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Abstract

Background

The green bottle fly maggot, Lucilia sericata, is a species with importance in medicine, agri-

culture and forensics. Improved understanding of this species’ biology is of great potential

benefit to many research communities. MicroRNAs (miRNA) are a short non-protein coding

regulatory RNA, which directly regulate a host of protein coding genes at the translational

level. They have been shown to have developmental and tissue specific distributions where

they impact directly on gene regulation. In order to improve understanding of the biology of

L. sericatamaggots we have performed small RNA-sequencing of their secretions and tis-

sue at different developmental stages.

Results

We have successfully isolated RNA from the secretions of L. sericatamaggots. Illumina

small RNA-sequencing of these secretions and the three tissues (crop, salivary gland, gut)

revealed that the most common small RNA fragments were derived from ribosomal RNA

and transfer RNAs of both insect and bacterial origins. These RNA fragments were highly

specific, with the most common tRNAs, such as GlyGCC, predominantly represented by

reads derived from the 5’ end of the mature maggot tRNA. Each library also had a unique

profile of miRNAs with a high abundance of miR-10-5p in the maggot secretions and gut

and miR-8 in the food storage organ the crop and salivary glands. The pattern of small

RNAs in the bioactive maggot secretions suggests they originate from a combination of sali-

va, foregut and hindgut tissues. Droplet digital RT-PCR validation of the RNA-sequencing

data shows that not only are there differences in the tissue profiles for miRNAs and small
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RNA fragments but that these are also modulated through developmental stages of

the insect.

Conclusions

We have identified the small-RNAome of the medicinal maggots L. sericata and shown that

there are distinct subsets of miRNAs expressed in specific tissues that also alter during the

development of the insect. Furthermore there are very specific RNA fragments derived from

other non-coding RNAs present in tissues and in the secretions. This new knowledge has

applicability in diverse research fields including wound healing, agriculture and forensics.

Introduction
Lucilia sericata larvae are commonly known as green-bottle blowfly maggots and are an impor-
tant species in forensics, agriculture and biomedicine [1,2]. Their ability to assist in wound de-
bridement has been exploited for centuries and they are still used today in the treatment of
chronic skin wounds and ulcers to promote healing [3]. Lucilia have also proven useful in fo-
rensics for estimation of post-mortem intervals [4]. Conversely in agriculture, Lucilia, both
L. sericata and to a greater extent L. cuprina, are parasites of sheep causing blow-fly strike
which has detrimental economic effects worldwide [5,6].

Medicinal L. sericatamaggots are believed to have a multifactoral influence on wound heal-
ing. Initially believed to be due to the mechanical eating of dead tissue, (debridement), they are
now thought to mostly function through their biochemically active excretions and secretions
(ES) [7]. The ES has antimicrobial activity [8], protease activity to digest dead wound eschar
[9], and even has a direct effect on cells to promote skin wound healing [10]. Studies of L. seri-
cata ES have focused on the identification of molecules such as amino acids and fatty acids
which may play a role in the wound healing [11,12]. Proteins are also involved, for example, a
chymotrypsin is reported to degrade dead wound eschar and has the ability to break up bacteri-
al biofilms which are often formed when a wound is infected [13,14]. A nuclease has been iden-
tified that can also degrade bacteria biofilms by breaking down their DNA component [15].
The secretions from sibling species L. cuprina have also been reported to have anti-microbial
activity, suggesting that this may be a common feature of fly larvae [16].

The full genome for L. sericata is not publically available, only the mitochondrial genome is
published [17]. Some short DNA sequences have also been released for use in species identifi-
cation in forensics [1,18]. Due to the importance of this species, the transcriptomes of the de-
velopmental stages and dissected salivary glands have recently been published [19]. An
expressed sequence tag transcriptome has also been assembled for L. cuprina [20]. Gene ex-
pression analysis of Lucilia has already shown great value as it is accurate in developmental
stage estimation for use in forensics [21].

