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A standard approach to distinguishing people’s risk preferences is to estimate a random

utility model using a power utility function to characterize the preferences and a logit

function to capture choice consistency. We demonstrate that with often-used choice

situations, this model suffers from empirical underidentification, meaning that parameters

cannot beestimated precisely.With simulationsof estimation accuracy andKullback–Leibler
divergencemeasureswe examined factors that potentiallymitigate this problem. First, using

a choice set that guarantees a switch in the utility order between two risky gambles in the

range of plausible values leads to higher estimation accuracy than randomly created choice

sets or the purpose-built choice sets common in the literature. Second, parameter estimates

are regularly correlated, which contributes to empirical underidentification. Examining

standardizations of the utility scale, we show that they mitigate this correlation and

additionally improve the estimation accuracy for choice consistency. Yet, they can have

detrimental effects on the estimation accuracy of risk preference. Finally, we also show how

repeated versus distinct choice sets and an increase in observations affect estimation

accuracy. Together, these results should help researchers make informed design choices to

estimate parameters in the random utility model more precisely.

1. Introduction

Measuring people’s risk preferences is one of the main research interests in economics and

psychology aswell as inmany everyday-life domains. For example, financial advisers need to

assess the level of risk a client iswilling to take to give sensible investment advice. Similarly, a
physician has to know the patient’s willingness to take risks when discussing surgery and

comparing it to a conservative therapy.Other domainswhere personal risk preferences play

a role are trafficpsychology, the insurancemarket, career choices, and vacationdestinations.

In these domains people might not be able to fully understand an option’s implied risk, for

instance, the risk of a financial product or of amedical treatment, so they cannot identify the

option that corresponds to their risk preferences. Therefore, expert advice in these areas is

crucial and experts need to take people’s risk preferences into account.
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People’s risk preferences can be conceptualized as a (relatively) stable personal

propensity across different life domains (cf. Frey, Pedroni, Mata, Rieskamp, & Hertwig,

2017; Weber, Blais, & Betz, 2002). Risk preferences can be measured with different risk-

taking paradigms, such as repeated choices between risky gambles. When one assumes
that people make consistent choices between risky gambles, their behaviour can be

understood as themaximization of expected utility (vonNeumann&Morgenstern, 1944).

The parameter of the utility function that best captures observed behaviour then provides

a quantitative measurement of risk preferences that can be generalized to other domains.

However, stochastic behaviour complicates the elicitation of risk preference, and a

commonway to deal with this is the implementation of random utility models (RUMs). In

this paper we present challenges faced by this model and use simulation and recovery

analysis as well as Kullback–Leibler divergence measures to examine methods that help
meet these challenges.

1.1. Utility functions and stochastic behaviour

Since Bernoulli (1954 [1738]), most researchers have used a nonlinear utility function that

maps objective outcomes to subjective utility. With a concave utility function, higher

objective outcomes are discounted and themarginal utility of an additional unit of outcome

decreases. The utility of the expected value of a risky lottery is thus higher than its expected
utility. This implies that people prefer the expected value of a lottery as a certain outcome

over playing that lottery, representing risk aversion. In contrast, with a convex utility

function, the expected utility of a lottery is higher than the utility of the expected value,

representing risk seeking. Finally, with a linear utility function, the expected utility of a

lottery is equal to the utility of the expected value, representing risk neutrality.

The extent of the curvature of the utility function reflects the degree of risk aversion or

risk seeking. Thus, estimating theutility functionprovides a quantitativemeasure of people’s

risk preferences. A utility function can be estimated from the elicited certainty equivalent for
one lottery. However, as risky choices are stochastic (Mosteller & Nogee, 1951; Rieskamp,

2008), people donot always choose the samecertainty equivalent (Schmidt&Hey, 2004), or

when choosing repeatedly between lotteries they do not always make the same choices

(Hey, 2001).When participants choose twice between the same lotteries, the percentage of

lottery pairs where people choose the same lottery is a model-free measure of choice

consistency. Measured this way, consistency in risky choice is estimated to be as low as

around 75–85% on average (Glöckner & Pachur, 2012; Hey, 2001; Hey & Orme, 1994;

Starmer & Sugden, 1989). This ignores that choice consistency can be a function of the
choice situation, but gives a first approximation of the magnitude of the problem.

This lack of consistency translates into measurement errors of the utility function and

makes it necessary to estimate this function based onmany choices. However, there is no

consensus in the applied literature on how many choices are required for reliable

estimates of people’s risk preferences. In some work, individual utility functions have

been estimated based on 10–20 pairwise choices (Anderson, Harrison, Lau, & Rutström,

2007; Dohmen, Falk, Huffman, & Sunde, 2010; Holt & Laury, 2002), whereas others have

gone up to almost 200 choices (e.g., 84 in Frey et al., 2017; 90 in Stott, 2006; 100 in Hey &
Orme, 1994, and Hey, 2001; 180 in Rieskamp, 2008).

Similarly, whereas there is theoretical work about optimal experimental designs

(Myung & Pitt, 2009; Navarro, Pitt, & Myung, 2004), there is no consensus in the applied

literature on what choices to use. This might be because optimal design algorithms often

cannot be straightforwardly applied to experiments without further assumptions. Often
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in the applied literature, risk preferences have been measured with the choice set

proposed byHolt and Laury (2002), but other sets have been used aswell. In an attempt to

compare different specifications of cumulative prospect theory, a different set of choices

was created by Stott (2006), and to explore the stochastic nature of risky choice, yet
another choice set was created by Rieskamp (2008). Finally, to examine the stability of

parameter estimates in risky choice, amixture of gambles frombothHolt and Laury (2002)

and Rieskamp (2008) (among others) were used by Glöckner and Pachur (2012). These

choice sets are thought to be superior to choice sets that are created just randomly and

usually invoke heuristic concepts of being informative, for example, by excluding

situations with dominating gambles.

1.2. Random utility models

Given the stochasticity of choice behaviour, fitting an expected utility theory to data

requires a mapping of utility differences to choice probabilities. RUMs characterize

people’s risk preferences as well as the consistency of their behaviour (for an overview,

see Loomes & Pogrebna, 2014; Rieskamp, Busemeyer, & Mellers, 2006; Train, 2009).

Estimatingpeople’s choice consistency and exploringhowchoice consistency differs as a

function of the choice environment are important research questions in their own right.

