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ABSTRACT

Motivation: High-throughput experimental and computational
methods are generating a wealth of protein–protein interaction data
for a variety of organisms. However, data produced by current state-
of-the-art methods include many false positives, which can hinder
the analyses needed to derive biological insights. One way to address
this problem is to assign confidence scores that reflect the reliability
and biological significance of each interaction. Most previously
described scoring methods use a set of likely true positives to train a
model to score all interactions in a dataset. A single positive training
set, however, may be biased and not representative of true interaction
space.
Results: We demonstrate a method to score protein interactions
by utilizing multiple independent sets of training positives to reduce
the potential bias inherent in using a single training set. We used
a set of benchmark yeast protein interactions to show that our
approach outperforms other scoring methods. Our approach can
also score interactions across data types, which makes it more
widely applicable than many previously proposed methods. We
applied the method to protein interaction data from both Drosophila
melanogaster and Homo sapiens. Independent evaluations show
that the resulting confidence scores accurately reflect the biological
significance of the interactions.
Contact: rfinley@wayne.edu
Supplementary information: Supplementary data are available at
Bioinformatics Online.

1 INTRODUCTION
Networks of interacting proteins mediate a wide range of biological
processes. Maps of protein–protein interactions (PPI) provide clues
about the functions of individual proteins and enable systems-
level analyses of cellular processes (Ideker and Sharan, 2008; Uetz
and Finley, 2005). To realize the potential of protein networks
for systems analysis, a number of experimental and computational
approaches have been implemented for large-scale mapping of
PPI. These methods are producing a large amount of data that
is contributing significantly to our understanding of biological
systems. A major limitation to the value of this data, however, is
the presence of false positive interactions that have no biological
significance, with estimated false discovery rates as high as 91% in
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some datasets (Mrowka et al., 2001; von Mering et al., 2002). Thus,
there is a critical need for methods to address the noise in PPI data.

A number of approaches have been proposed to assign confidence
scores to represent the probability that an interaction is a biologically
relevant true positive (Bader et al., 2004; Deane et al., 2002; Deng
et al., 2003; Giot et al., 2003; Parrish et al., 2007; Qi et al., 2005;
Scott and Barton, 2007; Sharan et al., 2005) [see, Suthram et al.
(2006) for review]. These scoring systems generally try to classify
interactions as true positives or false positives by correlating features
of the data with sets of training data including known true positives
and true negatives. A disadvantage of many scoring schemes is that
they work within a single type of data, such as PPI detected in
a yeast two-hybrid screen (e.g. Bader et al., 2004; Deng et al.,
2003; Giot et al., 2003; Parrish et al., 2007), or by co-affinity
purification and mass spectrometry (e.g. Ewing et al., 2007; Gavin
et al., 2006; Krogan et al., 2006). The result is that scores derived
for different datasets are not comparable to each other. This is a
particular problem as individual datasets are incomplete and must
be combined to maximize the coverage for an interactome.

A second disadvantage of many scoring systems is that they use
training data that consist of interactions that are only assumed to be
true positives. In addition to the uncertain accuracy of these training
datasets, it is unclear how well any one of them represents true
interaction space. Training positives have been derived, for example,
by assuming that biological true PPI are enriched among interactions
detected in multiple species, between proteins known to function
in the same pathway, or in results from small-scale experiments
(Giot et al., 2003; Parrish et al., 2007; Qi et al., 2005; Sprinzak
et al., 2003; Titz et al., 2008; von Mering et al., 2005; Yamanishi
et al., 2004). Because these and similar approaches are based on
simple assumptions about true positives they may produce training
sets that are biased toward particular types of PPI. Training sets
may be biased, for example, toward highly conserved interactions or
particularly well-studied pathways. Use of any single set of training
data, therefore, could lead to bias in the resulting confidence scores
and could further skew all downstream analyses of the interaction
networks (Myers et al., 2006).

Here, we propose a method to score PPIs across data types.
We developed a method to use multiple sets of positives to
train independent models and to combine the results into a final
confidence score for each interaction. We applied the method to
both Drosophila melanogaster (fly) and Homo sapiens (human)
interaction data. We show with multiple independent lines of

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


J.Yu and R.L.Finley

evidence that the confidence scores accurately reflect the biological
significance of the interactions. We also scored a set of yeast
interactions and demonstrated that our method outperforms other
scoring methods applied to the same data. The scoring system can be
used to annotate a PPI network so that interactions become weighted
or probabilistic links useful for a variety of downstream analyses.
The scoring system is readily updateable as new information
becomes available.

