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Cancer mutations that are recurrently observed among patients are known as hotspots. Hotspots are
highly relevant because they are, presumably, likely functional. Known hotspots in BRAF, PIK3CA,
TP53, KRAS, IDH1 support this idea. However, hundreds of hotspots have never been validated experi-
mentally. The detection of hotspots nevertheless is challenging because background mutations obscure

their statistical and computational identification. Although several algorithms have been applied to iden-
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tify hotspots, they have not been reviewed before. Thus, in this mini-review, we summarize more than 40
computational methods applied to detect cancer hotspots in coding and non-coding DNA. We first orga-
nize the methods in cluster-based, 3D, position-specific, and miscellaneous to provide a general overview.
Then, we describe their embed procedures, implementations, variations, and differences. Finally, we dis-
cuss some advantages, provide some ideas for future developments, and mention opportunities such as
application to viral integrations, translocations, and epigenetics.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mutations accumulate during tumor progression [1]. The
number of mutations is highly heterogeneous, from a handful to
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thousands, even within the same tumor type [2]. This diversity
leads to thinking that most observed mutations seem to appear
due to random chance, known as passenger mutations [3,4], and
few due to positive selection, also referred to as driver mutations
[4-6].

Many computational methods have been proposed to estimate
which genes in cancer are under positive selection [7-9]. This
determination is essential to characterize cancer behavior, the
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mechanisms of action, and, ultimately, to propose treatments
[10,11]. These gene-based methods focus on determining whether
the number of observed mutations in a gene is higher than the
number of mutations expected by random chance [2]. Neverthe-
less, the presence of random mutations obscures the estimation
of those that yield a genuine functional impact. In this context,
the hotspot mutations, which are specific mutations recurrently
observed in different patients, are thought to be functionally
important [12]. This is based on the unlikely expectation of observ-
ing recurrent mutations (when the number of patients is not so
high or above expectations). Well-known hotspots support this
idea, e.g.,, BRAF V600E in many cancer types [13-18], IDH1
R132H in gliomas [10], KRAS G12/13 in lung cancer [19], or NRAS
Q61 in melanomas [20].

International cancer sequencing projects have provided an
increasing number of samples and tumor mutations [21,22], whose
aggregated data help to identify novel hotspots. Nevertheless,
apparent non-functional hotspots also emerged, such as those gen-
erated by the APOBEC enzymes [23] or those observed in highly
suspicious genes [2], generating the necessity for computational
methods that identify functional hotspots.

Many methods have been proposed to identify likely functional
hotspots. These tend to conceptually vary in aspects such as the
region, coding or non-coding, the definition of a hotspot, point
mutations or clustered in a small region, the databases used, the
statistical distributions, and more. Despite a plethora of methods,
to our knowledge, no efforts have been devoted to compare, sum-
marize, and discuss the algorithms of this critical topic.

In this mini-review, we summarize more than 40 published
approaches to detect cancer hotspots. First, we provide a concep-
tual summary classifying the methods in 4 groups. Then, we
describe and compare each group of approaches. Finally, we dis-
cuss issues and future directions.

2. Cancer hotspots methods

To provide a comprehensive and updated view of hotspot meth-
ods, we searched literature in PubMed and the Internet using key-
words related to “cancer”, “hotspots”, and “algorithms”. In
particular, we used 3 main PubMed queries. (1) mutation®[TI]
AND cancer[TIAB] AND (hotspot*[TI] OR recurren*[TI] OR positio*[TI]
OR patter*[TI] OR clust*[TI] OR struct*[TI] OR 3D|TI]) AND (method
[TIAB] OR algorithm*[TIAB] OR model*[TIAB]). (2) (hotspot*[TI] OR (re-
curren®[TI] AND mutat®[TI])) AND (cancer[TIAB]) AND (computa*
[TIAB] OR algori*[TIAB]). (3) (hotspot*[TI] OR driver*[TI] OR ((recur-
ren*[TI] OR clust*[TI]) AND (mutat*[TI] OR varian*[TI]))) AND (can-
cer[TIAB]) AND (computa®[TIAB] OR algori*[TIAB]). We curated the
candidate list of 350 papers plus other known papers not listed.
Finally, we revised 44 publications. The list is provided as a supple-
mentary material.