The small RNA profiles in multiple flying insects such as Drosophila [22], honey bee (Apis
Mellifera) [23] and mosquito (Anopheles; Aedes; Culex) [24,25] have recently added to the bet-
ter understanding of their development as well as ability to transmit various diseases as vectors.
Therefore, to broaden the biological knowledge of L. Sericata we have performed small RNA-
sequencing on their larvae tissues and ES. When the data was matched to known small RNA
databases we identified both common and tissue specific RNAs, derived from various families
of annotated small RNAs. The abundant small RNAs were then were assayed across develop-
mental stages of L. sericata and validated in the dissected tissues by droplet digital RT-PCR.
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Materials and Methods

Lucilia sericata
Eggs and Instar 2/3 larvae were provided for sterilisation and dissection by Consultant Ento-
mologist Dr Dallas Bishop, Upper Hutt, New Zealand. She also provided the developmental
stages of the insect, as determined by visual inspection of morphology, snap frozen on dry-ice.
The eggs were laid onto liver, removed and sent by overnight courier to our laboratory with an
ice-pack to delay hatching. A colony was also established in Auckland, using the same egg sup-
ply and rearing techniques, by Mr Vernon Tintinger. All eggs and larvae were maintained at
ambient temperature.

Larvae sterilisation
All equipment and reagents were autoclaved for sterility prior to use. Insect handling was per-
formed in a laminar flow hood and maggots were stored in a sealed box on plates at
room temperature.

Eggs were surface sterilised upon arrival approximately 16 hrs after oviposition to mimic
the human clinical application state by immersion in 1% sodium hypochlorite for 5min fol-
lowed by 5min in 70% EtOH with a final rinse in dH2O. Eggs were transferred to sterile 10%
sheep blood, BHI agar, Colombia blood agar base plates (CBB) (Per L: 7.7g calf brain, 9.8g beef
heart, 15g proteose peptone, 2g dextrose, 10g sodium chloride, 2.5g Disodium phosphate, 30g
agar, 10g pancreatic digest of casein, 5g yeast extract, 3g beefheart infusion, 1g corn starch,
100ml difibrinated sheep blood). Larvae were hatched in a sealed sterile box. After 48 hours the
instar 2 maggots were re-bleached briefly in 0.5% sodium hypocholorite and rinsed in 70%
EtOH as for the eggs and plated overnight on soy agar plates (Per L: 15g pancreatic digest of ca-
sein, 5g papaic digest of soybean, 5g sodium chloride, 15g Agar) to ensure the blood agar was
removed from their systems along with potential food-derived animal RNAs.

At each stage of growth, sample sterilised eggs/maggots were crushed and streaked on CBB
plates and grown at 37°C overnight to confirm there was no surface bacterial contamination.

Larvae dissection and excretion/secretion collection
On day three after eggs bleaching, at instar 2/3, maggots were used for collection of excretions
and secretions (ES) and dissections. Prior to use, maggots were again washed in 70% EtOH for
5 min, rinsed in dH2O and blotted dry.

To isolate the salivary glands, crop and gut we used a dissecting microscope. Maggots were
anaesthetised on ice and quickly placed in a sterile petri dish containing sterile water. Forceps
were used at the proximal and distal ends to hold the maggot and pull laterally, ensuring a
good hold on the mouthparts. Whole salivary glands, then the diverticulated foregut crop and
lastly gut were dissected out and placed into 0.5mL of Trizol LS (Fig. 1).

ES was collected in by placing batches of 50 larvae in 250μL dH2O at room temperature in
the dark for 1 hour. Maggots were removed and ES spun 5min 2,500g to pellet debris and fil-
tered through a 0.2μM syringe filter. Trizol LS was added at a volume of 3:1 as per
manufacturers recommendations.

Representative insects from each of the developmental stages (Fig. 1), as determined by time
post-hatching and larval size/morphology by Entomologist Dallas Bishop were snap frozen
and then homogenized in 1mL Trizol using a Bullet Blender storm.
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RNA isolation
RNA was extracted from the Trizol samples with a modified Purelink RNA mini kit (Life Tech-
nologies) protocol which ensures retention of the small RNA fraction by adding an equal vol-
ume of 100% EtOH to the aqueous phase prior to addition onto the filter column. RNA was
DNase I treated prior to sequencing using Turbo DNase-free (Ambion). RNA quantity and
quality were assessed by Nanodrop and Experion bioanalyser chip (BioRad).