2 METHODS
Results from all published high-throughput screens and other archived
physical protein interactions were collected from online interaction databases
for Drosophila and human (Beuming et al., 2005; Chatr-aryamontri et al.,
2007; Guldener et al., 2006; Kerrien et al., 2007; Mishra et al., 2006;
Pacifico et al., 2006; Stark et al., 2006; Vastrik et al., 2007; Yu et al.,
2008). In order to enlarge coverage of the interaction maps, we also collected
physical interactions for Caenorhabditis elegans (worm) and Saccharomyces
cerevisiae (yeast). Interologs for fly were then mapped from human, worm
and yeast interactions and those for human were mapped from fly, worm
and yeast interactions using Inparanoid (O’Brien et al., 2005) to identify
orthologous proteins (see Supplementary Material).

We synthesized four different sets of training positives, based on
interactions that (i) are associated with at least 10 Pubmed identifiers
(PMIDs) in the interaction databases; (ii) are putative conserved interactions,
which are those found in common between interaction sets for any two
species (fly, human, worm and yeast); (iii) are high-throughput interactions
reported to have high confidence by the original publications; and (iv) have
expression correlation higher than 0.6 (see Supplementary Material). For
each positive set, a negative set of equal size was synthesized by drawing
random samples from the list of all interactions, excluding those in that
positive set.

The attributes used for each interaction are listed in Section 3 and were
calculated as described in detail in Supplementary Methods. An attribute
was not used in the training process if it was used in generating the specific
positive set. For example, when training was done based on positive set 1,
number of PMIDs was not used as an interaction attribute in the training
process.

The scoring process proceeds in the following fashion (Fig. 1). A logistic
regression model (using the glm function with binomial family in R,
http://www.r-project.org) was trained on each positive set, combined with its
corresponding negative set. The model was then used to score all interactions.
We labeled an interaction ‘P’ if its score (S) is greater than 0.5, and otherwise
‘N’. Thus, the four positive training sets produced four scores and four P/N
labels for each interaction. The final confidence of each interaction is the
arithmetic average of the four scores produced by the four models learned
from the four positive sets. The final confidence scores have values between
0 and 1, representing the possibility that an interaction is a biological true
interaction. To pick the best cutoff to separate high confidence interactions
from low confidence ones, we went through an iterative process as follows.
As mentioned above, at the end of the training and scoring process, each
interaction received four scores and four P/N labels. We labeled an interaction
‘T’ (for possible True interaction) if it has two or more ‘P’ labels; otherwise
it was labeled as ‘F’ (for possible False interaction). We then picked a
random cutoff (starting at 0.1) and computed its performance in calling
‘T’ and ‘F’ interactions; the cutoff was then incremented by 0.01 and the
process repeated. The best cutoffs were chosen based on their performance
in classifying interactions to the ‘T’ and ‘F’ classes (Supplementary Fig. 1).
The optimal cutoffs were 0.41 for Drosophila, 0.40 for human and 0.44
for yeast. For subsequent analyses, therefore, we define interactions with
confidence scores greater than the cutoff as the high confidence set (HCS),
and those with confidence score less than or equal to the cutoff as the low
confidence set (LCS).
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Fig. 1. Confidence scoring procedure.

We evaluated our scoring results using four independent types of data
that were not used in the training and scoring process:, (i) sharing of Gene
Ontology (GO) annotations (The Gene Ontology Consortium, 2000); (ii)
overlap with genetic interactions (Crosby et al., 2007); (iii) overlap with
Prolinks predictions (Bowers et al., 2004); and (iv) participants in the same
KEGG (Kanehisa et al., 2008) pathways. Evaluation was performed using
a uniform approach for all four data types, as follows. We first removed
all positive training interactions and then computed a performance index X
(described further below) for the remaining HCS. We then sampled 200 sets
of low confidence interactions from the remaining LCS (each set has the
same number of interactions as HCS) and computed X for each set. We also
sampled 200 equal-sized sets of random gene pairs (RPS for random pair
set) and computed X for each set. We, therefore, obtained a single data point
for HCS, a histogram for LCS and another histogram for RPS. Differences
among them are evident from the graphs (e.g. Figs 3 and 4). Based on GO,
we computed three performance indices. The first is the fraction of gene pairs
sharing at least one GO annotation; the second is the average of the deepest
level of shared GO annotations for a gene pair; and the third is the average
specificity of shared GO annotations for a gene pair. Additional details can
be found in Supplementary Material.