3. Overview

To provide a useful comparison, we first classified the algo-
rithms in four types (Fig. 1). First, approaches considering a hotspot
as a cluster of mutations within a small peptide or DNA region. Sec-
ond, methods clustering mutations applied to 3D coordinates
where amino acids can be distant within the protein sequence
but close in 3D structure. Third, algorithms designed to compare
mutations in specific amino acids or DNA positions. Fourth, proce-
dures of other diverse origins or concepts applied to coding
sequences. Finally, and except by the 3D protein coordinates, the
approaches can also be applied to non-coding sequences plus some
adaptations and considerations, which are referred to within the
above four types. In the following sections, we describe the four
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types of algorithms and mention the differences applied to non-
coding when needed.

4. Cluster-based methods

Cluster-based methods are perhaps the most frequent algo-
rithms to detect mutation hotspots. These methods find hotspots
mainly by grouping mutations within certain regions considering
the frequency of mutations and other relevant biological features.
The Fig. 2 provides an overview of the most common steps charac-
terizing cluster-based methods, which is not exhaustive but suffi-
cient to settle a general process.

Clustering Mutations by Location. Candidate hotspots are identi-
fied as mutations clustered by domain or by proximity (Fig. 2A).
The domain criterion is stated as if mutations belong to the same
protein domain, whose definition may vary depending on the data-
base used [24], or into the same non-coding DNA motif such as
transcription factor motifs [25]. Algorithms developed by Baeissa
etal [26],Jiaetal [27], and Porta-Pardo and Godzik [28] exemplify
protein domains-based methods and those by Melton et al. [25],
Kim et al. [29], and Juul et al. [30] for non-coding motifs. Proximity
is defined as the distance measured in codons or bases and
whether it is applied to coding or non-coding regions. Then, muta-
tion clusters are regularly discovered using sliding, dynamic
[31,32], or fixed [33,34] window algorithms, counting the muta-
tions covered, and moving the window to a contiguous position
[35]. The counting can be even [36] or weighted, for example, giv-
ing a higher score to positions having more mutations [37]. Some-
times, only “seed” positions might be considered, for example,
those above a threshold [37]. The length of the window can be
fixed [34,37] or varied [35] and could also be applied to non-
coding regions [34].

Identifying candidate hotspots above background expectations.
Once a mutation cluster is proposed as a candidate hotspot, several
algorithms model the number of mutations within clusters accord-
ing to a statistical distribution or kernel-based estimations to cal-
culate a probability above chance (Fig. 2B). As can be noticed,
clustering-based algorithms use different probability distributions
to model mutation clusters. The choice of the distribution appears
to be related to the biological assumptions considered, such as
mutation proximity [37] or domain affinity [26]. Logically, discrete
event distributions as Poisson [38] or members of the binomial
family (e.g., beta-binomial) are utilized [36,37,39]. Afterward, a
p-value is calculated from a background distribution. These distri-
butions can be generated by randomizing sequences [36,40], by
calculating the probability of occurrence for all possible candidate
hotspots in order to provide enough measurements to create a dis-
tribution, or by using controls, such as silent mutations [37]. Other
algorithms employ kernel-based estimations to estimate the prob-
ability of mutation clusters. The kernel density estimate function is
used to calculate the probability density of mutation clusters [41].
Algorithms used different types of kernels, such as a Tukey [40] or
Gaussian [42].

Candidate Hotspot Annotations. Besides the p-value, some algo-
rithms incorporate biological features to enhance candidate hot-
spots evaluation (Fig. 2C). Among biological features, expression
[38,42], pathways [42], replication time [43], epigenetic context
[38], sequence context [44], and others [2] are included. The
importance of annotation is central in some algorithms. For
instance, the works from Van den Eynden et al. [45] and Baeissa
et al. [26], assume that mutation distribution depends on whether
the gene is an oncogene or a tumor-suppressor gene (TSG). On the
other hand, Jia et al. designed an algorithm inspired in GSEA, a
well-known gene expression rank-based enrichment method, by
calculating a mutation accumulation score (MAS), which depends
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Fig. 1. Conceptual classification of hotspot methods reviewed. Clusters methods focus on aggregating mutations by local regions in residue coordinates while 3D Clusters
approaches agglomerate mutations in 3D coordinates. Position methods consider the specific mutation position and, generally, its sequence context. Other methods are
described as miscellaneous that include those approaches focusing on evolutionary conservation, functional impact of mutations, structural features, overall statistics of
mutations, and other concepts impacting non-coding mutations such as chromatin domains.

on the proximity of mutations [27]. In addition, Araya and col-
leagues reported an algorithm that considers context-specific vari-
ables such as number and locations of mutations, gene expression,
replication time, GC content, among others [43]. As it is observed,
algorithms to detect mutation hotspots evolved their mutation
cluster models from counting mutations to consider biological fea-
tures as context variables.

