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Abstract

Food intake biomarkers can be critical tools that can be used to objectively assess dietary

exposure for both epidemiological and clinical nutrition studies. While an accurate estimation

of food intake is essential to unravel associations between the intake and specific health condi-

tions, random and systematic errors affect self-reported assessments. This study aimed to

clarify how habitual food intake influences the circulating plasma metabolome in a free-living

Japanese regional population and to identify potential food intake biomarkers. To achieve this

aim, we conducted a cross-sectional analysis as part of a large cohort study. From a baseline

survey of the Tsuruoka Metabolome Cohort Study, 7,012 eligible male and female participants

aged 40–69 years were chosen for this study. All data on patients’ health status and dietary

intake were assessed via a food frequency questionnaire, and plasma samples were obtained

during an annual physical examination. Ninety-four charged plasma metabolites were mea-

sured using capillary electrophoresis mass spectrometry, by a non-targeted approach. Statisti-

cal analysis was performed using partial-least-square regression. A total of 21 plasma

metabolites were likely to be associated with long-term food intake of nine food groups. In par-

ticular, the influential compounds in each food group were hydroxyproline for meat, trimethyla-

mine-N-oxide for fish, choline for eggs, galactarate for dairy, cystine and betaine for soy

products, threonate and galactarate for carotenoid-rich vegetables, proline betaine for fruits,

quinate and trigonelline for coffee, and pipecolate for alcohol, and these were considered as

prominent food intake markers in Japanese eating habits. A set of circulating plasma metabo-

lites was identified as potential food intake biomarkers in the Japanese community-dwelling

population. These results will open the way for the application of new reliable dietary assess-

ment tools not by self-reported measurements but through objective quantification of biofluids
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Introduction

Nutrition studies aim to reveal associations between dietary exposure and specific health con-

ditions by clarifying individual or group food intake. While an accurate estimation of intake is

essential for accomplishing this aim, there are limitations in determining them with adequate

validity and replicability. In addition to the most practical assessment tool, the food frequency

questionnaire (FFQ), researchers have also utilized more effective measures, such as dietary

records and 24-hour recalls [1, 2]. However, random and systematic errors affect self-reported

assessments. Therefore, it is crucial to develop objective assessment tools (that is, dietary bio-

markers) based on the concentrations of metabolites in biofluids such as blood and urine.

Metabolomics is one of the core subject fields of systems biology, wherein comprehensive

data of all measurable metabolite concentrations are collected from biochemical samples and

subjected to advanced statistical processing to derive meaningful facts [3, 4]. Also, nutrimeta-

bolomics, which combines metabolomics and nutritional status, is an evolving field that can

yield great advancements in nutrition research as a tool for objective food intake evaluations,

response to nutritional modulations in observational and interventional studies, and metabolic

profiles as biological consequences of dietary intake [5–9]. Advanced analytical technologies

have also driven the prediction of dietary biomarkers. Capillary electrophoresis mass spec-

trometry (CE-MS) has enabled us to measure charged low-molecular-weight compounds with

notable higher speed and resolution [10, 11] than other standard methods. Circulating blood

plasma metabolites affected by habitual food intake are likely small polar molecules, including

amino acids and carbohydrates, as well as their analogs and conjugates. Thus, we can expect to

identify such food-specific metabolite markers comprehensively using CE-MS.

Although a considerable number of attempts have been made to identify dietary biomarkers

that reflect specific food and nutrient consumption by targeted approaches, conducting non-

targeted research to explore unknown full-coverage metabolites is still a fairly new approach

[12–15]. Additionally, global-scale epidemiological studies have reported comprehensive

investigations, focusing on the relationships between food intake, metabolites, and disease risk

[16–19]; however, only a few large-scale epidemiological studies among Asian populations

have so far been reported [20–22], and further research on various regional characteristics of

free-living individuals is expected.

The present study aimed to clarify how habitual food intake influences circulating plasma

metabolites in a free-living Japanese regional population and to identify potential biomarkers

of food intake, for new reliable dietary assessment tools by objective quantification of biofluids.

To achieve this aim, we conducted a cross-sectional analysis as part of a large cohort study,

with charged metabolomics data obtained by CE-MS, using the partial least squares regression

(PLS-R) statistical method.

Materials and methods

Participants and study design

The Tsuruoka Metabolome Cohort Study (TMCS) is a population-based, prospective cohort

study conducted in Tsuruoka city, Yamagata Prefecture, Japan, and is designed particularly to

discover metabolomics biomarkers related to environmental and genetic factors and those for

common diseases and disorders. Detailed information on the cohort study methods has been

published elsewhere [22–24]. Briefly, the participants of the TMCS were 11,002 residents or

workers in Tsuruoka aged 34–74 years at the time of the baseline survey conducted from

2012–2015. All participants provided written informed consent for the study and its protocol

was approved by the Medical Ethics Committee of the Keio University School of Medicine,
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as study participants did not consent to have their

information freely accessible. Based on this lack of

consent, the Ethics Committee for Tsuruoka

Metabolomics Cohort Study (which includes

representatives of Tsuruoka citizens,

administration of Tsuruoka City, a lawyer, and

expert advisers) strictly prohibits any public data

sharing because data contain potentially identifying

or sensitive disease information. Data accession

requests may be sent to the administration of the

Ethics Committee for the Tsuruoka Metabolomics

Cohort Study. The data will be shared after a review

of the purpose and permission by the ethics

committee. Contact information for the Ethics

Committee for Tsuruoka Metabolomics Cohort

Study is the administrator of the committee, Yutaka

Sato, who may be contacted at the following email

address: ytk.s@city.tsuruoka.yamagata.jp.
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Tokyo, Japan (approval no. 20110264). Firstly, 7,303 participants aged 40–69 years without a

medical history of stroke, coronary heart disease, or cancer were chosen for this cross-sectional

study. Among those, the following participants were excluded from this analysis: those who

did not respond to the FFQ, those who had missing data regarding staple food frequency

(n = 40), those who had missing data regarding drinking status (n = 10), those with an unas-

sessed metabolome (n = 39), outliers of biochemical test values (n = 4), outliers of estimated

food frequency (n = 26), those who were not fasting before blood sample collection (n = 143),

and those with missing data regarding fasting status (n = 32). Finally, 7,012 participants were

included in the analysis, comprising 3,198 males and 3,814 females. A flowchart of participant

inclusion and exclusion in the analysis is shown in S1 Fig.

All data and blood samples were obtained at the time of the baseline survey. The partici-

pants responded to a self-reported questionnaire that included information on demographics,

physical activity, alcohol consumption, smoking habits, personal medical history, and other

lifestyle factors. Energy intake and daily food consumption were assessed based on a validated

FFQ (see later for details). Omissions or inconsistencies in participants’ responses were

addressed by the trained survey staff through face-to-face interviews. The medical history was

evaluated based on both, the self-reported questionnaire and medical checkup results. Bio-

chemical test results were obtained from medical checkup institutions with the consent of the

patients, including the height and weight, to calculate the body mass index (BMI).