3 RESULTS

3.1 Interaction and training data
We set out to assign confidence scores for all physical PPI, regardless
of how they were detected. First, we generated large interaction
datasets for Drosophila and human by combining experimental
data from a variety of sources and by predicting additional
interactions based on results with orthologous proteins from other
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organisms (see Section 2). The Drosophila dataset, which is
available in DroID, a comprehensive database for Drosophila gene
and protein interactions (Yu et al., 2008) includes 131 659 PPI among
9511 proteins. The dataset for human has 211 151 PPI among 13 447
proteins.

To avoid possible bias associated with any single set of training
positives we chose to train multiple independent scoring models,
each based on a different set of training positives and corresponding
negatives. We generated four independent sets of training positives
for each organism by selecting subsets of PPI expected to be enriched
for true positives based on different assumptions (see Section 2). The
training positive sets consisted of interactions that are more likely to
be reliable because they are reported in many different publications;
potentially evolutionarily conserved PPI detected in more than one
species; high-throughput PPI that were scored as high confidence by
dataset-specific scoring systems; and interactions between proteins
encoded by genes with similar expression patterns. For Drosophila,
the four training positive sets had from 4022 to 7781 PPI, while for
human they had from 3017 to 14 033 PPIs. In support of the notion
that these training sets are derived from independent measures of
biological significance, they only minimally overlap with each other
(Supplementary Fig. 2).

3.2 Attribute contributions
The scoring system that we used is based on finding features or
attributes of the PPI that correlate with presence in the positive
or negative training data. Since we aimed to score interactions
derived from many different methods we chose not to use attributes
specific to certain detection methods. Instead, we computed gene
or interaction attributes that are applicable to any type of PPI.
In addition, we chose attributes that were previously shown to
correlate with biological significance for at least some PPI networks.
These included attributes describing the topological position of
the interaction in the entire network, including the number of
interactions (degree) for the two proteins, the extent of local
clustering around the interaction (clustering coefficient), and the
fraction of common neighbors for the two proteins (Bader et al.,
2004; Giot et al., 2003; Parrish et al., 2007). Other attributes
included the number of published papers that reported the PPI
as recorded by the online interaction databases, the correlation of
expression patterns for the two genes from genome-wide expression
studies, and whether or not the two proteins have domains known to
interact based on the 3DID database (Stein et al., 2005). The number
of PMIDs and expression correlation were not used as attributes in
conjunction with the training data based on these same features,
respectively (see Section 2 and Supplementary Material).

To evaluate how the different attributes correlate with the final
scores, we computed Pearson correlation coefficients (PCC). The
PCC is a measure of the linear association between an attribute
vector and the final confidence scores. We found that the combined
degree of the interacting proteins is a negative predictor of high
scores, while clustering coefficient, fraction of common neighbors
(jaccard), number of PMIDs, expression correlation and domain–
domain interactions are all positive predictors (Table 1). Figure 2
shows in more detail the relationship between attribute values and
the computed confidence scores. The attribute values show clear
trends as the confidence scores increase. These results show that
the attributes we chose each have at least modest predictive power.

Table 1. PCC between feature values and confidence scores

Featurea PCC between feature and confidence scores

degree −0.051
cc 0.117
jaccard 0.442
numpmids 0.712
exprcorr 0.488
hasDDI 0.076

aDegree, product of degrees (number of interactions) of the two proteins in an
interaction; cc, product of clustering coefficients of the two proteins; jaccard, fraction
of common interacting neighbors of the two proteins; numpmids, number of PMIDs
associated with an interaction; exprcorr, expression correlation of two genes in an
interaction; and hasDDI, whether the two proteins in an interaction have one or more
pairs of domains known to interact with each other.

Fig. 2. Mean confidence scores of interactions with different attribute values.
Interactions were binned according to their attribute values and the average
confidence score was then computed for each bin. (A) Product of degrees of
the two proteins, (B) product of clustering coefficient of the two proteins,
(C) jaccard, fraction of common interacting neighbors of the two proteins,
(D) number of PMIDs annotated with an interaction, (E) gene expression
correlation and (F) whether an interaction has a pair of interacting domains.