Scoring and Filtering. Finally, an engine estimates a score for can-
didate hotspots (Fig. 2D). The score is used to rank candidate hot-
spots and select the most prominent.

For example, the OncodriveClust algorithm calculates a score
based on the fraction of mutations composing the cluster or hot-
spot and the maximal distance within these mutations [37]. The
score is used to select candidate hotspot whose score is higher than
those from a background distribution of random sequences. On the
other hand, Poole et al. score candidate hotspots with the loga-
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rithm of the ratio of the probability of occurring the hotspot and
the probability of having a similar hotspot under the assumption
of uniform distribution of mutations [42]. A filter can then be
applied to select the most promising hotspots using a score
scheme.

Coding and Non-Coding detection. Another distinction among
clustering-based algorithms is the genome location, denoting find-
ing hotspots in coding or non-coding regions. Above, we reviewed
algorithms focusing on coding regions, nevertheless some algo-
rithms center in non-coding regions [25,29-31,33,34,38,39,46].
To detect non-coding regions, algorithms need genomic annotation
data such as mapping of enhancers-promoters, TF binding motifs,
differential expression, protein-protein interactions, genetic and
epigenetic features, and perhaps others [38]. These annotation pro-
cedures underscore the disadvantage of finding non-coding muta-
tion hotspots. Moreover, non-coding detection is only feasible
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when mutations from whole-genome sequencing (WGS) data are
available [43,47], which are by far more scarce, but efforts and
databases are available such as PCAWG [6] (https://dcc.icgc.org/
pcawg).

To our knowledge, most of the methods for detecting hotspots
have been developed using mutation data from cancer samples.
Consequently, the majority of the studies reviewed exploited data
from The Cancer Genome Atlas (TCGA) [21], COSMIC [9], and ICGC
[22].

5. Hotspots as mutated 3D clusters

Finding hotspots directly in sequence, which is viewed in 1D, is
limited by the fact that proteins tend to fold into three-
dimensional structures. Therefore, positional clustering done in
1D will omit several 3D clusters after folding [48]. The increase
in protein 3D structural data has led to the development of meth-
ods for the identification of cancer hotspots. Most of these methods
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have three fundamental steps (Fig. 3), which will be described
next.

Obtaining mutational and 3D structural data. Only missense
mutations registered as confirmed somatic variants are used in
the reviewed methods; the most common primary sources are
TCGA [21] and ICGC [22]. Some of the review methods also use
other repositories to analyze mutation data, such as COSMIC [9],
Human Gene Mutation [49], cBioPortal [50], or ENSEMBL [51].
Often, this step requires manual data curation for specific set genes
or mutations [52-54].

The 3D structure information is needed to estimate neighbor-
hood atoms or amino acids. The 3D structure is obtained primarily
from the protein data bank (RCSB PDB) or from repositories,
including variants, such as ModBase [55], Swiss-Model [56], muta-
tion3D [57]| and DrugPort [52] (Fig. 3A). Mainly, native, non-
mutated proteins are used, then mutations are identified in the
backbone of these structures. In exceptional cases, a 3D structure
with a specific mutation is available (such as in TP53, and PIK3CA).
This is based on the fact that observed mutations from genomics
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data are always ahead of protein structure where a mutant should
be generated, crystalized, and analyzed. Commonly, the 3D struc-
ture of the protein is represented by the coordinates of all a-
carbon atoms [58-60]. Some criteria must be applied when there
are several structures of the same protein. Cristal conditions, sol-
vents, included chains, and interacting partners are reviewed to
choose the most appropriate.

Feature extraction. After choosing a 3D structure and its point
mutations, some metrics are extracted (Fig. 3B). These features
can be represented in the form of n-dimensional vectors. The most
common feature is the distance between the 3D positions of the o
carbon belonging to the mutated residues [57-60]. Besides, the
average distance of all atoms is calculated as a centroid of the
amino acid [48,54,56].