The fasting plasma samples were analyzed to obtain non-targeted metabolomics data, using

capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS), which predomi-

nantly measures charged low molecular compounds, such as amino acids and their analogs. A

16 ml blood sample was collected from each participant between 8:30 and 10:30 in the morn-

ing after 12 hours of fasting from the previous night to avoid short-term metabolic fluctua-

tions. The sample was divided into 0.5–1 ml portions, then metabolites were extracted from

plasma within 6 hours of collection to further minimize the effects of metabolic changes and

stored frozen until used for analysis. Sample preparation methods and analysis protocols for

CE-TOF-MS have been described in detail previously [22–24]. We quantified the absolute

concentrations of 115 metabolites that were expected to be stably observed in most human

plasma samples and were compatible for comparison with standard compounds. Raw data

were analyzed with our proprietary software, MasterHands [25] (see the summary of instru-

ments and analytical conditions in S2 Table).

Dietary assessment

The questionnaire on dietary habits administered as part of the cohort study was created based

on the Semi-Quantitative Food Frequency Questionnaire (SQFFQ) developed by the Depart-

ment of Health Promotion and Preventive Medicine, Graduate School of Medicine, Nagoya

City University [26, 27]. The validity and reproductivity of the SQFFQ had been assessed for

energy, selected macro and micronutrients, and food consumption [28, 29]. A total of 76 ques-

tions were asked concerning the frequency of intake of 47 food items by the self-administered

reminder method to assess eating habits in the past year. Responses to the questions on food

intake were categorized at eight levels (never or seldom, 1 to 3 times per month, 1 to 2 times

per week, 3 to 4 times per week, 5 to 6 times per week, once per day, twice per day, and three

times or more per day) [27]. For staple foods such as rice, bread, and noodles, we asked about

the intake frequency at breakfast, lunch, and dinner, as well as the number of portions (cups/

pieces) per serving. For alcohol, we inquired about different kinds of alcohol, the number of

drinking days per month/week, and the number of drinks per occasion in a questionnaire on

lifestyle (see more details of questionnaires in the S1 Table).
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In the present study, the 47 food items and different kinds of alcohol assessed via question-

naires were classified into four main food categories consisting of 17 food groups [26]: energy-

giving foods (rice, other carbohydrates, confectionary, and oily food), protein-rich foods

(meat, fish/seafood, eggs, dairy products, and soy products), fruits and vegetables (carotenoid-

rich vegetables, leafy/other vegetables, seaweed, seeds, and fruits), as well as beverages (green

tea, coffee, and alcohol). The daily intake of each food group (g/d) was calculated by summing

the intake of included food items. The intake of each food item was calculated by multiplying

the food intake frequency (per day) by the standard portion size (in grams) set for the SQFFQ

nutrition calculation. If the intake frequency was less than once per day, a conversion weight

was assigned (never or seldom: 0.05, 1 to 3 times per month: 0.1, 1 to 2 times per week: 0.2, 3

to 4 times per week: 0.5, and 5 to 6 times per week: 0.8). Alcohol intake was calculated based

on the reported frequency and quantity consumed per occasion. The total consumption of dif-

ferent kinds of alcohol was calculated according to the percentage of ethanol and shown in

comparison to Japanese sake. We finally focused on the three categories (protein-rich foods,

fruits and vegetables, and beverages) that were suitable for identifying food biomarkers using

CE-MS. Seaweed and seeds, which had a very low intake among the target population, were

excluded from the analysis.

Statistical analysis

First, we examined the characteristics of the study population by total and sex-specific data.

Data with normal distributions are reported as means and standard deviations (SDs), while

skewed data are reported as medians and interquartile ranges (IQRs). For the population

intake status of the 17 food groups, we calculated means and 10th-90th percentile ranges for

both total and sex-specific data.

For metabolome data, we excluded metabolites which had plasma concentrations below the

assay limit of detection (LOD) in more than 60% of the entire study population, and 94 sub-

stances (54 anions and 40 cations) were assessed in the final analysis (the list of metabolites is

shown in S3 Table). For samples with undetectable levels below the LOD, values were imputed

using half of the LOD values.

Firstly, a principal component analysis was performed to detect outliers, and two samples

were excluded from the analysis beforehand (see details of outlier detection in S2 Fig). Since

plasma metabolite concentrations are multivariate data with relatively strong correlations

between substances which might change simultaneously due to biochemical interactions in

vivo, we used the PLS-R model to select metabolites that greatly contributed to responses to

food intake. Then, PLS-R was performed using the Nonlinear Iterative Partial Least Squares

algorithm [30]. In this procedure, the intake of each food item was treated as a continuous

response variable X, and the 94 metabolites were dealt with as continuous predictor variables

Y. All response and predictor variables were log-transformed and standardized. For each food

group, observations without responses to food intake were treated as missing values. For alco-

hol, only data obtained from habitual male drinkers (n = 2,449) were used.

To determine the optimal number of factors required to avoid model over-fitting, leave-

one-out cross-validation (LOO-CV) was performed. Using the Van der Voet test, the optimal

factor number for each food group was provided with the critical value of p> 0.1 for Hotell-

ing’s T2 statistic. For cases in which the optimal factor was less than two, the factor number

was set to two. The explained variation in the X matrix (R2X), the explained variation in the Y
matrix (R2Y), the predicted variation in the Y matrix (Q2) and their cumulative values were cal-

culated to confirm the goodness-of-fit of the models. In a PLS-R model, R2Y is the proportion

of variance in the dependent factors that is predictable from the independent factors, while Q2
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is the R2 when the model built on the training set is applied to the test set. Adding a factor

always raises R2Y, whereas Q2 does not raise in case of over-fitting. Therefore, the closer the

cumulative Q2 is to 1, the better the predictive performance of the model. The contribution of

individual metabolites in the metabolic signature for each food group were evaluated from var-

iable importance in projection (VIP) scores and positive PLS coefficients. To further comple-

ment this, the associations between food intake and plasma metabolite levels were assessed

with partial rank-order Spearman correlation coefficients, controlling for sex, total physical

activity levels, and smoking status as potential confounders. Statistical analyses were per-

formed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA), and JMP version 15 (SAS

Institute Inc., Cary, NC, USA) was used for outlier detection to visualize the results.

Results

Participants’ characteristics

Table 1 shows the characteristics of the study population. The mean age was 57.8 ± 8.2 years,

and the mean BMI was 23.3 ± 3.3 kg/m2, which was within the Japanese standard range (18.5–

25 kg/m2). The population showed general sex differences among Japanese people. That is,

while males were more likely to have a BMI that fell within the overweight range, females were

more likely to have a BMI that fell within the underweight range. Moreover, males were likely

to have much higher current smoking and habitual drinking rates than females. Concerning

nutrition status, males were more likely to have high energy intake and carbohydrate ratio and

women were more likely to have a high lipid ratio.

Table 1. Characteristics of the target population.