By combining the attributes, however, we can create an effective
scoring system as demonstrated in the following sections.

3.3 Scoring Drosophila and human PPI
We used the attributes and multiple training datasets to score PPI
from Drosophila and human as described in Figure 1 (see Section 2).
For Drosophila, we scored 124 275 PPI from DroID (Yu et al., 2008).
We found that 24 850 (20%) of the interactions received scores
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greater than the cutoff for Drosophila (0.41, see Section 2), and
we refer to these as the high confidence interactions (HCS). We also
scored the 211 151 human PPI and found that 32 485 (15%) received
a score greater than the cutoff for human (0.40) and refer to these
as the human HCS (Supplementary Fig. 3).

The fractions of interactions assigned to the higher confidence
sets was similar to those for other systems that scored individual
datasets (Ewing et al., 2007; Formstecher et al., 2005; Giot et al.,
2003; Stanyon et al., 2004; Stelzl et al., 2005). The reason that
a smaller fraction of the human interactions were scored as high
confidence compared with the Drosophila interactions is unclear.
One factor may be the large number of low confidence human
interactions contributed by predictions from the model organisms
such as yeast. Another factor may be the currently lower coverage
of human interactome compared with that of fly. Nevertheless,
using data from other species to predict interactions is valuable,
as is evident from the Drosophila network, which includes a large
number of high confidence PPI predicted from both human and yeast
(Supplementary Fig. 4).

3.4 Evaluation of confidence scores
To evaluate how well the confidence scores reflect biological
significance, we removed all of the training positives and then
compared the remaining HCS with random samples of the remaining
lower confidence interactions (scores ≤0.41; LCS), and sets of
random pairs of proteins (RPS). We compared HCS, LCS and
RPS using information that did not directly contribute to the
confidence scores. We found similar results for both Drosophila
(below) and human (Supplementary Material). First, we used GO
annotations and asked how many interactions in HCS, LCS and
RPS involved pairs of proteins that share the same annotation, as
might be expected for biologically relevant interactions. As shown in
Figure 3A and B the Drosophila HCS contains a significantly larger
fraction of interactions with shared GO annotations than LCS and
RPS, indicating that HCS contains more functionally meaningful
interactions. Moreover, LCS protein pairs share significantly more
GO annotations than RPS, demonstrating that the interactions we
collected as a whole are enriched with true positives even if some
of them were assigned low confidence scores. We found a similar
relationship between HCS, LCS and RPS when looking at how
specific the shared GO annotations were as measured by their levels
in the GO hierarchy (Supplementary Fig. 5).

We also examined whether protein pairs were annotated to the
same pathway based on the KEGG database, a manually curated
database of pathways (Kanehisa et al., 2008). We found that the
number of interactions between pairs of proteins that participate
in the same KEGG pathway was much larger in HCS than LCS,
and that LCS had more interactions belonging to the same KEGG
pathways than RPS (Fig. 3C)

Next, we compared the scored Drosophila PPI with two
independent datasets that should be enriched for biologically
relevant interactions (Fig. 4). First, we compared the extent that
HCS, LCS and RPS overlap with a set of known genetic interactions
derived from Flybase (Crosby et al., 2007). Genetic interactions
represent functional relationships between genes. It has been shown
that pairs of genes that genetically interact are more likely to encode
interacting proteins than random pairs of genes (Kelley and Ideker,
2005; Tong et al., 2004; Wong et al., 2004). Consistent with this,

Fig. 3. Evaluation of Drosophila confidence scores based on GO and KEGG.
(A) Fraction of interactions where gene pairs share at least one GO biological
process (BP) annotation, (B) fraction of interactions where gene pairs share at
least one GO cellular component (CC) annotation, (C) number of interactions
where gene pairs participate in the same KEGG pathway. The dot represents
HCS and the histograms represent sets of LCS (white) and RPS (black) PPI.
All training positives were removed from HCS and LCS for this evaluation.