Some methods use 3D structural information to include fea-
tures such as the Accessible Surface Area (ASA) [53], or the spatial
proximity between any of the atoms of the molecular structure
[52,61] (Fig. 3A). Non-positional features, such as the density of
mutated residues in local regions, are often used to represent pos-
sible underlying functionalities within a protein or in protein-pro-
tein interactions [48,53,60,62].

Identification of significant 3D hotspots. The algorithms that make
up the methods of this review can be classified into four sub-
categories (Fig. 3B). Several methods combine these algorithms
for more accurately hotspots identification.

Pairwise interaction. In algorithms of this type, the interaction
between each pair of mutated amino acids is scored with respect
to a set of rules applied to their feature vectors. For example, Hot-
Spot3D [52], iPAC [58], iGraph [59], and CLUMPS [60] calculate
scores from the Euclidian distances between each pair of mutated
amino acids d(AA; AAj). In iGraph and iPAC, the 3D structure is
mapped to a 1D space to ease the identification of the clusters.
These algorithms identified hotspots in EGFR, EIF2AK2, and HAO1
proteins not detected by non-3D methods. However, there is an
inherent loss of information by reducing dimensionality, which is
overcome by other algorithms. For example, SpacePAC [60] identi-
fied significant clusters in FGFR3 and CHRM2 missed by iPAC due
to the remapping of the structure. Significant groups with rare
mutations in the RAC1 and MAP2K1 proteins were also detected.

Local mutation density. Mutated residues in local 3D regions
might form high-density clusters, commonly delimited by spheres,
such as in SpacePAC, or in a proximity range such as the first step of
HotMaps [48] and 3D Hotspot [61]. SpacePAC scores each sphere
according to the number of mutations covered. HotMaps uses
mutational diversity for the main score, which is based on Shannon
entropy of the joint probability of a missense mutation occurring at
a specific residue and having a specific mutant amino acid. Discov-
eries include relevant regions in CTNNB1, FGFR3, and FSHR pro-
teins that have been implicated with cancer [48,60].

Interaction Networks. The interactions between the mutated
residues can be informative to later identify the hotspots. Associa-
tive networks can estimate these interactions. Generally, the ver-
tices of these graphs are vectors of features from the mutated
amino acids, while the edges indicate the 3D distances. HotMaps
and Hotspot3D [62] are examples of this concept. One of the
advantages of interaction networks is the ability to form subnets
whose interactions have higher biological significance. This allows,
for example, the identification of novel and low-frequency putative
driver genes with hotspot communities [63]. Another example is
seen in HotMaps, where hotspots associated with oncogenes or
tumor suppressor genes were detected in 30 cases due to the
physicochemical properties of amino acids. There, regions contain-
ing oncogenic clusters are smaller, have less mutational diversity,
and have greater solvent accessibility than those in tumor suppres-
sors [48]. Hotspot3D uses graphs to prioritize clusters with a high
degree of closeness and that are significantly enriched in mutations
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from multiple patient samples [52]. For instance, a cluster includ-
ing A289, R108, and R222 in EGFR is enriched in lower-grade
glioma and glioblastoma while a cluster including L858 and L861
is enriched in lung adenocarcinoma. Thus the feature vector helps
to reveal enriched characteristics.

Hierarchical clustering (HC). The classical HC algorithm agglom-
erate elements by calculating a distance matrix among all elements
from the feature vector to progressively cluster those elements
that are close. For mutated residues, Mutation3D uses an HC algo-
rithm to encapsulate all a-carbons that are within a given specified
linkage distance [57]. This algorithm identifies known hotspots
with high precision, such as TP53, KRAS, and PIK3CA, among
others. However, the opposite occurs in types of cancer that have
very high mutation rates, such as melanomas where no mutation
hotspots were found, presumably due to high randomness that
obscure clusters.

5.1. Candidate hotspot filtering and statistical estimation

In general, the significance of clustered distances is tested
against the null hypothesis that amino acid mutations are dis-
tributed evenly throughout the polypeptide (Fig. 3C). The conven-
tional procedure for this is to shuffle the mutations along the
protein to estimate the distribution under the no clustering
assumption [48,52,54,57,60,61]. Some of these methods use scor-
ing schemes (that depends on the cluster distance) or normalized
scores rather than the distance alone. For filtering or prioritization,
for instance, HotSpot3D sum closeness centrality (CC) of variants
within the cluster and show that CC is higher among cancer-
related genes than to other genes [52].