Characteristics Mean (SD) / Median (IQR) / Parcentage

All Male Female

n = 7,012 n = 3,198 n = 3,814

Age years 57.8 (8.2)a 57.7 (8.3) 57.9 (8.1)

BMI kg/m2 23.3 (3.3) 23.9 (3.1) 22.8 (3.4)

Energy intake kcal/d 1,761 (374) 1,974 (386) 1,583 (250)

Alcohol intaked g/d 1.3 (0.0–25.3)b 23.9 (2.1–47.7) 0.0 (0.0–2.0)

Total physical activity MET・hours/w 11.0 (4.6–21.0) 11.6 (4.6–24.0) 10.1 (4.5–19.6)

Smoking 17.1 %c 31.9 % 4.7 %

Ex-smoker 27.1 % 49.0 % 8.8 %

Drinking 50.8 % 76.9 % 29.0 %

BMI overweight 27.8 % 33.3 % 23.2 %

BMI underweight 5.2 % 2.6 % 7.4 %

Nutrition status:

Protein ratio %E 14.0 (1.9) 13.5 (1.8) 14.3 (1.8)

Fat ratio %E 25.3 (6.0) 22.4 (5.5) 27.7 (5.3)

Carbohydrate ratio %E 60.7 (7.1) 64.0 (6.6) 58.0 (6.3)

Total dietary fiber g/d 11.8 (3.6) 10.8 (3.2) 12.6 (3.8)

NaCl g/d 9.4 (2.1) 9.6 (2.2) 9.3 (2.1)

Cholesterol mg/d 239 (71) 236 (72) 242 (71)

BMI, body mass index.
a Mean, standard deviation in parentheses (all such values).
b Median, 25th-75th percentiles in parentheses (all such values).
c Percentage for categorical variables (all such values).
d Values are shown as ethanol equivalent.

https://doi.org/10.1371/journal.pone.0246456.t001
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Table 2 shows the distribution of food classification and the mean daily intake for each food

group among the population. All grouped food items are common foodstuffs that are usually

eaten in a typical Japanese diet. Overall, the population had a high rice intake as staple food

compared with bread and noodles, and the participants obtained more protein from fish and

soy products than from meat. There were some sex differences in food intake; while males

were more likely to consume higher amounts of rice and alcohol, females were more likely to

consume more fruits, vegetables, and dairy products. Detailed information is shown in the S6

Table.

Identification of food intake biomarkers

To avoid model over-fitting, we performed the LOO-CV and Van der Voet test, which was

proposed as a statistical test with the T2 statistic for comparing the predicted residual sum of

squares from different models. The PLS-R analyses resulted in final models with a cumulative

R2X range of 0.11–0.24, a cumulative R2Y range of 0.05–0.29, and a cumulative Q2 range of

0.01–0.53. The food groups could be classified into three predictive performance levels: the

Table 2. Food classification and population intake status.

Food group Food item on FFQ Mean (10th-90th range)a

All Male Female

n = 7,012 n = 3,198 n = 3,814

Energy-giving foods

Rice Rice g/d 394 (188 - 600) 485 #### 680) 317 (165

-

450)

Other grains/potatoes Bread, noodles, soba, potatoes g/d 129 (72 - 204) 131 (68 - 215) 127 (72 - 195)

Confectionery Cake, Japanese traditional sweets g/d 21 (7 - 42) 18 (7 - 28) 24 (10 - 47)

Oil Butter, margarine, mayonnaise, oil for deep fried/stir fried g/d 14 (6 - 24) 12 (5 - 22) 15 (6 - 25)

Protein-rich foods

Meat Beef/pork, chicken, liver, ham/sausage g/d 41 (17 - 69) 39 (17 - 69) 42 (17 - 70)

Fish/seafood Fish, shellfish, squid/shrimp/crab/octopus, fish roe, processed fish food,

caned tuna

g/d 62 (28 - 98) 62 (28 - 100) 62 (27 - 97)

Eggs Eggs g/d 19 (4 - 40) 18 (4 - 40) 19 (8 - 40)

Dairy products Milk, yogurt g/d 122 (13 - 255) 99 (13 - 210) 142 (26 - 255)

Soy products Soybeans, tofu, fermented soy food, fried soy product g/d 112 (41 - 195) 111 (41 - 195) 113 (42 - 194)

Fruits/vegetables

Carotenoid-rich

vegetables

Pumpkin, carrot, broccoli, green leafy vegetables, other carotenoid-rich

vegetables

g/d 78 (27 - 146) 63 (22 - 116) 92 (34 - 166)

Other vegetables Cabbage, Japanese radish, dried radish, burdock, other light vegetables,

mushroom

g/d 78 (28 - 140) 61 (24 - 111) 93 (35 - 157)

Seaweed Seaweed g/d 2 (1 - 4) 2 (1 - 4) 2 (1 - 5)

Fruits Mandarin/orange/grapefruit, other fruits g/d 55 (13 - 125) 41 (13 - 89) 66 (17 - 136)

Seeds Peanuts/almond g/d 3 (1 - 4) 3 (1 - 4) 3 (1 - 4)

Beverages

Green tea Green tea g/d 230 (11 - 600) 220 (11 - 660) 239 (10 - 600)

Coffee Coffee g/d 146 (10 - 300) 134 (10 - 300) 156 (10 - 300)

Alcoholb Sake, beer, whiskey, wine, shochu, chuhai g/d 106 (0 - 337) 199 (0 - 480) 29 (0 - 93)

FFQ, food frequency questionnaire.
a Values are presented as mean and 10th-90th percentiles in parentheses.
b Values are calculated according to the percentage of ethanol and shown in comparison to sake.

https://doi.org/10.1371/journal.pone.0246456.t002
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lower level for eggs (Q2
cum 0.02 for the final model), green tea (Q2

cum 0.05), and meat (Q2
cum

0.07); the middle level for fish/seafood (Q2
cum 0.21), soy products (Q2

cum 0.23), carotenoid-

rich vegetables (Q2
cum 0.28), other vegetables (Q2

cum 0.31), and dairy (Q2
cum 0.33); and the

higher level for fruit (Q2
cum 0.47), alcohol (Q2

cum 0.53), and coffee (Q2
cum 0.55). Most valida-

tion sets were fitted reasonably for studying fasting concentrations by self-reported FFQs,

which are commonly reported with lower validation sets than under conditions of rapid

intake. Details of the CV analyses of the goodness-of-fit are shown in S3 Fig and S4 Table.

Compounds that contributed to each food intake with high VIP are shown in Table 3.

While the VIP score is generally used for screening variables with PLS modeling, the score is a

relative value and has a large variation due to the variable preprocessing method. Therefore,

metabolites that are shown to have predominance by univariate and/or multivariate analyses

are more likely to be reliable [31]. Important metabolites were selected by referring to VIP

scores and PLS coefficients as well as supplementary Spearman’s correlation coefficients. Rela-

tionships among them for the characteristic food groups are illustrated in Fig 1. The correla-

tion matrix diagram is shown in Fig 2.

Metabolites with specificities of a VIP score� 1.5 and PLS coefficient� 0.3 were more

secure than the others as candidate compounds, considering the multiple evaluations (Fig 1).

Thus, we identified a total of 21 metabolites with the criteria as candidate habitual food intake

markers for nine food groups in three categories, including protein-rich food, fruit/vegetables,

and beverages. Major possible markers for protein-rich food intake were hydroxyproline (VIP

score 2.66) and 3-methylhistidine (3-MH; VIP score 2.11) for meat, trimethylamine-N-oxide

(TMAO; VIP score 2.63) for fish/seafood, and choline (VIP score 2.88) for eggs. In common

with these sources of animal protein, 2-aminobutyrate (2-AB) and creatine were substances

that were related to changes in intake. Galactarate (VIP score 2.14), threonate (VIP score 1.97),

and phenylalanine (VIP score 1.95) were marker candidates related to dairy intake. On the

other hand, cystine (VIP score 1.73) and betaine (VIP score 1.53) were metabolites related to

the intake of soybean and soy products. Notable metabolites common to the intake of caroten-

oid-rich vegetables and other vegetables were threonate (VIP scores 2.23 and 1.85, respec-

tively) and galactarate (VIP scores 2.06 and 1.51, respectively). Also, proline betaine (VIP score

3.80) was a prominent candidate marker for the intake of fruits. For beverages, metabolites

such as quinate (VIP score 4.59), trigonelline (VIP score 3.13), and hippurate (VIP score 1.88)

showed a relation with coffee consumption. Pipecolate (VIP score 2.78), and 2-AB (VIP score

1.92) were closely related to alcohol metabolite concentrations (see more details of the results

in the S5 Table).