Fig. 4. Evaluation of Drosophila PPI scores based on overlap with (A)
genetic interactions, (B) Prolinks predictions. The dot represents HCS and the
histograms represent sets of LCS (white) and RPS (black) PPI. All training
positives were removed from HCS and LCS for this evaluation.

we found that the Drosophila HCS has a much larger overlap with
genetic interactions than LCS and RPS (Fig. 4A). LCS also has a
larger overlap with genetic interactions than RPS. Next, we looked at
overlap with computational predictions of PPI found in the Prolinks
database (Bowers et al., 2004). These predictions are based on
phylogenetic profiles, gene fusion events, genome proximity and
operon structure. These features are independent from the attributes
used in our scoring system. Figure 4B shows that HCS has a
much larger overlap with Prolinks predictions than LCS and RPS,
and that LCS overlaps with Prolinks predictions more than RPS.
Combined, these results show that PPI with higher confidence scores
are more likely to be biologically relevant than those with lower
scores. Similar results were obtained with the scored human PPI
(Supplementary Figs 6 and 7).

3.5 Correlation of confidence score and biological
significance

The analyses presented above showed that HCS interactions contain
significantly more biological true positives than LCS interactions
and random pairs. Next, we asked whether the scoring system has
the potential to make finer distinctions among interactions that are
more or less likely to be true positives. To do this, we divided the fly
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Fig. 5. Confidence scores correlate with likelihood of biological
significance. Interactions, excluding training positives, were binned
according to their assigned confidence scores and indexes representing
biological significance were computed. (A) Overlap with genetic
interactions, (B) number of interactions whose proteins participate in the
same KEGG pathways.

interactions into five bins according to their computed confidence
scores. Bin 1 contained PPI with confidence scores between 0.0
and 0.2, bin 2 contained those with scores between 0.2 and 0.4 and
so on to bin 4, which contained PPI with scores between 0.6 and
0.8. Bin 5, with scores between 0.8 and 1.0, did not have enough
interactions to make a meaningful comparison. For each bin, we
randomly sampled 600 interactions and computed their overlaps
with genetic interactions and the fraction of interactions sharing
KEGG pathways. As shown in Figure 5, we found that as the
confidence scores increase, there is increasing likelihood of overlap
with the test data. These results suggest that the scores reflect the
likelihood that each interaction is biologically significant.

3.6 Comparison with other methods
The above results indicate that the scores we assigned to Drosophila
and human interactions will be useful for ranking PPI based on
their likelihood of being biologically significant. Next, we set out
to compare our scoring approach with those reported by others.
Surprisingly, we found such a comparison to be difficult using
Drosophila or human interaction data because very few scoring
methods have been applied to these organisms, and each method
scored different subsets of the interactions that we scored (Chatr-
aryamontri et al., 2007; Giot et al., 2003; Scott and Barton, 2007).
Thus, for a more meaningful comparison of scoring methods we
turned to a set of yeast interactions that were scored by a number of
previously published scoring systems.

We applied our scoring method to the same set of yeast
interactions that were used by Suthram et al. (2006) to compare
several different confidence scoring methods. The methods that
were compared, which are described in detail in Suthram et al.
(2006) and in the original papers (Bader et al., 2004; Deane
et al., 2002; Deng et al., 2003; Qi et al., 2005; Sharan et al.,
2005), each used a single set of gold standard positives to assign
probability scores to the yeast interactions or to classify them as
high, medium or low confidence. To compare the different scoring
methods, Suthram et al., calculated the Spearman rank coefficient
between the confidence scores and the deepest GO terms shared

Table 2. Correlation of computed confidence scores with GO similarity

Scoring method Spearman correlation SC reported in
coefficient (SC) Suthram et al. (2006)

BADER_HIGH 0.462 0.501
(Bader et al., 2004)

BADER_LOW 0.387 0.424
(Bader et al., 2004)

DEANE 0.359 0.385
(Deane et al., 2002)

DENG 0.461 0.490
(Deng et al., 2003)

SHARAN 0.434 0.471
(Sharan et al., 2005)

QI 0.381 0.425
(Qi et al., 2005)

This work 0.459 NA

between pairs of genes. We adopted the same method to compare
scores by recalculating the Spearman rank coefficients based on
updated GO annotations (see Supplementary Material for details).
As shown in Table 2, the relative performance of the different
methods that we calculated with the updated GO annotations is
very similar to the relative performance calculated by Suthram
et al. (2006), with the BADER_HIGH method ranking as the best
followed closely by the DENG method. As pointed out previously,
however, the BADER_HIGH method used GO annotations to
derive confidence scores, and thus has an unfair advantage in this
particular comparison. Discounting the BADER_HIGH method for
this reason shows that the DENG approach (Deng et al., 2003) is
the best in both analyses. Table 2 shows that our approach produced
results very similar to that of DENG, and better than all other
approaches.