6. Hotspots as specific residue positions

Specific residue positions focus on nucleotides or amino acids
rather than defining regions. This avoids diluting the count of
mutations along the region (cluster or window), facilitating the
detection of recurrent positions. The assumption is that the residue
rather than the region is subject to selection. This may be true for
key residues in enzymatic reactions [64], alterations in the 3D
structure, post-translational modifications [65], or degradation
[66]. Details of the generic process shown in Fig. 4 are described
below.

Stratification of observed mutations. This procedure assumes that
the probability of mutations is not uniform (Fig. 4A). The idea is
based on the observation that the C residue is more prone to muta-
tion [2] and highly influenced by the discovery of mutational sig-
natures that were stratified by trinucleotide contexts [67].
Several criteria have been employed to stratify mutations. The
most widely used are the tri-nucleotide (tri-nt) stratification and
replication timing. Tri-nt assumes that the mutated nucleotide is
different, and the flanking nucleotides provide a distinctive con-
text. This strategy has been highly successful, generating more pre-
cise estimations [44,68,69]. The replication timing is based on the
fact that there is a difference in mutations rates between early and
late replicating regions of the genome [2,44]. Other stratifications
include pentanucleotide that include 2-nt in both sides from the
mutated site [7,44], gene expression levels [44], nucleosome posi-
tions or transcription factors binding sites [70], Ti/Tv (transitions/-
transversions) [68], nucleotide position within codon and amino
acid [44], and consequence of mutation like missense, nonsense,
stop codon, among others [44]. Commonly, one or more covariates
are used for stratification. The result of the stratification is the esti-
mation of more precise parameters for background estimations for
the specific position being computed.
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Estimation of expected mutations. The above stratification pro-
vides the parameters for background rate estimation, which can
be different across the gene depending on covariates used. For
example, if a binomial model is used for the estimation of expected
mutations, the stratification provides the binomial parameter pj
specific for the genomic position k (Fig. 4B). Different distributions
can be employed depending on the assumptions, including Bino-
mial [69,71], Poisson [68], and Log-Normal [44] distributions.
Other distributions could also be used such as the Beta-Binomial
[46] and the Gamma [44,72].

Estimating a hotspot probability. Most methods use a second pro-
cedure to estimate the probability of the hotspot given the
expected and the observed mutations at the specific site
(Fig. 4C). For example, Hess et al. use an advanced algorithmic esti-
mation based on the Poisson distribution [44]. Chen et al. sum over
all mutation-types probabilities using a Fisher method, then calcu-
late the probability from a y? distribution [68]. Instead, Chang et al.
truncate the binomial parameter of all position-specific p’s [69,71];

thus, the expected mutations and the hotspot probability is done in
the same step. The p-value is then corrected for multiple tests
using, generally, by a false discovery rate (FDR) approach. Finally,
significant hotspots are selected using a cut-off value.

Filtering, annotation, and characterization. The list of significant
hotspots is usually filtered and accompanied by annotations or
characterizations at the gene or hotspot level (Fig. 4D). For exam-
ple, removing genes from a highly suspicious “blacklist” is com-
mon in which the list contains genes such as TTN because of its
extremely large length, olfactory receptors due to association with
late replication times, among other genes and gene families [2].
Other mutations included in common variation databases, such
as 1000 genomes, are also removed mainly before the analysis to
avoid germline contaminations [69]. It makes sense to annotate
hotspots for common human variation, such as gnomAD [73].
Characterizations for drug responses are also interesting because
it may highlight drug susceptibilities [68]. For example, some NRAS
and KRAS hotspots are more susceptible to MEK inhibitors, while
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MAP3K4 hotspots are less sensitive to EGFR inhibitors [68]. Anno-
tations for differential expressed genes [68], gene expression levels
[69], functional impact [74], evolutionary conservation [34], or
substitution rates dN/dS [75] are also common.

7. Other hotspots methods

Some methods may combine algorithms of the above cate-
gories, such as Melton et al,, that combines cluster and position-
specific methods [25] or apply similar concepts to non-coding or
chromatin-domains [25,29-31,33,34,38,39,46]. Other methods
that do not fit into the above categories are described next
(Fig. 5). These methods are related to diverse functional effects
[74,76], to mesoscale DNA structures [23], and to deviations of
summary statistics and are detailed below [75].