Discussion

A lot of pioneering efforts of dietary biomarkers have been reported so far, aiming at several

applications, such as objective quantification of specific metabolites related to food intake [12,

15], identification of proper dietary patterns by interventions [13, 14, 17, 32], and dietary pro-

filing in epidemiological studies [32, 33]. Furthermore, large-scale metabolomics studies across

a wide range of countries and regions have reported extensive investigations, to clarify the rela-

tionships between food intake, metabolites, and disease risk. For instance, the International

Study of Macronutrients and Micronutrients and Blood Pressure (INTERMAP) [16, 18, 34,

35] reported that significant relationship of metabolic profiles associated with diet, xenobiotics

and blood pressure levels among populations in UK, US, China and Japan, whereas the Euro-

pean Prospective Investigation into Cancer and Nutrition (EPIC) [17, 19, 36, 37] has revealed

that the metabolic signatures were affected by specific food consumption, such as meat, alco-

hol, and coffee, through the dietary assessments across four European countries. For
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Table 3. Promising food biomarker candidates (n = 7,012).

Food

group

Metabolite Sub

Classa

PLS-Rb rsd

VIP Coeff Q2
cum

c

Meat

Hydroxyproline AA 2.66 0.07 0.07 0.09

3-Methylhistidine AA 2.11 0.06 0.08

beta-Alanine AA 2.05 0.05 0.04

2-Aminobutyrate AA 2.01 0.05 0.05

Creatine AA 1.99 0.06 0.05

Carnitine AA 1.7 0.04 0.03

Fish/seafood

Creatine AA 3.19 0.1 0.21 0.18

Trimethylamine-N-oxide AO 2.63 0.09 0.15

Cystine AA 2.26 0.07 0.12

2-Hydroxybutyrate AA 1.73 0.04 0.11

Isethionate AHA 1.55 0.03 0.08

Glucuronate CHO 1.43 0.04 0.13

2-Aminobutyrate AA 1.36 0.03 0.07

Uridine PN 1.32 0.03 0.06

Guanidinosuccinate AA 1.21 0.02 0.07

Eggs

Choline QA 2.88 0.05 0.01 0.06

2-Aminobutyrate AA 2.4 0.04 -0.02 0.04

Betaine AA 2.14 0.04 0.05

Asparagine AA 1.66 0.02 0.02

Dairy

Galactarate CHO 2.14 0.08 0.33 0.09

Threonate CHO 1.97 0.07 0.09

Phenylalanine AA 1.95 0.08 0.08

Lysine AA 1.6 0.04 0.05

Tyrosine AA 1.53 0.04 0.02

Citrate TCA 1.47 0.07 0.07

Tryptophan AA 1.44 0.02 0.03

2-Aminobutyrate AA 1.31 0.05 0.07

Hippurate BA 1.27 0.05 0.08

Creatine AA 1.24 0.03 0.02

Soy products

Cystine AA 1.73 0.07 0.23 0.08

Betaine AA 1.53 0.06 0.07

Isethionate TCA 1.34 0.02 0.09

Creatine AA 1.34 0.05 0.08

Uridine PN 1.3 0.04 0.06

Citrate AA 1.25 0.04 0.06

Phenylalanine AA 1.25 0.03 -0.02

Glutamine AA 1.25 0.04 0.05

- - - - -

- - - - -

- - - - -

Food

group

Metabolite Sub

Classa

PLS-Rb rsd

Carotenoide-rich vegetables

Threonate CHO 2.23 0.07 0.28 0.09

Galactarate CHO 2.06 0.06 0.07

Creatine AA 1.8 0.06 0.05

Lysine AA 1.44 0.02 0.03

Cystine AA 1.4 0.04 0.07

Citrate TCA 1.33 0.04 0.06

Hippurate BA 1.29 0.04 0.07

Other vegetables

(Continued)
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population profiling of dietary habits, it is essential to accumulate results from diverse groups

to consider such geographical differences. However, these pioneering efforts often assessed the

effects of short-term intake by intervention trials, or were mostly implemented among West-

ern populations.

Table 3. (Continued)

Creatine AA 2 0.07 0.31 0.05

Threonate CH 1.85 0.05 0.06

Galactarate CH 1.51 0.04 0.02

Cystine AA 1.4 0.04 0.06

Fruits

Proline betaine AA 3.8 0.23 0.47 0.27

Threonate CHO 2.3 0.09 0.15

Galactarate CHO 1.95 0.07 0.11

Tyrosine AA 1.49 0.03 0

Lysine AA 1.43 0.02 0.03

Cystine AA 1.29 0.04 0.06

Creatine AA 1.29 0.06 0.04

Citrate TCA 1.21 0.05 0.06

Green tea

Threonate CHO 3.54 0.06 0.05 0.11

Galactarate CHO 3.15 0.06 0.08

Cystine AA 1.93 0.04 0.07

Creatine AA 1.87 0.03 0.06

2-Aminobutyrate AA 1.74 0.03 0.06

Trimethylamine-N-oxide AO 1.71 0.03 0.07

Proline betaine AA 1.68 0.03 0.05

2-Hydroxybutyrate AA 1.29 0.02 0.06

Coffee

Quinate ALC 4.59 0.29 0.55 0.39

Trigonelline AL 3.13 0.17 0.28

Hippurate BA 1.88 0.07 0.17

Leucine AA 1.34 0.02 0.01

Alcohole

Pipecolate AA 2.78 0.17 0.53 0.26

2-Aminobutyrate AA 1.92 0.12 0.17

Choline QA 1.87 0.09 0.15

Threonine AA 1.65 0.09 0.1

Carnitine AA 1.41 0.07 0.09

Tyrosine AA 1.34 0.06 0.08

Malate BHA 1.3 0.08 0.14

Creatine AA 1.24 0.04 0.09

PLS-R, partial least square regression; VIP, variable importance in projection; AA, amino acids, peptides, and analogs; CHO, carbohydrates and carbohydrate

conjugates; AO, aminoxides; AHA, alpha-hydroxy acids and derivatives; PN, pyrimidine nucleosides; QA, quaternary ammonium salts; TCA, tricarboxylic acids and

derivatives; BA, benzoic acids and derivatives; ALC, alcohols and polyols, and polyols; BHA, beta-hydroxy acids and derivatives.
a Reference: The Human Metabolome Database (https://hmdb.ca).
b Metabolites which indicate VIP scores� 1.2 and positive PLS coefficients � 0.02 are shown.
c Cumulative predicted variation in the Y matrix for optimal factor numbers, calculated as 1 –(the cumulative predicted residual sum of squares / the cumulative sum of

squares). The value indicates the predictive performance of the model. For cases with an optimal factor number of less than two, the factor number was set to two and

the result was shown in parentheses.
d Partial rank-order Spearman’s correlation coefficients between food consumption and metabolite concentration, controlling for sex, smoking, and physical activity

levels.
e Data of male drinkers (n = 2,449) were used in the analysis.

https://doi.org/10.1371/journal.pone.0246456.t003

PLOS ONE Metabolite biomarkers of food intake assessed via plasma metabolomics in Japan

PLOS ONE | https://doi.org/10.1371/journal.pone.0246456 February 10, 2021 9 / 21

https://hmdb.ca/
https://doi.org/10.1371/journal.pone.0246456.t003
https://doi.org/10.1371/journal.pone.0246456


To the best of our knowledge, this is the first result of a comprehensive search for the effects

of dietary intake on plasma metabolite concentrations in a free-living Japanese population.