While our method and the DENG method (Deng et al., 2003),
performed similarly based on the metric of shared GO annotation,
other features of the scores suggest that our method has some
advantages. The DENG method assigned only five different scores
to all of the interactions, whereas our method resulted in a score
distribution that enables a finer distinction between interactions
with different probabilities (Supplementary Fig. 8). As shown above
(Fig. 5), the magnitude of the scores that we generated correlates
well with biological significance. We also compared the different
scoring methods based on overlap with two independent sets of
interactions that should be enriched for true positives: the Prolinks
predictions and a recent set of binary interaction data derived from
large-scale protein complementation assays (PCA) (Tarassov et al.,
2008). We first sorted the interactions in each dataset by computed
confidence scores, from highest to lowest, and then binned them into
four quantiles, each containing 25% of the interactions. Finally, we
calculated the overlap of each quantile with the Prolinks predictions
(Fig. 6A) and the PCA interactions (Fig. 6B). The results showed
that our scores were better at predicting interactions that could be
detected by other computational (Prolinks) or experimental (PCA)
methods. These results suggest that the scoring system described
here provides a useful measure of the probability that any given
interaction is biologically significant.
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Fig. 6. Overlap with independent datasets. (A) overlap with Prolinks
predictions, (B) overlap with PCA interactions.

4 DISCUSSION
Experimental and computational approaches have begun to define
the protein interaction networks for a number of organisms. While
these PPI networks provide an invaluable framework for systems-
level insights into biological processes, the high rates of false
positives and false negatives limit their usefulness. The false
negatives stem from the inability of any one approach or screen
to detect all relevant PPI. This problem can be alleviated at least in
part by integrating PPI data from multiple approaches to maximize
coverage of an interactome. False positives, on the other hand, have
proven more difficult to identify as no system has been devised to
accurately distinguish true and false positives, particularly across
several different datasets. Thus, the value of PPI networks could be
increased by generating confidence scores that reflect the likelihood
that each interaction is a biologically relevant true positive. In this
way, an interaction network consisting of binary links becomes a
map of weighted or probabilistic links, which enables more powerful
network analyses, as has been shown for functional gene networks
(e.g Asthana et al., 2004; Lee et al., 2004).

Here, we developed a PPI confidence scoring system that uses
multiple independent sets of training positives and interaction
attributes that are common to a variety of datasets. We trained
independent logistic regression models based on each positive
training set and took their average to be the final confidence score
for each interaction. It is possible to envision two other ways to
combine the positive training sets. One way would be to combine
them into a single training set. A problem with this approach is that
each positive training set represents a different and apparently biased
subset of the true interactions, leading to poor learning performance.
Another way would be to use the intersection of the positive training
sets. This would be expected to increase the accuracy of the model
since PPI supported by multiple forms of evidence are generally
more likely to be true positives. This approach, however, would not
be viable with the different training dataset presented here because
they exhibit only minimal overlap. For example, the intersection
of all positive training sets used here was only 14 for Drosophila
and only three for human, too few to enable meaningful model
learning (Supplementary Fig. 2). We postulate that using multiple
positive sets in the way described here may also enhance the learning
performance of models beyond those based on logistic regression.

Multiple lines of independent evidence confirmed that the
confidence scores we generated correlated well with biological
significance. Thus, the confidence scores generated here should
be useful to biologists and researchers in the interactomics field.
Nevertheless, as with other scoring systems this one could be

further refined. While the scores correlated well with biological
significance, a small fraction of high scoring PPI are expected to be
false positives and a small fraction of low scoring PPI are expected
to be true interactions. A key feature of the scoring system we
describe is that the scores can be refined as new information becomes
available. Addition of new PPI datasets to increase coverage, for
example, could change the values of the topological attributes
for many PPI enabling an update to all of the scores. Moreover,
entirely new attributes could be incorporated to further refine the
scores. Finally, new training datasets could be added to enhance the
scoring accuracy and coverage. Even training data that has known
or undefined bias would be expected to improve this scoring system
by giving representation to another region of true interaction space.
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