The first method focuses on the possible functional impacts that
mutations may incur on the protein function, RNA structure, bind-
ing sites, or miRNA/IncRNA targets [74,76]. The estimation of the
impact is achievable because, for protein-coding regions and pro-
moters, estimations of functional effects are possible [77], and for
3’UTR and IncRNA, structural changes can be predicted [78]. Thus,
the proposed methods highlight biases in the functional impact of
observed mutations compared to the functional impact of random
mutation in similar regions [74,76]. The random mutations are
used to estimate a p-value identifying hotspot in coding and
non-coding regions. This can be similar to cluster-based methods
with the additional concept of changing mutations counts by func-
tional impact scores (Fig. 5A).

All the above methods focus on detecting positive hotspots.
Nevertheless, another point of view is focusing on detecting
regions that are potentially false functional, which may appear as
hotspots [23]. Based on the fact that APOBEC enzymes are biases
toward specific mutations, the proposed method by Buisson et al.
sweep DNA detecting regions that form strong hairpins and are
suitable for APOBEC activity suggesting that hotspots may not be
due to positive selection but as a result of a mechanistic bias
[23]. The estimation of the strength of the hairpin sweeps the
DNA by a sliding window and considers the loop length, the posi-
tion of the mutation within the loop, the size of the stem, and the
sequence context (Fig. 5B). Loops of size 3 to 6 combined with
mutation positions biased toward an end of the loop and located
at sequences showing a strong stem (estimated by 3*GC + 1*AT)
are more likely to be APOBEC spots [23]. Similar estimations have
been included in HotSpotsAnnotations, a database of HotSpots,
helping in recording hotspots close to APOBEC sensitive sites [79].

Instead of focusing on the domain, region, position, or local
structure, a recent proposal focuses on the distribution of muta-
tions per position of the whole gene, assuming they should fit rel-
atively well a beta-binomial distribution [75]. Because most cancer
genes do not follow a beta-binomial distribution well unless hot-
spots are removed, the method tries to remove candidate hotspots
while beta-binomial fitting improves. High changes in fitting and a
high number of either mutations or positions suggest genuine hot-
spots [75]. The beta-binomial fitting is then used to estimate a p-
value of removed hotspots, then corrected by FDR.

8. Discussion

In this mini-review, we have revised most of the methods to
detect mutational hotspots in cancer. We classified them into four
main groups depending on the definition of a hotspot (Fig. 1) as
Clusters, 3D Clusters, Position-Specific, and Miscellaneous.

By far, the most popular approach is the detection by clusters in
the primary AA sequence followed by clusters in 3D. Clustering
assumes mutation accumulation in local domains. This idea is a
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powerful concept proven to be highly successful. Nevertheless,
clustering might not detect low- and mid- recurrent mutations in
specific positions, which is the focus in position-specific methods.
More robust methods can be designed if clusters may be size-
adaptive up to the one-residue level. The miscellaneous can also
be powerful and are less explored, presenting opportunities for
development.

The large number of papers revised here demonstrates the
enormous efforts made to detect hotspots. Little attention has been
paid to the detection of false hotspots, such as those detected in the
APOBEC mechanisms [23]. One way to avoid detecting false hot-
spots is by increasing the specificity of statistical models and algo-
rithms, but these come at the risk of detecting less genuine
hotspots [44]. Moreover, one of the problems to declare false hot-
spots is that they should have a precise biochemical mechanism
behind it. Thus, novel algorithms focusing on mechanistic models,
such as the proven APOBEC, are encouraged.

Most of the articles revised here commonly use the whole data-
set (cancer or some cancer types). This practice intrinsically
assumes that all samples have comparable underlying mutational
processes. Moreover, it is well known that cancer subtypes within
a specific cancer type may behave differently [2]. Thus, a question
remains whether more hotspots are detected when applying the
revised methods to biological-plausible subsets of cancer samples.
Furthermore, it may also be possible that hotspots are specific for
particular subsets of samples, which needs to be assessed. These
analyses could be a direction for future studies.