Twenty-one metabolites were identified as candidate habitual dietary markers for nine food

Fig 1. Overview of food biomarker candidates assessed by PLS-R (n = 7,012). Relationships between the VIP score and the PLS coefficient are described

using Spearman’s correlation coefficients. The vertical axis corresponds to the VIP score, the horizontal axis corresponds to the PLS coefficient, and the area of

each circle corresponds to the correlation coefficient. Notable metabolites with VIP scores� 1.5 and PLS coefficients� 0.03 are highlighted. (A) meat, (B)

fish/seafood, (C) eggs, (D) dairy, (E) soy products, (F) carotenoid-rich vegetables, (G) fruits, (H) coffee, and (I) alcohol. PLS-R, partial least square regression;

VIP, variable importance in projection; TMAO, trimethylamine-N-oxide.

https://doi.org/10.1371/journal.pone.0246456.g001
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groups in three categories, as mentioned above. Most of the results were consistent with those

of previous studies conducted in Western countries, while some likely reflected the character-

istics of Japanese eating habits. These results demonstrated that dietary assessment was feasible

for assessing long-term habitual intake by plasma metabolome analysis. The metabolites were

likely exogenous dietary metabolites rather than endogenous metabolites. Since these disease

markers indicated possible correlations with the intake of specific foods, the results can be use-

ful references for considering the effects of dietary factors in further studies on disease

biomarkers.

Protein-rich foods

Meat. Meat intake biomarkers are important because meat consumption is likely to be

associated with the risk of various cancers and chronic diseases [38, 39]. Hydroxyproline,

3-MH, and beta-alanine were identified as metabolites specific to meat consumption.

Hydroxyproline is a metabolite of the nonessential amino acid proline and is mostly found in

Fig 2. Correlation matrix diagram of the relationship between food groups and metabolites (n = 7,012). This heatmap was generated with

partial rank-order Spearman correlation coefficients, controlling for sex, smoking, and total physical activity levels. (A) cation, (B) anion. a Data of

male drinkers (n = 2,449) were used in the analysis for alcohol.

https://doi.org/10.1371/journal.pone.0246456.g002
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the collagen in animal tissue. Circulating plasma hydroxyproline is mainly derived from the

diet, while some are synthesized from glutamate, arginine, and ornithine [40]. Proteins from

meat, poultry, and fish rather than plant-based proteins have been reported as great sources of

proline and hydroxyproline [41]. Other epidemiological studies have also identified the metab-

olites as potential biomarkers of meat consumption [42, 43].

3-MH is most often found in the muscle of animals; thus, its dietary sources are likely to be

mainly animal protein sources, such as meat and fish [42, 44–46]. Some studies have reported

that whereas 1-methylhistidine (1-MH) is more likely to reflect dietary factors, 3-MH concen-

trations in urine and plasma tend to reflect muscle catabolism and muscle mass [47, 48].

Meanwhile, other studies have indicated that excretion of both 1-MH and 3-MH into the

urine increases after meat intake [42, 45]. The cross-sectional EPIC study has also reported the

specificity of 3-MH in urine for poultry intake [37].

Similarly, beta-alanine, a structural isomer of alanine, is not a protein constituent amino

acid but a component of dipeptides of carnosine and anserine, most of which are present in

skeletal muscle [49]. Beta-alanine intake in the diet is higher when consuming animal protein

foods than consuming plant-based foods; thus, the metabolite has been considered as a poten-

tial biomarker for the consumption of meat, particularly red meat [43].

Also, our result showed that creatine was a potential contributor to the discriminability of

animal protein intakes, such as meat and fish consumption. Plasma and urinary concentra-

tions of creatine and creatinine are generally used as biochemical indicators of health statuses,

such as renal function and muscle mass [50], whereas relatively high amounts of the compo-

nents are also found in dietary sources such as meat and fish [51, 52]. Dietary profiling based

on concentrations of creatine and creatinine in biofluids has already been reported in compar-

ing dietary patterns between different populations [34, 44–46].

Fish/Seafood. TMAO concentrations increased with the intake of fish/seafood. TMAO is

a non-protein amino acid that relates to the function of regulating osmotic pressure in fish.

Several studies have already identified such an association between fish/seafood intake and

TMAO concentrations in plasma and urine samples [37, 48, 53]. Incidentally, some other stud-

ies have revealed that plasma TMAO concentrations are positively associated with cardiovas-

cular disease (CVD); hence, the metabolite is likely to be regarded as a potential CVD risk

marker mainly among Western meat-eaters [54–56]. These studies explained that the underly-

ing mechanism involved the metabolism of choline and carnitine contained in foods such as

meat, eggs, and dairy products to trimethylamine (TMA) by gut microbiota and further

metabolism to TMAO in the human liver. Then, the circulating plasma TMAO in the vessels

promotes the up-regulation of macrophage scavenger receptors in the vessel, which are

involved in atherosclerosis [56]. As is the case for a region with a high fish intake like our

study area, however, the increase in the plasma concentrations of TMAO was likely to be

based on a diet containing free TMAO from seafood. As the typical inverse relationship

between fish intake and CVD risk [57, 58] contradicts the utility of TMAO concentrations as a

high-risk marker, the above risk supposition might need to be modified for populations with

high fish intake. Incidentally, the result of this study did not show a particular relationship

between TMAO concentrations and meat and/or egg consumption.

Other protein-rich foods. Choline showed a possible relationship with increasing egg

intake. Indeed, egg yolk is a known rich dietary source of choline and choline phospholipids

[59, 60]. The major metabolites related to the consumption of dairy products were galactarate,

threonate, and phenylalanine. Galactarate, a sugar acid, was likely formed from the oxidation

of plasma galactose, which is a monosaccharide decomposed from lactose abundant in dairy

products. Studies have revealed that urinary and plasma concentrations of galactarate were ele-

vated in healthy adults after dairy consumption [61, 62]. Threonate is also a sugar acid derived
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from the oxidation of threose (a pentose) and has also been reported as a metabolite of ascorbic

acid [63]. Phenylalanine, an essential amino acid, is a natural component of the breast milk of

mammals [64].

Cystine and betaine were metabolites related to the intake of soybean products rich in vege-

table proteins. Cystine is a dimeric nonessential amino acid formed by the oxidation of cyste-

ine and is abundant in soybeans as well as many other foods. On the other hand, while raw

soybeans contain a large amount of choline, which is a precursor of betaine, tofu, a soybean

product, tends to contain more betaine [59]. Choline, betaine, and methionine are involved in

betaine metabolism in vivo [60], and betaine is a component that enhances the rotation of the

remethylation pathway of methionine metabolism [65]. Therefore, the metabolic pathway of

methionine-homocysteine-cysteine, whose antagonism is a risk factor for various diseases,

may likely be smoothly accelerated among soybean consumers.