Recently, economists and psychologists alike have shown interest in understanding how
choice inconsistency can be derived from more basic principles of information perception,

representation and processing (Bhui & Gershman, 2018; Polania, Woodford, & Ruff, 2019;

Woodford, 2020). It has alsobeen shown that consistency in risky choices is correlatedwith a

person’s cognitive abilities (Andersson, Holm, Tyran, & Wengström, 2016). Another

approach is to see howdifferences inmomentary cognitive resources can shape consistency.

For example, dual-task or time-pressure manipulations affected choice consistency in risk

taking (Olschewski & Rieskamp, 2021; Olschewski, Rieskamp, & Scheibehenne, 2018).

For our simulation analyses, we employed the class of power utility functions that has
often been used in the decision-making literature (Stott, 2006; Tversky & Kahneman,

1992). The functionUmaps an outcome x1 to its (average) subjective utility and has a free

parameter, α, that captures risk preferences:

Uðx1Þ ¼ xα1 þ ɛ, (1)

where α < 1 signifies concave, α > 1 convex, and α = 1 linear utility, which correspond

to risk-averse, risk-seeking, and risk-neutral preferences. In this model, utility is
conceptualized as a random variable with the error term ε with mean 0 and constant

variance. To illustrate the model’s prediction, we consider two lotteries x and ywith two

outcomes each, x1, x2 and y1, y2, that occur with probability px1, 1 – px1 and py1, 1–py1,
respectively. The corresponding expected utilities are

E½UðxÞ� ¼ px1 � Uðx1Þ þ ð1� px1Þ � Uðx2Þ,

E½UðyÞ� ¼ py1 � Uðy1Þ þ ð1� py1Þ � Uðy2Þ: (2)

Assuming that the error term in equation (1) is extreme-value distributed implies a

logit function to determine choice probabilities as a function of expected utility

differences:
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pðyÞ ¼ 1

1þ expð�θ � ðE½UðyÞ� � E½UðxÞ�ÞÞ , (3)

where θ governs the amount of choice consistency, with higher θs meaning more

consistent choices than lower θs for a given expected utility difference. As an illustration,

consider the choice between 50 for certain or a 50% chance of winning 100 or else
nothing. The expected value of both choice options is the same and thus a risk-averse

person (e.g., one with α = 0.8) would prefer the sure outcome, meaning that person

would choose it more than 50% of the time. Conversely, a moderately risk-seeking person

with α = 1.2 would choose the lottery more than 50% of the time for all θs. The logit

function is often applied in estimating risk preference from empirical choice data

(Rieskamp, 2008; Scheibehenne&Pachur, 2015). It can also be derived from afixed utility

framework, assuming that utilities are deterministic and the error term only enters at the

choice stage (Luce, 1957; also called softmax, Sutton & Barto, 2018).

1.3. Empirical underidentification

An important condition for every model is that its parameters, here α and θ, are

identifiable. Amodel is identifiable if, for any observable behaviour, there is atmost one set

of parameters that predicts this behaviour (Bamber & van Santen, 2000). However, even

when this technical condition is fulfilled for a model so that it is identifiable, a model can

still have problems with empirical underidentification (Schmittmann, Dolan, Raijmakers,
& Batchelder, 2010). This means that, given a particular set of stimuli, different sets of

parameter estimates can lead to very similar predictions, thus making it difficult to

estimate parameters precisely. To illustrate this problem, we take two choice situations

from a choice set often used to estimate parameters of RUMs in the literature (Rieskamp,

2008). In situation 1, the choice isA: win 18with a 37% chance, or else 41, orB: win 8with

a 2%chance, or else 56. In situation 2, the choice isC:win27with a 76%chance, or else 47,

or D: win 29 with a 12% chance, or else 45. Note that in both situations there is no

stochastic dominance and since we have a model with two free parameters and two
observations, we should in principle be able to identify a unique parameter combination

that explains a given choice pattern. However, taking again our prototypical risk-averse

(α = 0.8) and risk-seeking (α = 1.2) agents, choice proportions can be empirically

undistinguishable for both agents if we adjust θ accordingly. Take, for example, the

parameter combinations α = 0.8 and θ = 0.12, and α = 1.2 and θ = 0.0188, which both

lead to choice probabilities of 74% for B over A and 63% for D over C. Thus, although the

choice proportions are not identical (probabilities were rounded above) the predictions

are very similar and we cannot hope to distinguish them with a realistic amount of data
(see also Alempaki et al., 2019; Stewart, Canic,&Mullet, 2019). As a consequence, this can

lead to completely different interpretations of a person’s behaviour when estimating the

model’s parameters. A risk-averse person could, for instance, be classified as a risk seeker.

One reasonwhy amodel can suffer from empirical underidentification is if themodel’s

parameter estimates can (partly) trade off each other, given a particular set of observations

(see alsoKrefeld-Schwalb, Pachur,& Scheibehenne, 2021; Spektor&Kellen, 2018). As the

scale of the expected utility difference depends on α and is multiplied by θ, this leads to a

correlation between α and θ, meaning that higher α estimates go along with lower θ
estimates for the same level of consistency.Mechanistically, the higher is the estimate ofα,
the higher is the expected utility difference of a given pair of lotteries, and thus to have a

Estimating random utility models 255



similar level of choice consistency, the estimate of θ must be smaller for higher than for

lower α estimates (see Stewart, Scheibehenne, & Pachur, 2018). To illustrate this effect,

consider lottery E: a 50% chance of winning 80, or else 20. For a risk-averse agent with

α = 0.8, this lottery has a certainty equivalent of approximately 48. If this agent nowhas to
choose between lottery E and a sure amount of 46, which is two units below the agent’s

certainty equivalent, for a θ = 1 this would result in a predicted choice proportion of the

lottery of 68%. In contrast, for a risk-seeking agentwithα = 1.2, the certainty equivalent of

lottery E is approximately 52. If this agent decides between lottery E and a certain amount

of 50, that is, again two units lower than the agent’s certainty equivalent, for the same θ
this results in a choice proportion for the lottery of 99%. To get a choice proportion of 68%

for the risk-seeking agent to choose the lottery, θ has to be reduced from 1 to 0.15.

Consequently, it is not possible to compare θ estimates as an indicator of choice
consistency across different levels of risk preference.

