due to the fact that stable motifs are crucial in

locking in attractor states.

In this paper, we introduced probabilistic edge-weights into Boolean dynamic network

models and showed that they successfully model system noise making the dynamic predictions

more accurate. Moreover, we developed the PEW framework, a simple-to-use implementation

of this methodology in the widely used BooleanNet program package. Probabilistic edge-

weight operators may open new routes to understanding the cellular learning process, as well

as to include omics data to Boolean network dynamics models.
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Code availability

The modified version BooleanNet [10] along with the Jupyter notebooks containing the code

for all the results presented in this paper, as well as the ways to reproduce some of the other

noisy models are available on the following GitHub page:

https://github.com/deriteidavid/boolean2pew.

(S1 Notebook: Murrugarra_et_al_2012_paper_results.ipynb, S2 Notebook: Poret_et_al_

paper_results-Boolean_init.ipynb, S3 Notebook: Supplementary_Application_Note.ipynb, S4

Notebook: Applications.ipynb).
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Formal analysis: Dávid Deritei.
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Validation: Dávid Deritei, Nina Kunšič.
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