2S rRNA depletion
Modified from the method of Seitz et. al. from Drosophila [26], a complementary biotinylated
oligo, 50-biotin-TCA ATG TCG ATA CAA CCC TCA ACC ATA TGT AGT CCA AGC A-3’,
was bound to magnetic beads to deplete tissue RNA (SG, Crop, Gut) of the abundant 2S rRNA
fragment. This oligo sequence was based on the most common 2S rRNA read identified in a
pilot sequencing run and identical to Drosophila.

20 pmol oligo synthesised by IDT was coupled to 0.8mg of M279 streptabeads beads (Life
Technologies, NZ) washed prior in 0.5xSSC, by mixing on ice for 30 min. Uncoupled oligos
were removed by placing the beads on a magnet and washing once with 0.5x SSC, resuspending
in a volume of 80μL and then incubating at 65°C for 5 min then quenching on ice.

Fig 1. Lifecycle and anatomy of Lucilia sericata. A. Lifecycle of the blow-fly from eggs through to adult. B. Anatomy of a maggot showing the location of the
gut, crop and salivary glands. The gut was sampled from the whole specimen shown. The crop is the round organ filled with air-bubbles which was further
dissected away from the mouthparts, highlighted by the dotted-line circle. The salivary glands are the Y-shaped tubes shown here encircled by dotted lines,
still attached to the mouthparts.

doi:10.1371/journal.pone.0122203.g001
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To the coupled beads we added 5μg total RNA denatured previously at 85°C for 5min, then
standing for one hour at 50°C. After depletion the rRNA bound beads were removed using a
magnet and the supernatant retained. RNA was extracted from the depleted RNA using an
Ambion miRvana column (Life Technologies, NZ) to enrich for the<200bp fraction as per
manufacturers instructions.

RNA sequencing
Sample inputs were 9.2ng enriched depleted SG, 25.4ng depleted gut, 58.0ng depleted crop,
246.8ng whole ES RNA, all collected from sterilised Instar 3 animals. Small RNA libraries were
prepared using a TruSeq small RNA sample preparation kit (Illumina) as standard and run on
a MiSeq with two samples per lane, 2x25bp paired end reads. Sequencing was performed as a
service by New Zealand Genomics Ltd. The data sets supporting the results in this article are
available from the Sequence Read Archive, project number SRP028914.

Sequencing data analysis
MiSeq Reads were linker sequence trimmed, quality trimmed then self-aligned into unique
reads. The reads were BLAST against miRBase V19 [27], the Functional RNA database
(fRNAdb) [28], and the genomic tRNA database (gtRNAdb) [29] allowing a single mismatch
within the query sequence. Unmatched reads from the top ten most common URs by count
were BLAST searched against GenBank, nr, and RefSeq databases for all species for identifica-
tion. Due to the lack of a genome of alignment and the presence of contaminating bacterial
RNAs, miRNA abundances were normalised to the total number of reads matching to miRBase
V19 content.

Droplet digital RT-PCR (ddPCR) validation
We used ddPCR to validate the tissue specificity and developmental stage expression of select-
ed miRNAs. Briefly, RNA was isolated from whole samples at seven developmental stages after
homogenisation in Trizol with a Purelink Mini kit (Invitrogen) following the protocol for total
RNA or from dissected tissues as previously detailed. Developmental stages were RNA ex-
tracted in triplicates from individuals (pupae/adult) or pools of insects. The dissected tissues
were tested in singleplex due to the lack of excess source material and six replicate ES samples,
collected from Instar 1 animals, were assayed. RNA was DNase treated using Zymo DNA-free
RNA kit (Zymo Research) and RNA yield was assessed by a Qubit 2.0 fluorometer (Life Tech-
nologies) for accuracy.