An increase in 2-AB concentrations was related to the consumption of foods rich in animal

proteins such as meat, fish, and eggs, consistent with the results of previous epidemiological

studies [22, 34, 46]. However, it might result from endogenous metabolic changes caused by

the daily overconsumption of foods and drinks that accompany high meat intake, and not a

direct influence of dietary animal protein components. 2-AB is a known intermediate metabo-

lite derived from the catabolism of the essential amino acids methionine, threonine, and ser-

ine, possibly influenced by a change in the pathway of hepatic glutathione metabolism [66].

2-AB has been reported as a biomarker associated with abnormal amino acid metabolism,

likely leading to chronic alcoholic and/or nonalcoholic liver disease caused by various lifestyle-

related diseases [67]. As described later, the plasma level of 2-AB also increased highly with

alcohol consumption in the present study.

Fruits and vegetables

Metabolites that were common to fruits and vegetables were threonate and galactarate, consis-

tent with the results of previous studies [14, 32, 34]. As mentioned above, threonate, a sugar

acid of threose, is also disassembled from ascorbic acid. It is generally known that fruits and

vegetables are rich in ascorbic acid [63]; thus, the component was likely to influence the

changes in threonate concentrations. Besides, the plasma concentrations of galactarate

(mucate), a sugar acid of galactose, also increased with fruit and vegetable consumption. The

metabolite is found in many foods that contain mucins, such as vegetables, potatoes, and root

vegetables, as well as ripe fruits that are high in pectin (such as pear, peach, and pomes). Pectin

is a structural acidic heteropolysaccharide present in the primary cell walls of plants, in which

mucate exists in the form of the polymer polygalacturonate [68].

A metabolite closely related to fruit intake was proline betaine, which is known to be one of

the most secure food biomarkers in plasma and urine, particularly for the consumption of cit-

rus fruits such as oranges and grapefruits [8, 35, 69]. The metabolite is a rich component of cit-

rus fruits and so may serve as an indicator of a healthy diet as an intake marker. Mandarin

oranges are one of the most commonly consumed fruits in Japan, and the FFQ results also

confirmed that citrus fruits including mandarin were consumed in large amounts in the survey

population. Therefore, proline betaine was shown to be a potential biomarker for citrus fruit

consumption in the Japanese population as well.

Beverages

Three substances (quinate, trigonelline, and hippurate) were prominent metabolites related to

coffee consumption, consistent with previous reports [36, 70, 71]. Esters of quinate and caffe-

ate are abundant in coffee beans in the form of chlorogenate, which is the most commonly
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known coffee polyphenol and easily pyrolytically decomposed into these two compounds by

heating [72]. Besides, trigonelline is a methyl betaine of nicotinate (niacin), which is also

found in high levels in coffee beans [36]. Hippurate is known to exist in the urine of herbi-

vores, and it has also been reported that it is biosynthesized from quinate by the gut microbiota

[73].

Endogenous metabolites such as pipecolate and 2-AB, which are likely to indicate chronic

metabolic changes, were shown to be markers of alcohol consumption. Plasma amino acid

abnormalities have been frequently reported in alcoholics. Pipecolate is a metabolite of the

essential amino acid lysine, generally found in urine and plasma. Studies have shown that

plasma concentrations of pipecolate are elevated in patients with chronic liver diseases [74].

Besides, as mentioned earlier, the higher plasma concentrations of 2-AB with habitual alcohol

intake may reflect altered glutathione metabolism and lipid peroxidation due to alcoholic liver

dysfunction [66]. Indeed, comparative studies of healthy populations have suggested that

active drinkers without the liver disease have higher 2-AB concentrations than non-drinkers

[22, 75].

We avoided identifying potential markers for green tea consumption. The intake of green

tea, the most common beverage consumed while eating in Japan, tends to increase with the

frequency of meals in Japan. Therefore, metabolites with high VIP scores such as threonate,

galactarate, proline betaine, cystine, and TMAO might reflect the relations with Japanese die-

tary patterns that are rich in fish and vegetables, rather than specific for green tea itself. Also,

although tea catechins were likely to be characteristic components of green tea [76], they were

not suitable for measurement via CE-MS because they are non-polar high-molecular-weight

polyphenols.

Strengths and limitations

The present study had several strengths that should be noted. Being part of a large cohort

study, there were enough data to draw a statistically supported and meaningful conclusion on

the behavior of a large population. The study was also carefully designed for both epidemiolog-

ical and metabolomics analyses. This indicates that there was an advantage in identifying cir-

culating blood metabolites in long-term dietary habits in free life, which was carried out with

minimal metabolic variations under a strict protocol by a non-targeted approach. Moreover,

the study was carefully executed under overnight fasting conditions to limit the short-term

effects of food intake.

Also, our study was pioneer research that aimed to clarify candidate food biomarkers in the

Asian population, particularly habitual Japanese characteristics, although its findings may have

limited generalizability. The study area was a rural town chosen for its steady population that

remained less affected by rapid Westernization, unlike other urban areas. Therefore, it was

ideal for research on long-term eating habits. Our findings will also help researchers to con-

sider the influence of dietary factors in exploring biomarkers in various fields.

Despite these strengths, the study had some limitations. While large-scale epidemiological

studies such as the cohort study on which our cross-sectional study was based have the great

advantage of deriving meaningful knowledge from a large amount of data, it was necessary to

adopt practical methods for collecting such data. Dietary assessment by FFQ, which represents

participants’ habitual dietary intake over a longer time, is generally regarded as advantageous

in terms of cost and time. However, the method tends to have inferior accuracy randomly as

well as lower estimates of intake systematically. Having said this, in the statistical analysis of

the present study, a relative log-normalized amount of each food was used instead of the abso-

lute amount. Thus, it may have been affected by random errors rather than systematic errors.
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An assessment categorized by food groups is likely to make it more challenging to distin-

guish the effects of specific food items that may differentially associate with metabolites, but it

may also improve the interpretability of dietary status based on complex intake of various food

items. Thus, we can say it is suitable for practical applications to assess long-term dietary hab-

its. Indeed, the approach by food groups has been adopted to identify habitual food intake bio-

markers in typical epidemiological studies [14, 64, 71].

Although CE-MS is an optimal metabolomics measurement technology with high resolu-

tion for capturing intracellular metabolites, it was unsuitable for measuring the levels of low

polar molecules like lipids and high-molecular-weight polyphenols, which are associated with

the intake of various foods. It is difficult to completely cover the metabolite profile with one

platform; thus, dietary biomarker identification consisting of a wider range of chemical classes

may need to be assessed with an integrated approach.

Another important question is whether the metabolite signatures detected statistically here

could be used as dietary biomarkers. Among various types of dietary biomarkers defined pre-

viously [8, 9], it is arguable whether the metabolite signatures we observed could be defined as

biomarkers of intake (i.e., concentration of replacement dietary biomarker). Follow-up surveys

are ongoing now to estimate diet-disease risk association as well as to examine the function,

mechanism of action, and the validity and reproducibility of the objective quantities. Effects of

endogenous and extrinsic factors on metabolite concentrations are also to be evaluated.

Finally, dietary biomarkers are influenced not only by the intake of individual foods but

also by the interaction of sex-specific and/or personal dietary behaviors and preferences.