1.4. Research design

Given the problem of empirical underidentifiability, the question is how to estimate risk

preference and choice consistency as accurately as possible. In this paper we identify

three factors that affect estimation accuracy, namely, the stimulus design, the estimation

method, and the repetition of choice sets. As shown in the examples above, choices
between two gambles can be non-informative with respect to themapping of choices to a

utility function. For that reason, wewould expect a randomly created choice set as stimuli

for an experiment to perform poorly in estimating our model. This is in line with the idea

of an optimal experimental design. An optimal experimental design is a choice set that

best enables the measurement of the parameters of a given mathematical model or best

distinguishes between two competing models (Myung & Pitt, 2009; Navarro et al., 2004).

However, it is difficult to find the optimal choice set when multiple factors can affect

estimation. In the case of risky choice, not only does the expected value differ between
two lotteries, but also stochastic dominance, or more generally, the relation of the

cumulative distribution functions of two lotteries, can affect the estimation accuracy of

RUMs. Therefore, researchers so far have either relied on randomly created choice sets or

used heuristics to create choice sets. In a recent comparison, these heuristically created

choice sets did not outperform randomly created choice sets in estimating cumulative

prospect theory parameters (Broomell & Bhatia, 2014). Here, we examine a new

algorithm to create a choice set that improves estimation accuracy over randomly created

choice sets and choice sets used in the literature so far, as we describe below.
We also illustrated that the scale on which choice consistency is measured differs

depending on the risk preference. Therefore, standardizing the expected utility difference

to be on a similar scale for risk-averse and risk-seeking agents in the estimation should help

mitigate the correlation between estimates. This can be done because utility is usually

measured on an interval scale, and thus the absolute values have nomeaning (seeWakker,

2008). In the followingwe examine the fourmost prominent standardization approaches,

whichwe callutility, outcome,monetary equivalence and variance standardization and

definemathematically below.With parameter recoveriesweprobe these standardizations
on their ability to improve estimation accuracy. Note that two of these standardizations,

utility and outcome standardization, lead to context dependencies, meaning that the

parameter estimates depend on the choice set. Therefore, these models do not satisfy an

assumption of strict utility models, as the logit function in equation (3) does (Luce &

Suppes, 1965;Wilcox, 2011). Regardless of whether strict utility models are descriptively

256 Sebastian Olschewski et al.



plausible (cf. Lieder, Griffiths, & Hsu, 2018; Wilcox, 2015), such an approach is viable if a

researcher is interested predominantly in the measurement of preferences and/or

consistency in similar choice contexts.

Finally, estimation accuracy should increase when we give the same choice set
repeatedly, since that increases the number of observations. Yet, it is less clear whether it

is more informative to give the same choice repeatedly or use distinct choices to estimate

parameters. Also as illustrated, researchers vary greatly in the number of choices they

deem sufficient to estimate RUMs. Therefore, we systematically examined how the

number of choices affects parameter estimation accuracy.

2. Method

2.1. Estimation accuracy

We conducted parameter recoveries to examine the effects of the three factors identified

above on estimation accuracy and correlations. To measure estimation accuracy, we

defined the bias as the difference between parameter estimates and the data-generating

values. In thismeasure, negative andpositive deviations can cancel eachother out.Hence,

we additionally use the absolute deviation between parameter estimates and data-
generating values to measure estimation accuracy. We interpret the average absolute

deviation for one parameter as the expected measurement error when estimating the

model. For this analysis, we picked two levels of risk preference, risk aversion (α = 0.8)

and risk seeking (α = 1.2), and calibrated choice consistency to a value that led to

approximately 80% of choices being consistent with the (average) utility order, a value in

accordance with empirical findings, as mentioned in the Introduction. This choice

consistency θ depends on the choice set as well as on the standardizations implemented

and thus varies across different specifications. To meaningfully compare bias and
estimation accuracy across different data-generating α- and θ-values, we divided both

measures by the respective data-generating value to calculate the relative bias and

estimation accuracy, respectively.

We simulated risky choices from one agent in 60 choice situations, which is a number

of choices in the range of the amounts of data used in the applied literature to estimate risk

preference. The choice simulation depends on the standardization: it corresponds to the

model specified in equations (1) and (2) in the baseline case without standardization but

varies for the respective standardizations as outlined below. After the choices were
simulated, we tried to recover the parameters by means of maximum likelihood

estimation with a standard algorithm in R using the data-generating values as starting

points1 (Nelder-Mead in optim; R Core Team, 2016; RStudio Team, 2015). Thus, we tried

to recover the parameters of each simulated data set with exactly the same model

specifications that were used for simulation. That way we focus on the recoverability and

abstract away from the question of whichmodel best describes empirical choice data.We

repeated the simulation and estimation 10,000 times and report summary statistics.

Overall, we implemented recoveries for three different choice sets, four different
standardization methods in addition to the baseline case without standardization, and

with various repetitions of the choice (sub)set.

1 In experiments, the data-generating parameter values are unknown. However, in experimental applications,
thismethod can be approximated by estimating themodel repeatedlywith randomly selected starting values and
then selecting the parameter estimateswith the highest likelihood. In our analyses the twomethods led to similar
results.
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2.2. Kullback–Leibler divergence
Estimation accuracy as an outcome measure has the advantage that the absolute

magnitude can be intuitively interpreted. As a disadvantage, the accuracy measures used

above are not formally rooted in information theory and can depend on the concrete
parameter values we chose for simulation. Therefore, we additionally estimated the

Kullback–Leibler (KL) divergence between different parameter values for a given choice

set (Chang&Ying, 1996). Thismeasures the extent towhich twoparameter combinations

mimic each other in the predicted choice proportions. In the following we use the

notation and estimation method proposed in Broomell and Bhatia (2014) and

consequently define the multivariate parameter discrimination (MPD) measure for a

given choice set and standardization method as follows:

MPD½α;θ� ¼ pðα0, θ0Þ � pðα1, θ1Þ � DKL½pðcjα0, θ0Þk pðcjα1, θ1Þ�, (4)

where DKL is the KL divergence between the conditional probability of simulated data c

given two different sets of free parameters (α0, θ0) and (α1, θ1). The first two factors in
equation (4) are the prior probabilities of the respective parameter sets. For the power

utility parameter αwe specified a uniform probability distribution with a range from 0.01

to 1.99. Similarly, we specified a uniform probability distribution for choice consistency θ
with a range calibrated to lead to consistencies between 51% and 99% for each choice set

and each standardization. As a result of this specification, the prior probabilities are the

same for every parameter combination and thus the first two factors in this equation re-

duce to a scaling variable.