Another question regarding mutation hotspots are their possible
effects, for example, their relation to clinical variables or other geno-
mic information. It is unknown whether there are hotspots that con-
fer larger or shorter patient survival; that is, whether hotspots
confer higher or lower risk where patient consequences differ com-
pared to other mutations along the gene. It is also unknown whether
a specific hotspot may increase downstream signaling, which can be
assessed in gene expression, protein changes, methylation patterns,
or even in small or large genomic rearrangements. Recent examples
of these concepts are hotspots in PIK3CA and NOTCH1 [80]. Never-
theless, these issues need to be systematically studied.

There are other concepts that could be also useful for hotspots
detections in cancer. For example, a co-evolution method consider-
ing epistasis has been shown to detect disease variants [81]. These
concepts can be used, first, for annotation, but more importantly to
quantify epistasis in cluster, 3D-clusters, or functional impact
methods. We also noted methods like ReKINect focused in detec-
tion of mutations perturbing signaling networks [82], whose con-
cept have not been applied to detect or to annotate and filter
cancer hotspots.

It is known that cancer mutations are produced by the exposure
to mutagenic processes generating mutational signatures [83].
Nevertheless, it is currently unknown whether there is a relation-
ship between mutational signatures and hotspots. If exists, which
comes first, the hotspot mutation or the mutational process, and
what could be the intrinsic mechanism between them. A recent
analysis noted an enrichment between hotspots in the TCG
sequence context [75], pointing to APOBEC mutational signatures.
Thus, the possible relationship between hotspots and mutational
signatures needs to be methodically studied.

Although some methods used machine learning [29], method-
ologically, we did not observe intensive use of novel artificial intel-
ligence algorithms, such as those having deep neural networks as
core engines. Most methods were model-based, ad hoc or heuristic
algorithms. The use of deep neural networks to detect cancer hot-
spots requires adapting current views of inputs and force to re-
think on the problem. This can be attractive, for example, to
explore and discover hidden features, genes, or regions not seen
by model-based or heuristic approaches.
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There are some pitfalls noted after reviewing all methods. First,
there is a variety of datasets providers with diverse degrees of
redundancy. The main sources of databases are TCGA, ICGC, and
COSMIC, but there are others like TARGET (https://ocg.can-
cer.gov/programs/target), FM (foundation medicine, FM-AD within
GDC data portal), and others emerging like AACR/GENIE (https://
www.aacr.org/professionals/research/aacr-project-genie/), HM
(hematological malignancy), among others. Consequently, the
results are also varied and, if available, reported as supplementary
information, which is not recorded in databases. These issues com-
plicate comparisons of hotspots estimations among methods.

A coming scenario is the accumulation of cancer data. Current
approaches are focused on whole-genome sequencing (WGS) [6],
sequencing of less studied cancer types, and sequencing in specific
cancer subtypes or subpopulation strata (young women in breast
cancer, pre-malignant tissues, local cancers types, not sampled
countries, among others). It is not clear whether the methods
reviewed can be used “as is” in less studied cancer types or sub-
types or whether the aggregation will reveal additional biases that
need to be corrected in novel proposals. The increasing use of WGS
will also demand further development of non-coding hotspots
methods. Taking together the above ideas, it is expected that novel
hotspots will emerge and that some current hotspot predictions
are artifacts. Thus, the continuous use and development of hotspot
methods are needed.

In this review, we focused on mutation hotspots. Nevertheless,
many of the concepts shown here also apply to detect “hotspots” in
other genomic contexts, which are perhaps the next big challenges
to be solved regarding recurrent alterations. For example, there are
reports of highly recurrent translocations, duplications, and dele-
tions [84-87]. Methylation dysregulation is also known in cancer
[88] but not explored systematically as hotspots. In addition, there
is evidence suggesting that viral integrations may also show recur-
rent patterns [89]. Thus, we believe that the concepts reviewed
here can also be adapted to detect recurrent alterations in cancer
genomes.

9. Conclusion

In this mini-review, we showed most of the published methods
to detect recurrent mutations in cancer and classified into cluster,
3D, position-specific, and miscellaneous. The “hotspots” are likely
functional but need validation, and therefore the use of hotspot
methods is crucial in cancer research and clinics. The increasing
availability of cancer genomics data will demand more specific
and powerful methods. The identification of false hotspots and
their underlying mechanisms are as important as the identification
of novel hotspots. Standard databases for hotspots are needed to
provide comparisons and improve methods. The concepts of the
methods reviewed could also be applied to detect recurrent alter-
ations from other genomic data in cancer.
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