Therefore, it is important to consider such other factors in future studies of dietary biomark-

ers. The effects of gut microbiota and genetic factors on a diet also cannot be overlooked.

Conclusions

In conclusion, a total of 21 metabolites were identified as potential habitual dietary biomarkers

for nine food groups in a Japanese community-dwelling population. In particular, hydroxy-

proline for meat, TMAO for fish, choline for eggs, galactarate for dairy, cystine and betaine for

soy products, threonate and galactarate for carotenoid-rich vegetables, proline betaine for

fruit, quinate for coffee, and pipecolate for alcohol were considered as prominent food intake

markers of Japanese eating habits. These results will open the way for the application of new

reliable dietary assessment tools by objective quantification of biofluids. Our findings will also

help to consider the influence of dietary factors in exploring biomarkers in various fields.
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30. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and

Intelligent Laboratory Systems. 2001; 58(2):109–30. https://doi.org/10.1016/S0169-7439(01)00155-1

31. Li C, Zhang J, Wu R, Liu Y, Hu X, Yan Y, et al. A novel strategy for rapidly and accurately screening bio-

markers based on ultraperformance liquid chromatography-mass spectrometry metabolomics data.

Anal Chim Acta. 2019; 1063:47–56. https://doi.org/10.1016/j.aca.2019.03.012 PMID: 30967185

32. Vazquez-Fresno R, Llorach R, Urpi-Sarda M, Lupianez-Barbero A, Estruch R, Corella D, et al. Metabo-

lomic pattern analysis after mediterranean diet intervention in a nondiabetic population: a 1- and 3-year

follow-up in the PREDIMED study. Journal of proteome research. 2015; 14(1):531–40. https://doi.org/

10.1021/pr5007894 PMID: 25353684

33. Ismail NA, Posma JM, Frost G, Holmes E, Garcia-Perez I. The role of metabonomics as a tool for aug-

menting nutritional information in epidemiological studies. Electrophoresis. 2013; 34(19):2776–86.

https://doi.org/10.1002/elps.201300066 PMID: 23893902

34. Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, et al. Assessment of analytical

reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research:

the INTERMAP Study. Analytical chemistry. 2006; 78(7):2199–208. https://doi.org/10.1021/ac0517085

PMID: 16579598

35. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas ME, Kochhar S, et al. Metabolic profiling strategy

for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. The American

journal of clinical nutrition. 2010; 92(2):436–43. https://doi.org/10.3945/ajcn.2010.29672 PMID:

20573794

PLOS ONE Metabolite biomarkers of food intake assessed via plasma metabolomics in Japan

PLOS ONE | https://doi.org/10.1371/journal.pone.0246456 February 10, 2021 18 / 21

https://doi.org/10.3390/nu10050654
http://www.ncbi.nlm.nih.gov/pubmed/29789452
https://doi.org/10.1021/pr100798r
http://www.ncbi.nlm.nih.gov/pubmed/20853909
https://doi.org/10.3390/nu9070683
http://www.ncbi.nlm.nih.gov/pubmed/28665358
https://doi.org/10.1007/s12199-015-0494-y
https://doi.org/10.1007/s12199-015-0494-y
http://www.ncbi.nlm.nih.gov/pubmed/26459263
https://doi.org/10.1002/elps.201400600
https://doi.org/10.1002/elps.201400600
http://www.ncbi.nlm.nih.gov/pubmed/25820922
https://doi.org/10.1371/journal.pone.0191230
http://www.ncbi.nlm.nih.gov/pubmed/29346414
https://doi.org/10.1007/s11306-009-0178-y
https://doi.org/10.1007/s11306-009-0178-y
http://www.ncbi.nlm.nih.gov/pubmed/20300169
https://doi.org/10.1093/jjco/28.11.679
http://www.ncbi.nlm.nih.gov/pubmed/9861235
http://www.ncbi.nlm.nih.gov/pubmed/15075003
https://doi.org/10.1038/sj.ejcn.1601215
https://doi.org/10.1038/sj.ejcn.1601215
http://www.ncbi.nlm.nih.gov/pubmed/11528486
https://doi.org/10.2188/jea.17.100
http://www.ncbi.nlm.nih.gov/pubmed/17545697
https://doi.org/10.1016/S0169-7439%2801%2900155-1
https://doi.org/10.1016/j.aca.2019.03.012
http://www.ncbi.nlm.nih.gov/pubmed/30967185
https://doi.org/10.1021/pr5007894
https://doi.org/10.1021/pr5007894
http://www.ncbi.nlm.nih.gov/pubmed/25353684
https://doi.org/10.1002/elps.201300066
http://www.ncbi.nlm.nih.gov/pubmed/23893902
https://doi.org/10.1021/ac0517085
http://www.ncbi.nlm.nih.gov/pubmed/16579598
https://doi.org/10.3945/ajcn.2010.29672
http://www.ncbi.nlm.nih.gov/pubmed/20573794
https://doi.org/10.1371/journal.pone.0246456


36. Rothwell JA, Keski-Rahkonen P, Robinot N, Assi N, Casagrande C, Jenab M, et al. A Metabolomic

Study of Biomarkers of Habitual Coffee Intake in Four European Countries. Molecular nutrition & food

research. 2019; 63(22):e1900659. https://doi.org/10.1002/mnfr.201900659 PMID: 31483556

37. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, et al. A metabolomic study of

biomarkers of meat and fish intake. The American journal of clinical nutrition. 2017; 105(3):600–8.

https://doi.org/10.3945/ajcn.116.146639 PMID: 28122782

38. Abid Z, Cross AJ, Sinha R. Meat, dairy, and cancer. The American journal of clinical nutrition. 2014;

100 Suppl 1(1):386s–93s. https://doi.org/10.3945/ajcn.113.071597 PMID: 24847855

39. Wolk A. Potential health hazards of eating red meat. J Intern Med. 2017; 281(2):106–22. https://doi.

org/10.1111/joim.12543 PMID: 27597529

40. Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, et al. Proline and hydroxyproline

metabolism: implications for animal and human nutrition. Amino acids. 2011; 40(4):1053–63. https://

doi.org/10.1007/s00726-010-0715-z PMID: 20697752

41. Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, et al. Proline metabolism in the conceptus:

implications for fetal growth and development. Amino acids. 2008; 35(4):691–702. https://doi.org/10.

1007/s00726-008-0052-7 PMID: 18330497

42. Cross AJ, Major JM, Sinha R. Urinary biomarkers of meat consumption. Cancer epidemiology, biomark-

ers & prevention: a publication of the American Association for Cancer Research, cosponsored by the

American Society of Preventive Oncology. 2011; 20(6):1107–11. https://doi.org/10.1158/1055-9965.

EPI-11-0048 PMID: 21527577

43. Ross AB, Svelander C, Undeland I, Pinto R, Sandberg AS. Herring and Beef Meals Lead to Differences

in Plasma 2-Aminoadipic Acid, beta-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic

Acid Concentrations in Overweight Men. The Journal of nutrition. 2015; 145(11):2456–63. https://doi.

org/10.3945/jn.115.214262 PMID: 26400963

44. Cross AJ, Major JM, Rothman N, Sinha R. Urinary 1-methylhistidine and 3-methylhistidine, meat intake,

and colorectal adenoma risk. European journal of cancer prevention: the official journal of the European

Cancer Prevention Organisation (ECP). 2014; 23(5):385–90. https://doi.org/10.1097/cej.