One can also calculate divergence measures for individual parameters by fixing one of
the two parameters in equation (4). For example, when fixing θ0 = θ1, we denote the

resulting divergence measure by MPD[α]. However, this measure does not take into

account that the divergence could be affected by imprecise estimates of θ in the case

where estimates of α and θ are correlated. Therefore, Broomell and Bhatia (2014)

introduced the univariate parameter discrimination (UPD)measure that takes the effect of

θ into account and can be calculated as follows:

UPD½α� ¼ 0:5 � ðMPD½α;θ� �MPD½θ�Þ þ 0:5 � ðMPD½α� � 0Þ: (5)

Thus, UPD is a measure of the discriminability of the individual parameter (here α)
under conditionswhere parameter estimates are correlated. Thismeasure can similarly be

calculated for θ.
Finally, from the individual and overall divergence measures one can calculate a

measure of the percentage reduction in discrimination through the estimation inaccuracy

of the other parameter, called percent reduced discrimination (PRD). This measure is

between 0 and 1 and is higher the more one parameter estimate is affected by the

estimation of the other parameter:

PRD½α� ¼ 1� ðUPD½α�=MPD½α�Þ: (6)

We simulated the KL divergence 100,000 times by randomly choosing two parameter
sets from the specified prior distributions. As a disadvantage, this method depends

critically on the outcome scale, so we cannot use this measure to examine the

standardization methods.
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2.3. Stimulus design: composition of choice sets

As suggested in the Introduction, the problem of empirical underidentification of our model

depends on the choice set implemented. To demonstrate how to improve estimation

accuracy,we constructed three choice sets, eachwith the samenumber of choice situations.

2.3.1. Random choice set

The first set was created by randomly selecting four outcomes between 1 and 99 drawn

without replacement as the two outcomes for both lotteries. Then two numbers between

.01 and .99 (rounded to twodigits)were drawnwithout replacement,where the first draw

was the probability of outcome 1 in the first lottery and the second draw the probability of

outcome 1 in the second lottery. The probability for the second outcome in both lotteries
just followed from the remaining probability value to add up to 1. No further criteria were

invoked, and for each simulation a new random set was created. This choice set should

function as a baseline of estimation accuracy.

2.3.2. No-dominance choice set

The second choice set consisted of 60 pairs of two-outcome lotteries in the gain domain, a

set that has been frequently used in other publications (Glöckner & Pachur, 2012;
Rieskamp, 2008; Scheibehenne & Pachur, 2015). It was created by choosing outcomes

randomly between 0 and 100 and choosing outcome probabilities randomly between 0

and 1 (rounded to two digits). So far this resembles the creation method used for the first

choice set, but two extra criteria were imposed: first, the set included no stochastically

dominant lottery pairs; and second, the set included only lottery pairs where the ratio

between the absolute expected value difference between the two lotteries and the smaller

of the two expected values was less than 1. Both criteria should make choices more

informative and thus increase estimation accuracy.

2.3.3. Switching choice set

Finally, as shown in the example in the Introduction, even non-dominant lottery pairs can fail

to reliably distinguish between risk-averse and risk-seeking preferences. Therefore, we

propose anewmethod to create lotterypairs: again, outcomes andprobabilitieswere chosen

randomly, but different bins of expected value differences as well as variance differences

werecreated.Thiswasdone toobtain a spectrumof lotterypairs thatwas informative for very
risk-averse as well as very risk-seeking people. Most importantly, in this choice set we added

the constraint that the power utility functionwould switch the (average) ordinal utility order

of the two lotteries (the lottery that is chosen with more than 50% probability) between

α = 0.2 and α = 2.8. This means there were only lottery pairs in this set for which a choice

was informative for the range of α estimates between 0.2 and 2.8. All conditions were

implemented with accept–reject sampling, meaning that random combinations of numbers

for outcomes and probabilities for a lottery pair were sampled repeatedly and combinations

were accepted only when all the above conditions were fulfilled. The resulting choice set
should allow for the highest estimation accuracy of the three proposed sets.

2.4. Estimation methods: standardizations of the utility scale

In the Introduction we also illustrated the problem of correlated estimates, which stems

from the dependency of the expected utility scale on the estimated preference parameter.
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Thus, a remedy for this correlation could be to standardize the expected utility scale and

thus deviate from the standard logit framework. Thismeans that for eachα value the utility
difference is on a similar scale, and consequently the absolute value of choice consistency

θ leads to a similar proportion of choices that are consistent with the best-fitting utility
curvature independent of α. In past work many researchers reported some form of

standardization. However, different researchers proposed different ad hoc standardiza-

tions and they are usually not tested competitively against one another.

2.4.1. Utility standardization

A straightforwardway of reducing the dependency of the expected utility scale on the risk

preference parameter is to rescale expected utility to be always located between 0 and 1.
Therefore, for a given α parameter the expected utilities of all lotteries in a choice set are

calculated. Then a new expected utility E[US] is calculated for each lottery:

E½USðxÞ� ¼ E½UðxÞ� � minz∈XE½UðzÞ�
max z∈XE½UðzÞ� � min z∈XE½UðzÞ� , (7)

where X comprises all lotteries present in the choice set under consideration. In this way

the utility order and the relative distances between different lotteries in the choice set in

terms of expected utility are preserved. At the same time the scale differences across

different values of α are minimized.

2.4.2. Outcome standardization

A related butmathematically different approach is to rescale all outcomes to be between 0

and 1 (Olschewski et al., 2018). This has the effect that numbers between 0 and 1 stay

between 0 and 1 even when taken to the power of a number larger than 1. This way the

relation between a less concave (or convex) power function and themagnitude of utility is

mitigated. We denote by O the set of all outcomes present in a particular choice set. The
minimum and maximum of all outcomes in the set O are taken and each outcome xi is

transformed as follows:

xi;S ¼ xi � minz∈Oz

max z∈Oz � minz∈Oz
: (8)

2.4.3. Monetary equivalence standardization

Another approach to reduce the parameter correlation recently proposed by Stewart et al.