cDNA was synthesised from 100ng RNA using the Qiagen miScript cDNA kit and diluted
1:10 to 1:4000 with distilled water before use. PCR was performed with custom small RNA
primers and predesigned miScript miRNA primer assays (Qiagen) using ddPCR EvaGreen
Supermix (Bio-Rad). Reactions were carried out with 4μl of the diluted cDNA in a 20μl final
volume, then mixed with 70μl Evagreen droplet generation oil for droplet synthesis using the
QX200 system. From this, 40μl of PCR-oil mix was cycled as per manufacturers recommended
conditions and read on a QX200 droplet reader. Positive droplet counts as determined by
Quantasoft software with samples with less than 10,000 droplets discarded and repeated. The
quantification is presented as copies per μl of PCR mixture adjusted for the cDNA dilution fac-
tor. The use of ddPCR which does not require a reference gene is ideal for this application due
to a lack of genome for L. sericata to assess conservation of standard small RNAs such as U6.
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Results
Small RNA-sequencing was performed on tissues from instar 3 larvae and also from their bio-
active ES (Fig. 1). A pilot sequencing run of an unsterilised L. sericata salivary gland (SG) li-
brary was found to contain a single unique read at a very high abundance where of 2.71M total
reads, 91% of these matched to this single RNA. This read aligned to the 30nt 2S rRNA which
is reported to be present in all Diptera such as Drosophila [30]. In order to remove some of this
2S rRNA sequence from the subsequent tissue RNA samples, we performed a targeted oligo-
depletion step prior to library preparations as per protocols used for Drosophila [26]. This
proved successful and depleted the sequence from accounting for 91% of all counts in SG
down to 50%.

Our initial pilot run also included an unsterilised excretion and secretion (ES) library which
was found to contain an unexpectedly large amount of bacterial RNA. Medicinal maggots are
used in the clinic after a process designed to generate “sterile” larvae, which we undertook to
replicate by bleaching of eggs and then bleaching 3-day old larvae before collection of ‘steri-
lised’ tissue and ES samples. This bleaching is essentially a surface sterilisation process. Four
tissue specific libraries were prepared from the instar 2/3 L. sericata larvae for ES, salivary
gland (SG), GUT and CROP (Fig. 1). The latter three tissues were 2S rRNA depleted before se-
quencing. Each library generated between 4.4–7.6M reads (Table 1). Most reads were 26nt in
length after adaptor and quality trimming, although we expect this to be size-biased by the
high abundance of the 30nt insect 2S rRNA. The complexity of the libraries in terms of ‘single-
ton’ reads, that is unique reads (UR) with a single count in the sample, varied across libraries
ranging from 68–75% of all UR but accounting for only 3–6% of all counts.

Reads were BLAST searched against three small RNA databases (miRBase, fRNAdb and
gtRNAdb) to identify known annotated small RNAs and their species of origin (Table 1). Only
2.5–3.7% of UR matched to these databases, but these comprised 35–69% of all counts in the
samples. Bacterial RNAs comprised 40–89% of all URs in the four libraries with the highest
proportion in CROP (88.8%) and surprisingly the lowest in GUT (39.6%). Conversely, the
CROP only contained 30.3% of UR and 18.4% of read counts from insect origins.

When we focused on the database matched insect-derived small RNAs, each sample had a
slightly different profile of RNA types (Table 2). The most common small RNA by UR was ri-
bosomal RNA (rRNA) in all samples except for the GUT, which had a higher number of trans-
fer RNA (tRNA) URs (55.6%). The single UR with the highest count in all libraries was either
the 2S rRNA or tRNA GlyGCC. Indeed the 2S rRNA fragment, even with the depletion step in-
cluded in the tissue sample processing, still accounted for 74% of matched counts in SG al-
though only 11–14% of GUT and CROP counts.