0000000000000027 PMID: 24681531

45. Dragsted LO. Biomarkers of meat intake and the application of nutrigenomics. Meat science. 2010; 84

(2):301–7. https://doi.org/10.1016/j.meatsci.2009.08.028 PMID: 20374789

46. Altorf-van der Kuil W, Brink EJ, Boetje M, Siebelink E, Bijlsma S, Engberink MF, et al. Identification of

biomarkers for intake of protein from meat, dairy products and grains: a controlled dietary intervention

study. The British journal of nutrition. 2013; 110(5):810–22. https://doi.org/10.1017/

S0007114512005788 PMID: 23452466

47. Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW. Urinary 1-methylhistidine is

a marker of meat consumption in Black and in White California Seventh-day Adventists. American jour-

nal of epidemiology. 2000; 152(8):752–5. https://doi.org/10.1093/aje/152.8.752 PMID: 11052553

48. Lloyd AJ, Fave G, Beckmann M, Lin W, Tailliart K, Xie L, et al. Use of mass spectrometry fingerprinting

to identify urinary metabolites after consumption of specific foods. The American journal of clinical nutri-

tion. 2011; 94(4):981–91. https://doi.org/10.3945/ajcn.111.017921 PMID: 21865330

49. Gil-Agusti M, Esteve-Romero J, Carda-Broch S. Anserine and carnosine determination in meat sam-

ples by pure micellar liquid chromatography. Journal of chromatography A. 2008; 1189(1–2):444–50.

https://doi.org/10.1016/j.chroma.2007.11.075 PMID: 18076890

50. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiological reviews. 2000; 80

(3):1107–213. https://doi.org/10.1152/physrev.2000.80.3.1107 PMID: 10893433

51. Brosnan ME, Brosnan JT. The role of dietary creatine. Amino acids. 2016; 48(8):1785–91. https://doi.

org/10.1007/s00726-016-2188-1 PMID: 26874700

52. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, et al. Susceptibility of human met-

abolic phenotypes to dietary modulation. Journal of proteome research. 2006; 5(10):2780–8. https://

doi.org/10.1021/pr060265y PMID: 17022649

53. Lenz EM, Bright J, Wilson ID, Hughes A, Morrisson J, Lindberg H, et al. Metabonomics, dietary influ-

ences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British

and Swedish subjects. Journal of pharmaceutical and biomedical analysis. 2004; 36(4):841–9. https://

doi.org/10.1016/j.jpba.2004.08.002 PMID: 15533678

54. Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot study. Food and

chemical toxicology: an international journal published for the British Industrial Biological Research

Association. 1999; 37(5):515–20. https://doi.org/10.1016/s0278-6915(99)00028-9 PMID: 10456680

PLOS ONE Metabolite biomarkers of food intake assessed via plasma metabolomics in Japan

PLOS ONE | https://doi.org/10.1371/journal.pone.0246456 February 10, 2021 19 / 21

https://doi.org/10.1002/mnfr.201900659
http://www.ncbi.nlm.nih.gov/pubmed/31483556
https://doi.org/10.3945/ajcn.116.146639
http://www.ncbi.nlm.nih.gov/pubmed/28122782
https://doi.org/10.3945/ajcn.113.071597
http://www.ncbi.nlm.nih.gov/pubmed/24847855
https://doi.org/10.1111/joim.12543
https://doi.org/10.1111/joim.12543
http://www.ncbi.nlm.nih.gov/pubmed/27597529
https://doi.org/10.1007/s00726-010-0715-z
https://doi.org/10.1007/s00726-010-0715-z
http://www.ncbi.nlm.nih.gov/pubmed/20697752
https://doi.org/10.1007/s00726-008-0052-7
https://doi.org/10.1007/s00726-008-0052-7
http://www.ncbi.nlm.nih.gov/pubmed/18330497
https://doi.org/10.1158/1055-9965.EPI-11-0048
https://doi.org/10.1158/1055-9965.EPI-11-0048
http://www.ncbi.nlm.nih.gov/pubmed/21527577
https://doi.org/10.3945/jn.115.214262
https://doi.org/10.3945/jn.115.214262
http://www.ncbi.nlm.nih.gov/pubmed/26400963
https://doi.org/10.1097/cej.0000000000000027
https://doi.org/10.1097/cej.0000000000000027
http://www.ncbi.nlm.nih.gov/pubmed/24681531
https://doi.org/10.1016/j.meatsci.2009.08.028
http://www.ncbi.nlm.nih.gov/pubmed/20374789
https://doi.org/10.1017/S0007114512005788
https://doi.org/10.1017/S0007114512005788
http://www.ncbi.nlm.nih.gov/pubmed/23452466
https://doi.org/10.1093/aje/152.8.752
http://www.ncbi.nlm.nih.gov/pubmed/11052553
https://doi.org/10.3945/ajcn.111.017921
http://www.ncbi.nlm.nih.gov/pubmed/21865330
https://doi.org/10.1016/j.chroma.2007.11.075
http://www.ncbi.nlm.nih.gov/pubmed/18076890
https://doi.org/10.1152/physrev.2000.80.3.1107
http://www.ncbi.nlm.nih.gov/pubmed/10893433
https://doi.org/10.1007/s00726-016-2188-1
https://doi.org/10.1007/s00726-016-2188-1
http://www.ncbi.nlm.nih.gov/pubmed/26874700
https://doi.org/10.1021/pr060265y
https://doi.org/10.1021/pr060265y
http://www.ncbi.nlm.nih.gov/pubmed/17022649
https://doi.org/10.1016/j.jpba.2004.08.002
https://doi.org/10.1016/j.jpba.2004.08.002
http://www.ncbi.nlm.nih.gov/pubmed/15533678
https://doi.org/10.1016/s0278-6915%2899%2900028-9
http://www.ncbi.nlm.nih.gov/pubmed/10456680
https://doi.org/10.1371/journal.pone.0246456


55. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of

L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature medicine. 2013; 19(5):576–85.

https://doi.org/10.1038/nm.3145 PMID: 23563705

56. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphati-

dylcholine promotes cardiovascular disease. Nature. 2011; 472(7341):57–63. https://doi.org/10.1038/

nature09922 PMID: 21475195

57. He K, Song Y, Daviglus ML, Liu K, Van Horn L, Dyer AR, et al. Accumulated evidence on fish consump-

tion and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation. 2004; 109

(22):2705–11. https://doi.org/10.1161/01.CIR.0000132503.19410.6B PMID: 15184295

58. Morris MC, Manson JE, Rosner B, Buring JE, Willett WC, Hennekens CH. Fish consumption and car-

diovascular disease in the physicians’ health study: a prospective study. American journal of epidemiol-

ogy. 1995; 142(2):166–75. https://doi.org/10.1093/oxfordjournals.aje.a117615 PMID: 7598116

59. Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and beta-

ine in common foods. The Journal of nutrition. 2003; 133(5):1302–7. https://doi.org/10.1093/jn/133.5.

1302 PMID: 12730414

60. Cho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA, et al. Dietary choline and betaine

assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the

Framingham Offspring Study. The American journal of clinical nutrition. 2006; 83(4):905–11. https://

doi.org/10.1093/ajcn/83.4.905 PMID: 16600945
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