(2018) is to retransform the expected utility scale back to themonetary scale and calculate

the choice probabilities based on the monetary scale difference. This retransformation is

calculated as follows:

E½UMðxÞ� ¼ ½px1 � Uðx1Þ þ ð1� px1Þ � Uðx2Þ�1=α: (9)

This way, within a lottery, large outcomes are transformed differently from smaller

outcomes depending on α, but the expected utility is transformed back to the monetary

scale and thus prevents higher values of α leading to higher inputs into the logit function.
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2.4.4. Variance standardization

A fourth approach to decrease the correlation between α and θ is to divide the expected

utility difference by the pooled variance of utilities. This idea was introduced by

Busemeyer and Townsend (1993) to be part of the calculation of the drift rate in decision
field theory, a sequential sampling model of decision-making, but it can also be used

within RUMs, where the expected utility difference between two lotteries x and y reads

ΔE½UV ðy, xÞ� ¼ E½UðyÞ� � E½UðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½UðyÞ� þ Var½UðxÞ�p ,

pðyÞ ¼ 1

1þ expð�θ � ΔE½UV ðy, xÞ�Þ , (10)

assuming independent lotteries. The reasoning behind this standardization is that higher
values of the exponent lead to higher utility differences, but also to a higher pooled utility

variance. Thus, dividing the difference by the pooled variance should in turn weaken the

correlation between α and θ.

2.5. Number of repetitions

Giving participants the same choices repeatedly should increase estimation accuracy for

the parameters of the RUM. This simply follows from the law of large numbers, namely,
with 600 compared to 60 (independent)measurement points, that is, choices of a person,

researchers should estimate any statistic with a smaller standard error. However, for

pragmatic reasons (e.g., time, money, participant’s attention), the number of choices that

can be acquired is limited. Thus, trade-offs between amount of data and feasibility have to

bemade. Under these circumstances, we explorewhether it is better to elicit data from 60

distinct choice situations or, for example, from 15 choice situations each four times.

Intuitively, whereas it might be beneficial to have distinct choice situations to examine

risk preferences, it could help estimates of choice consistency to havemultiple choices for
one choice situation. This intuition is built on the logic of observing behaviour in the same

situations repeatedly as a model-free measure of consistency. In addition, we simulate

how repeating the same set of 60 choices affects estimation accuracy when these

estimates can be biased as well as how this interacts with the choice sets and the

standardization of estimates.

3. Results

3.1. The effect of choice sets

The results of theparameter estimation accuracy analysiswithout any standardizations are

presented for the risk preference parameter α in Table 1 and for the choice consistency

parameter θ in Table 2. Both tables show substantial deviations from the data-generating

parameters. In the random choice set, αwas overestimated by approximately 10%. Biased

α estimateswere less of a problem in the no-dominance and the switching choice set, with
on average 2% and less than 1% bias, respectively. Parameter θwas overestimated by over

400% in the random, by over 100% in the no-dominance, and by about 40% in the

switching choice set.
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The average absolute deviation of α was 46% for the random, 21% for the no-

dominance, and 12% for the switching choice set. We additionally looked at absolute

deviations above 0.2 that we assumed were psychologically important measurement

errors, as they imply that a risk-averse person (α = 0.8) is potentially classified as being
risk seeking (α > 1) and vice versa for a risk-seeking person. Thiswas the case in 72% of all

recoveries for the random and in about 42% and 17% of all simulations for the no-

dominance and switching choice set, respectively. This means that roughly 35% of all

recoveries resulted in a misclassification of a person as risk neutral or risk seeking when

they were actually risk averse or the other way round using the random choice set.

Similarly, for θ the absolute deviationwas largest for the random (447%), lower for the no-

dominance (168%), and least for the switching (76%) choice set.

Measuring MPD from equation (4), we calculated a KL divergence of 40.45 for the
random, 86.00 for the no-dominance, and 191.01 for the switching choice set,

corroborating that the switching set was most informative for estimating the parameter

values across the whole range of plausible values. For comparison, we also estimated the

MPD for the Holt and Laury (2002) choice set, transformed to the outcome scale of the

other choice sets and repeated six times to achieve 60 trials. TheMPDmeasurewas 172.24

for the modified Holt and Laury (2002) set and thus lower than for the switching set,

meaning that the switching set was better able to discriminate between parameter values

in ourmodel.We calculated theUPD separately for both parameters to be 188.28 for α and
2.72 for θ in the case of the switching set. Similar results were estimated for the other

choice sets (see Table A1) and show that α is estimated more accurately than θ.
Finally, we examined the correlation between the estimates of the two parameters for

all baseline simulationswith the samechoice set and the samedata-generatingparameters.

For the random set, there was a substantial linear Pearson correlation of −.68 (Spearman

rank correlation−.90). Correlationswere similar for the no-dominance and slightly higher

for the switching set. The shape of this correlation is illustrated for the switching set in

Figure 1 and resembles an exponential relation. For the switching set, the PRD measures
(based onKL divergence)were .01 for α and .35 for θ. This demonstrates that the accuracy

of the θ estimate wasmore affected by the correlation than α. To sum up, as expected, the

switching choice set showed the best estimation accuracy when we looked at bias,

expected measurement error, and the KL divergence for both parameters in our model.

3.2. The effects of standardizations

The effects of the standardizations on estimation accuracy are summarized in four plots in
Figure 2 using the switching choice set, as this set led to the most accurate estimation

results when using no standardization method.

3.2.1. Utility standardization

The correlation between estimates of α and θwas strongly reduced to approximately−.07
(rank correlation −.09). This reduction had a different effect on the measurement

accuracy of estimates of α and θ. The estimation bias for α was slightly smaller using the
random and the no-dominance set but slightly higher using the switching set. In contrast,

the bias for θ estimates strongly decreased for all choice sets to around 16% on average.

This effect was especially strong for the random set that produced a bias of over 400%

before standardization. Although the switching set remained themost accurate estimation
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set, the difference in accuracy of θ estimates between the three sets almost vanished with

the standardization.

A similar pattern emerged for the absolute deviation. The absolute deviation of α
estimates improved slightly for the random set but got worse for the no-dominance and

the switching set compared to the baseline case. In contrast, the absolute deviation for θ
estimates strongly decreased to less than 30% for all choice sets.

From the KL divergence we computed that the influence of the estimate of one

parameter on the estimation accuracy of the other parameter (PRD) decreased on average
in line with the decrease in the correlation. However, this influence decreased only for θ
(.12), and not for α (.03).

3.2.2. Outcome standardization

The effects of this standardization were similar to the effects reported for the utility

standardization. There was only a weak correlation between the estimates, and the

improvement of α estimates in terms of bias and absolute deviationswas very small. Again,
for the switching set therewas a deterioration of the α accuracy for the absolute deviation,
but this was not as strong as with the utility standardization. For θ, estimation was

drastically improved for bias and absolute deviations for all choice sets.
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Figure 1. Recovered parameters α and θwith linear correlation line after 1,500 simulations. Note.