The top ten most common URs in each of the four samples were further BLAST searched
against RefSeq databases (S1 Table). Firstly, this confirmed that much of the bacterial RNA in
the ES was successfully removed by our surface sterilisation of the maggots. This was evidenced
by the reduction from all ten reads matching to bacteria in the pilot unsterilised ES down to
only three of ten reads post-sterilisation. In the tissue libraries, SG, GUT and CROP, we see
variation in the number of bacterial and insect matches. All GUT top ten reads were insect-
derived, whereas the CROP sample was almost the direct opposite with 9 of the 10 matching
bacterial RNAs. In both ES and CROP we identified a 23S rRNA fragment which maps unique-
ly to the bacterium Proteus mirabilis. Another 23S rRNA fragment derived from closely related
genus Providencia was also detected at high abundance in the SG and CROP samples.

We next looked at the patterns of insect tRNA fragments that were found in each sample
(Fig. 2; S2 Table). A tRNA GlyGCC was the most common fragment identified, accounting for
55–70% of all insect tRNA counts. Other common tRNAs were AspGTC, LysCTT, LysTTT,
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HisGTG, ProCGG and ValCAC. Interestingly when the fragments are matched to the known
Drosophilamature tRNA sequences they are predominantly at the 5’ end, particularly when
the tRNA is highly abundant. The fragmentation patterns for tRNAs were generally consistent
across samples with the only differences seen for those with lower read counts suggesting that
they are random degradation products.

Finally we focused on the identification of known miRNA homologues by BLAST searching
against miRBase V19 (Fig. 3; S3 Table). The miRNA matches for each sample comprised only a
small proportion (1.2–4.4%) of the total matched URs. This low number is due to the high lev-
els of contaminating bacterial RNAs and insect rRNA/tRNAs which dominated the samples.
The miRNA profiles between samples varied distinctly. The most common miRNA in the ES
library for example was miR-10-5p which accounted for 46% of all matched miRNA counts
and was also the highest in GUT (31%). However, this only contributed 2.6% in SG and 4% in
CROP. This variation continued with the second most common in the ES, miR-263a, compris-
ing 15% of all miRNA ES reads. This was the most abundant miRNA in SG at 29% but only
accounted for 2% in GUT and 10% in CROP. Looking at the solid tissues, rather than the se-
creted ES sample, we see many highly abundant DrosophilamiRNAs were also found in L. seri-
cata larval tissues, such as miR-8, miR-31a, bantam and miR-275 [22]. In our data we also
found a small number of reads which matched to miRNAs in miRBase but appear to be misan-
notated small RNA fragments. For example, sha-miR-716b from Sarcophilus harrisii (Tasma-
nian devil) also matched to fRNAdb as a fragment of insect large subunit rRNA. To note, we
have also identified some low read count mammalian miRNAs in our tissue libraries, such as
miR-486-5p, a red blood cell abundant miRNA, that we hypothesise to be derived from the

Fig 2. Summary of insect tRNA counts in L. sericata tissue libraries. The proportion of each tRNA in the different tissue libraries as normalised to the
total number of insect tRNAmatches in that sample. tRNAs are denoted by their amino acid name.

doi:10.1371/journal.pone.0122203.g002
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sheep blood agar which was provided as a food source for the maggots. Unfortunately, due to
the current lack of a genome for L. sericata and the limited depth of our RNA-seq data we are
unable to identify novel miRNAs in the species.

In order to validate and expand on the findings from the RNA-seq we performed droplet
digital RT-PCR on RNAs from dissected tissues and also from various developmental stages of
L. sericata from whole eggs through larval stages to pupae and eventually to newly emerged
adult fly (specifically ES, SG, Gut, Crop, eggs, instar 1, instar 2, early instar 3, late instar 3,
pupae, and newly emerged Adult fly). We assessed the highly common 2S rRNA fragment,
tRNA GlyGCC 5’ fragment, and 7 miRNAs in these samples (miR-10-5p, miR-184-3p, miR-
31a-5p, miR-263a, miR-8-3p, miR-276a-3p, miR-956-3p) (Fig. 4). This method was chosen to
negate issues with finding a suitable small RNA normaliser for use in standard quantitative
RT-PCR due to the lack of genome for L. sericata. The ddPCR analysis validated the presence
of the identified miRNAs and RNA small fragments in the dissected tissues. It also highlighted
the variability seen for small RNAs that are commonly used as qRT-PCR reference genes, such
as 2S rRNA, between tissue types. Overall, in agreement with the sequencing data, the miRNAs
are less abundant in ES than rRNA or tRNA suggesting that the bulk of the insect derived RNA
found in ES comprises these small RNA families.