Data-generating α = 0.8 (left) and α = 1.2 (right), indicated by a red dot. First row shows the

parameter correlation in the baseline case, and the second row with variance standardization.
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3.2.3. Monetary equivalence standardization

Similarly to the previous results, there was a weak correlation between the parameters,

but the effect on α estimation accuracy was subtle. In the random choice set the α
estimation bias decreased, but the absolute deviation of α estimates increased. For the

other two choice sets, the α estimation accuracy stayed similar to the baseline case. As

before, θ estimations improved drastically in terms of bias and absolute deviation for all

choice sets.

3.2.4. Variance standardization

Again, there was a very weak correlation between the parameters. Interestingly, bias and

absolute deviations of the α estimates were slightly smaller than for the other

standardizations. Similarly, θ estimates drastically improved in bias and absolute

deviations for all choice sets, and deviation was lowest across all standardizations for

the switching choice set.

3.2.5. Summary of standardization results

A qualitatively similar pattern emerged for all four proposed standardizations. Standard-

izations strongly decreased the correlation of the parameter estimates, as can be seen in
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generating parameter values for risk preference α (top) and choice consistency θ (bottom). Note.

Estimations were conducted with 60 choices from the switching set. The x-axis shows different

standardization approaches in comparison to baseline. Lines show interquartile ranges from 10,000

samples. The exact data for the standardization results can be found in Tables A2–A9.
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the lower plots of Figure 1 for the example of variance standardization and the switching

set. Estimation accuracy for θ was drastically improved by all standardizations. This was

corroborated by a strong decrease in the effect of α estimation imprecision on θ estimates

according to the KL divergence measures. Yet, standardizations failed to improve the
estimation accuracy for α and in some cases even decreased it. With standardizations,

estimation accuracy was highest for the switching set compared to the other two choice

sets for both parameters. Yet, whereas estimation accuracy for α was still substantially

higher for the switching compared to the other choice sets, this differencewas not strong

for θ, as can be seen in Figure A1 for the random and Figure A2 for the no-dominance set.

In the switching set, the variance standardization performed best with respect to

estimation accuracy for θ (average 10% bias and 24% absolute deviation). Yet, there were

nomeaningful differences in the estimation accuracy of the utility, outcome andmonetary
equivalence standardizations for θ. Moreover, the variance standardization performed

best with respect to the estimation accuracy for α compared to all other standardizations

and at the same level as the baseline case (average absolute deviation 12%). However, for

the other standardizations, therewas a trade-off between estimation accuracy of α and θ in
the methods examined, as estimation accuracy for α decreased compared to the baseline

case. The utility standardization decreased estimation accuracy for α most among all

standardizations for the switching set (26%).

The ranking of best-performing standardizations with respect to measurement
accuracy changes when looking at the random set (see Figure A1). Here, the utility and

the outcome standardization produced the same level of estimation accuracy for α as the

baseline case without standardization, whereas the other two standardizations led to a

lower estimation accuracy. The outcome standardization had a lower estimation accuracy

for θ compared to all other standardizations. Consequently, in the case of the random set,

the utility standardizations performed best for estimation accuracy for both α and θ. For
the no-dominance choice set (see Figure A2), utility standardization showed the best

estimation accuracy for α and the monetary equivalence standardization showed the best
estimation accuracy for θ.

In summary, standardizations should be used carefully when the choice set is already

informative and can be used more readily with random sets. Further, the effect of the

standardization on measurement accuracy interacts with the choice set in a non-trivial

way.

3.3. The effect of choice repetitions
It is important to knowwhether for a given number of observations it is better to present

distinct choices or to present a subset of choices repeatedly.We examined this by directly

comparing the estimation accuracy of the three full choice sets with 60 distinct choices

with the estimation accuracy when randomly drawing 15 of the 60 choice situations and

repeating these four times. In the latter case the 15 choices were different in every

simulation round and the total number of choices was the same for both approaches (60).

As a result, for all measures and gamble sets, the approach with distinct choice situations

led to better or equivalent estimation accuracy compared to the approachwith four times
the same choice situation. The discrepancy in estimation accuracy between the

approaches was higher for θ than for α estimates and for random and no-dominance

sets compared to switching sets (see Tables A10 and A11 for full results). This shows that

in particular when estimates were imprecise (as was the case for θ) and the information

value of choice sets was low (as was the case for random sets), using distinct choice
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situations had an advantage over repeating the same choices. Importantly and perhaps

counterintuitively, choice consistency within our model was better measured with

distinct than with repeated identical choices. Moreover, in practical applications with

human participants, using distinct choices will help to retain interest in the task and to
potentially avoid violations of independence between choice repetitions.

To check by how much estimation accuracy increased with higher sample size, we

increased the number of times we simulated choices for our choice sets from 1 (with 60

simulated choices) up to 15 choice repetitions (with 900 simulated choices). Deviation

and bias trended toward zerowith 15 choice set repetitions for both α and θ estimates (see

Figures A3–A5).2 The linear part of the correlation between the estimates increased with

the number of choice repetitions for the baseline (up to .91) and remained relatively low

for the standardization procedures (between .01 and .17).
The dichotomy of the effect of standardization on α and θ estimation accuracy

persisted for all numbers of repetitions. For estimates of risk preference α, bias and

deviation of the baseline model were always of the magnitude of the best standardization

results (and often even slightly better), whereas for choice consistency θ, bias and

deviation were always lower for the standardizations compared to the baseline model.

Finally, the rank order of estimation accuracy between the different standardizations

remained the same by and large across all numbers of repetitions for both parameter

estimates.

4. Discussion

Weexamined the estimation accuracy of an RUMwith a power utility and a logit function.

This model requires the estimation of two free parameters, risk preference α and choice

consistency θ. Via simulations andparameter recovery,wedemonstrated that RUMs suffer
from empirical underidentification, meaning that choice sets often do not precisely

differentiate between risk-averse and risk-seeking agents.

4.1. Stimulus design

The stimulus design strongly affected the estimation accuracy of the model parameters.

Using random choice sets as stimuli led to an overestimation of α of approximately 10%,

whereas when dominant gamble pairs were excluded and the expected value difference
between gambles was kept low, α was estimated nearly without bias. The expected

deviation from the true value in a single estimation for α again demonstrated the

importance of the choice set. Here in particular the newly developed set that incorporated

a switching point in expected utility order from a risk-averse to a very risk-seeking α-value
for every lottery pair showed the best results. The expected absolute deviation in this

choice setwas 12% and thiswas a littlemore than half the deviation of a choice set that had

only non-dominant gambles and a quarter of the deviation in a randomly created choice

set.
The other parameter, choice consistency θ, was severely overestimated by on average

200% across all choice sets, and the expected absolute deviation was even higher. Yet

again, there were huge differences between the choice sets, and the switching choice set

2 In line with the previous paragraph, estimation accuracy was slightly higher for distinct than for repeated
choices. However, this difference decreased and became trivial with higher numbers of observations.
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fared better with amagnitude of one-tenth of the overestimation compared to the random

choice set and one-third compared to the no-dominance choice set. These results were

corroborated by numerically estimating the KL divergence, a measure of the discrim-

inability of different parameter values of amodel across all plausible parameter values (see
Broomell & Bhatia, 2014). In addition, the KL divergence demonstrated that the switching

choice setwas alsomore informative than an adjusted version of theHolt and Laury (2002)

set. Hence, a choice set created according to some measurement-theory guidelines can

improve estimation accuracy compared to randomly created choice sets and the purpose-

built choice sets often used in the literature (cf. Broomell & Bhatia, 2014). As a limitation,

the KL divergence results depend on the prior distribution of parameter values. Here, we

assumed that all parameter combinations within a plausible range were equally likely. It

could be interesting for specific applications in future research to construct priors based
on the actually observed distribution of parameter values in a target population.

Together, this shows the importance of a well-constructed choice set to estimate

RUMs precisely. The good performance of the switching choice set can be explained by

the fact that every choice is informative for the measurement of the utility function in the

range of α-values between 0.2 and 2.8.3 In contrast, other choice sets include choices

where, although one gamblemight not stochastically dominate another, every reasonable

power parameter results in the same utility order. This means that either choosing the

gamble with the higher utility does not distinguish between α-values in this range or
choosing the gamble with the lower utility would lead to assuming either an extreme α-
value or an increase in noise captured by the choice consistency parameter.

As a limitation to this, we cannot rule out that the estimation accuracy could be further

improved by tailoring the choice set to the estimation task. Theoretically, an optimal

experimental design to estimate parameters of a given model can be created (Myung &

Pitt, 2009). However, this requires knowing exactlywhich design variables are connected

to measurement accuracy, and in the case of multiple design variables it requires an

extensionof theMyung andPitt framework. Another approach is to use an adaptive design
that chooses the most informative lottery couple after observing choices from a given

participant (Cavagnaro, Gonzalez, Myung, & Pitt, 2013; Toubia, Johnson, Evgeniou, &

Delquié, 2013). We see our approach as complementary to an adaptive design in cases

where the researcher does not want to make the theoretical assumptions necessary to

determine the next most informative lottery or if such an approach is not feasible for

practical reasons (see also Chang & Ying, 1996).

4.2. Estimation methods

In all baseline recoveries, there was a substantial linear correlation of the two parameter

estimates of about −.70 and an even higher rank correlation of about −.90. This trade-off
contributes to the empirical underidentification (Spektor & Kellen, 2018) and prevents

meaningful comparisons between choice consistency values for different levels of risk

preference (Stewart et al., 2018).We tested standardization techniques to checkwhether

they could mitigate this correlation: these were the standardization of expected utility

between 0 and 1, the standardization of outcomes between 0 and 1, the retransformation
of expected utility differences back to the monetary scale, and the dividing of the

3 This criterion should also help in the estimation of randomparameter models (see Loomes & Sugden, 1995), as
they also depend on the condition of a switch in utility rank order between choice options.
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expected utility difference by the pooled utility variance. All four standardization

techniques substantially reduced the correlation of the estimates and decreased the

estimation bias for choice consistency θ by up to 70% for the switching choice set and

even more strongly for the other two choice sets. Furthermore, all four approaches
improved estimation accuracy for θwith the same order of magnitude. This demonstrates

the importance of using a standardization to estimate choice consistency more precisely

and to allow for meaningful comparisons of choice consistency parameters across

different levels of risk preference. The standardization leading to the most accurate

estimation results was the variance standardization for the switching choice set. For the

other two choice sets, depending on the emphasis on estimation accuracy for risk

preference or choice consistency, the utility or themonetary equivalence standardization

performed best.
From a decision-theory point of view, utility and outcome standardizations lead to

context dependencies. This means that parameter estimates depend on the specific

choice set that is used for eliciting choices. If a researcher is only interested in measuring

individual levels of risk preference and choice consistencywithin similar contexts, this is a

viable approach. However, context dependency can be a measurement-theory problem

when researcherswant to aggregate parameter estimates over participantswhohave seen

different choice sets or when researchers want to predict behaviour in new choice

situations (see Stewart et al., 2019).
As a caveat, none of the standardization approaches improved estimation accuracy for

the risk preference parameter α compared to the baseline case, and occasionally even

deteriorated it. This holds true although in all cases we used the same model for data

creation and data fitting, and it was particularly bad for the utility standardization in the

switching choice set. Thus, although in an experimental context the researcher does not

know how the observed data were created, we can say that from a measurement-theory

point of view, the utility standardization can lead to low estimation accuracy for the risk

preference parameter. Intuitively, this might be the case because bringing down the
correlation helps stabilize θ estimates (which occasionally have high outliers) muchmore

than α estimates (with fewer outliers). Thus, the choice of a standardization depends on

the research question, and if a researcher is interested only in the estimation accuracy of

risk preference and treats choice consistency as a nuisance parameter, one can defend not

using a standardization in the estimation process as long as one has an informative choice

set.

4.3. Choice repetitions

Finally, we showed that although parameter estimates traded off and choice consistency

was estimated with a bias, the estimation accuracy of both parameters increased

continuously with higher numbers of trials. As a limitation, the exact numbers depend on

the implemented choice sets. However, even if a researcher is not using our

recommended switching choice set, we want to draw attention to the range of

measurement error to be expected for different estimation and stimulus design choices

when estimating RUMs.4

4 Full tables of results for all numbers of trials, choice sets and standardization methods can be found in the
Supporting Information.
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To give an idea of the impact of number of trials on estimation accuracy, we provide

some examples. If one requires to estimate risk preference αwith an expected deviation

from the true parameter of about 5%, one needs 180 choices from the switching set. At the

same time, such an estimation plan results in an overestimation of choice consistency θ of
14% on average and an expected measurement error of approximately 40%. In contrast,

with the random and the no-dominance sets a similar accuracy of α estimation cannot be

achieved with a realistic number of choices.