Fig 3. Abundance of miRNA counts in L. sericata tissue libraries.Matching of the counts to miRBase V19 identified known annotated miRNAs from
insect and mammals. The counts per matched miRNA as a proportion of all counts that matched to miRBase are shown in the four tissues. Species
nomenclature is used for the miRNA with the perfect matches to the L. sericata reads: dme, Drosophila melanogaster (fruit fly); tca, Tribolium castaneum (red
flour beetle); sha, Sarcophilus harrisii (Tasmanian Devil); dps, Drosophila pseudoobscura (fruit fly); aae, Aedes aegypti (Mosquito).

doi:10.1371/journal.pone.0122203.g003
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We also detected differences in many of the small RNAs assayed through developmental
stages. For the most part, their abundance is lowest in eggs with an increase after hatching into
instar 1 larvae. The miRNAs have specific patterns of expression throughout the developmen-
tal process with miR-10-5p gradually declining in abundance and miR-956-3p having the op-
posite pattern of expression.

Discussion
The aim of this study was to use small RNA-sequencing technology to identify the profiles in a
range of medicinal maggot tissue samples and in its ES. The standard for analysis of such data
is to initially map the reads to the genome of interest before further analysis, discarding any
which are unmapped. In our case this was not possible due to lack of a complete published ge-
nome. We note therefore that this dataset is limited to common subcategories of small RNAs
from orthologous insects. However because of our non-genome-mapping approach to the
analysis we were able to identify small RNAs in an unbiased manner, including both fly and

Fig 4. Droplet digital RT-PCR validation of small RNAs in tissue samples and through L. sericata
developmental stages. A. Assessment of small RNA abundances in dissected tissues, instar 1 ES and
whole instar 1 larvae and B. throughout developmental stages. Average of replicates (for ES and
developmental stages) plotted and error bars are standard deviations.

doi:10.1371/journal.pone.0122203.g004
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bacterial sequences. The RNA component present in ES appears to be derived from all its po-
tential tissue sources (gut, saliva and crop regurgitation). In terms of the overall RNA profiles,
tRNA and miRNA patterns, the SG and CROP source libraries are most similar to one another,
possible due to the close proximity of these tissues in the maggot foregut.

Bacterial small RNA signatures
Small RNA-seq of L. sericata tissues and ES highlighted the presence of a varied profile of com-
monly annotated small RNAs, derived from insect, bacterial and food sources. The surface
bleaching of eggs and larvae into medicinal-grade maggots, did as expected and removed a large
proportion of bacterial burden; however the database read matches still identified bacterial
RNAs in the tissues and ES. The bacterial content was highest in the crop, a food storage organ
[31], which had almost 10-fold more bacterial RNA reads than the gut sample. The crop is
where pathogenic bacteria are killed so that the gut remains for the most part, sterile [32]. Thus
the crop acts as a major reservoir for pathogens and bacteria. Read matches from the CROP li-
brary pinpointed the presence of Proteus mirabilis 23s rRNA, a known symbiotic bacterium in
flies [33] and also Providencia, identified as an insect pathogen in Drosophila [34]. The bacterial
rRNAs and tRNAs in all of the libraries show very specific fragmentation patterns. The origins
of these RNAs could be due to either bacterial autolysis [35] or even due to specific RNA secre-
tion from the live bacteria as recently reported forMycobacterium tuberculosis [36].