If one is interested in a precise estimation of the choice consistency parameter θ, a
standardization is indispensable. Taking the same example as above, using 180 switching

gambles for the estimation, a standardization decreases the bias of θ from 14% to 4% and

the expected measurement error from 40% to 14%. An expected measurement error of

10% for θ can be achieved only with 300 choices and of 5% only with approximately 900
choices using any of the four standardizations. Unlike for risk preference parameter

estimations, the precision of these θ estimates is also quite similar for the random and the

no-dominance choice sets using any of the standardizations.

4.4. Beyond RUMs

Our model recovery analyses are based on a power utility function. The power utility

function belongs to the class of constant relative risk aversion (CRRA, e.g., Holt & Laury,
2002; see Wakker, 2008) and is also implemented in cumulative prospect theory (CPT;

Tversky & Kahneman, 1992). For gambles in the gain domain, CPT adds a weighting

function for probabilities. We expect the problems we found with the simpler power

utility model to become worse in the more complex CPT model that requires the

estimation of (at least) one additional parameter (see Broomell & Bhatia, 2014; Krefeld-

Schwalb et al., 2021; Scheibehenne & Pachur, 2015; Spektor & Kellen, 2018). The results

presented here thus serve as an upper boundary on expected accuracy when estimating

CPT.
There are also different classes of models, such as the mean–variance model, which

estimate a linear combination of mean and variance of a lottery with a free parameter for

the influence of variance on choices (for a comparison of the two utility models, see

Olschewski et al., 2018, Experiment 1; Spiliopoulos & Hertwig, 2019). This framework

has a lower parameter correlation between risk preference and consistency. As a

disadvantage, estimating the parameters of a mean–variance model does not compare

easily to estimating the parameters of a power utility approach, which is predominant in

the literature.
Weused a logit or Fechner choice function (Carbone, 1997). Other specifications have

been discussed and our results hold as well for the probit choice function. The probit

choice function differs from the logit in the assumption of a normal instead of an extreme-

value distribution of the error term. Another possibility is to use a trembling hand error,

which estimates the probability of choosing the on average inferior lottery. However,

such a formulation is theoretically not very plausible, since it ignores the fact that some

choices are easier than others, and it has also been rejected empirically (Blavatskyy &

Pogrebna, 2010; Stott, 2006). Finally, randomparametermodels have been proposed for a
long time (Becker, DeGroot, & Marschak, 1963; Loomes & Sugden, 1995) but have two

problems: they cannot cope with choices of dominated lotteries and they can be difficult

to estimate reliably. To circumvent these problems, two recent papers have proposed

random parameter models with additional error sources (Apesteguia & Ballester, 2018;

Bhatia & Loomes, 2017; see also Loomes, Moffatt, & Sugden, 2002). Yet, in these
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specifications there are in total three parameters that have to be estimated: the mean

power utility parameter, the variability of the power utility parameter, and a logit or

trembling parameter. It is so far an open question whether additional parameters might

reduce or increase the estimation accuracy of risk preference.
In summary, the present work illustrates that the estimation of a person’s risk

preference or choice consistency can be a demanding enterprise and requires careful

experimental designs and estimation methods. The right choice set is most important for

the estimation of risk preferences, whereas a standardization is most important for the

estimationof choice consistency. These results should be taken into accountwhen testing

choice theories or when relying on characterizing people’s preferences for practical

interventions or treatments.
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Figure A1. Random choice set: percentage of bias (left) and absolute deviation (right) of the

estimates from the true data-generating parameter values for risk preference α (top) and choice

consistency θ (bottom). Note. Estimation was conducted with 60 randomly created choice

situations. The x-axis shows different standardization approaches in comparison to baseline. Lines

show interquartile ranges from 10,000 rounds of estimation.
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Figure A2. No-dominance choice set: percentage of bias (left) and absolute deviation (right) of the

estimates from the true data-generating parameter values for risk preference α (top) and choice

consistency θ (bottom). Note. Estimation was conducted with 60 choices from the no-dominance

choice set. The x-axis shows different standardization approaches in comparison to baseline. Lines

show interquartile ranges from 10,000 rounds of estimation.
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Figure A3. Switching choice set: estimation bias on the left and absolute deviation on the right for

risk preference α (top) and choice consistency θ (bottom) for different numbers of repetitions.Note.

The 60 choices from the switching set were used and repeated for higher numbers of gambles.

Colours showdifferent standardization approaches in comparison to baseline. The exact data can be

found in Tables S1–S30 of the Supporting Information.
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Figure A4. Random choice set: estimation bias on the left and absolute deviation on the right for

risk preferenceα (top) and choice consistency θ (bottom) for different numbers of repetitions.Note.

The 60 choices were randomly created and were repeated for higher numbers of gambles. Colours

show different standardization approaches in comparison to baseline.
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Figure A5. No-dominance choice set: estimation bias on the left and absolute deviation on the right

for risk preference α (top) and choice consistency θ (bottom) for different numbers of repetitions.

Note. The 60 choices from the no-dominance set were used and repeated for higher numbers of

gambles. Colours show different standardization approaches in comparison to baseline.
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Table A1. Kullback–Leibler divergence for all choice sets and baseline aswell as all standardization

methods

Standardization method Measure

Choice set

Random No-dominance Switching

Baseline MPD 40.45 86.00 191.01

UPD α 37.86 83.56 188.28

UPD θ 2.59 2.44 2.72

PRD α 0.03 0.01 0.01

PRD θ 0.30 0.32 0.35

Utility MPD 23.70 83.87 54.66

UPD α 11.02 73.83 43.62

UPD θ 12.68 10.04 11.03

PRD α 0.03 0.01 0.03

PRD θ 0.03 0.12 0.12

Monetary MPD 21.58 56.84 166.48

UPD α 8.88 43.57 156.82

UPD θ 12.70 13.27 9.66

PRD α 0.03 0.03 0.02

PRD θ 0.02 0.08 0.29

Variance MPD 19.25 49.63 165.02

UPD α 7.27 37.24 155.58

UPD θ 12.01 12.38 9.43

PRD α 0.04 0.03 0.02

PRD θ 0.02 0.09 0.02

Outcome MPD 27.51 65.01 142.15

UPD α 17.07 54.25 134.02

UPD θ 10.44 10.75 8.14

PRD α 0.03 0.02 0.02

PRD θ 0.04 0.09 0.23

Note. MPD = multivariate parameter discrimination; PRD = percent reduced discrimination;

UPD = univariate parameter discrimination.
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