Maggot small RNA profile
Here we have shown for the first time that the bioactive maggot ES contains RNA. Furthermore
the RNA profiling of the three tissues from the gastrointestinal tract of L. Sericata has shown
that each has a distinct pattern of small RNA expression. The most common reads in all sam-
ples were fragments from 2S rRNA and tRNA GlyGCC. The 2S rRNA is found only in Diptera,
processed as a 30nt fragment from the 5S rRNA [37]. It is commonly used as a loading control
for miRNA/siRNA expression analysis as it is ubiquitously present in all tissues at a high level
[38,39], its high abundance causing a skew in overall size profiles in the sequencing libraries.
This 2S rRNA was present at high levels in all L. sericata samples we assayed by RNA-seq and
across the developmental stages of the insect by ddPCR. Its function, other than as a ribosomal
component is unknown. The ddPCR validation showed that the 2S rRNA was present in all tis-
sues and the ES, at levels 13 to 22-fold higher than the most abundant miRNA assayed.

The second most common single read in the RNA-seq libraries was a very specific fragment
(tRF) from the 5’ end of the GlyGCC tRNA. This tRF was in particular highly abundant in the
GUT and ES libraries and ddPCR showed it was 37 to 60-fold more abundant in these than
any of the other miRNAs assayed. Other 5’ tRFs that had high counts in all tissue libraries were
AspGTC, LysCTT and HisGTG. Indeed, all of the tRFs with high count numbers were derived
from the 5’ end of the mature tRNAs. Furthermore the dominant fragment for each tRNA was
found to be consistent across the different tissues. tRFs have been explored in response to stress
in mammals where they can function as novel global translation inhibitors [40,41]. In Drosoph-
ila, tRFs have been found complexed with the piRNA-binding protein PIWI and have a role in
RNA silencing [42]. In the archeon Haloferax volcanii these tRFs bind to the ribosome to inter-
fere with peptidyl transferase activity and reduce translation [43]. In the ES we also identified a
high abundance of tRFs. This parallels what was seen in mouse serum samples where 5’ tRNA
halves are present in 100-300KDa protein complexes, with the most common read being
GlyGCC [44]. These protein complexes may therefore provide protection from degradation in
biofluids such as serum and ES. Interestingly GlyGCC 5’ tRF is also induced in mammalian en-
dothelial cells after bacterial infection [45]. It was predicted to directly regulate mRNAs, using
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the same mechanisms as miRNAs, with targets including genes important in the infection re-
sponse; endothelial barrier, inflammatory response and autophagy [45]. It is therefore possible
that secreted tRNA has an anti-bacterial function, perhaps even controlling symbiotic relation-
ships with bacteria such as Proteus and Providencia. Other fragments identified in addition
to=these 5’ tRNA fragments were at very low counts and were likely to be non-specific
degradation products.

Maggot microRNA profile
MicroRNA profiling in insects has been performed on many different species from the model
organism Drosophila to mosquitos and ticks, which are commonly responsible for the trans-
mission of disease in mammals [22,25,46]. Many of these studies have profiled the miRNAs
throughout the developmental stages of the insect and/or in dissected tissues. Our RNA-seq
data identified 125 known miRNAs in various tissue libraries synthesised from sterilised L. seri-
cata. These sequence matches were predominantly to miRNAs from flying insects such as Dro-
sophila (82; 66%), suggesting that they’re directly derived from the maggot rather than from
the bacterial and food source contamination. Some low count mammalian miRNAs were
found but these were rare as we ensured that the maggots were starved overnight of their sterile
blood food source before sampling.

Each of the tissue libraries had a different profile of miRNAs which in the most part was val-
idated by ddPCR. For example, two anti-apopototic miRNAs in DrosophilamiR-263a and
miR-8 [47] were the most common miRNA reads in salivary glands, and crop respectively in
the sequencing data. In line with the finding for Gly GCC being enriched in the ES and GUT
samples, these two libraries show similar patterns of miRNA abundances such as miR-10-5p
and miR-956-3p.

When the L. sericatamiRNAs are compared to published insect profiles, we see many over-
lap in terms of their overall abundance or their tissue expression profiles. For example miR-8,
miR-184, and bantam are found in all Drosophila tissues [22] and miR-184, bantam and miR-
263a are present in salivary glands from the tick Haemaphysalis longicornis [48].

All of the miRNAs assessed by ddPCR were expressed at relatively low levels in L. sericata
eggs and then rapidly increased in instar 1 larvae (3.5 to 55-fold increase). It appears therefore
that miRNAs are switched on during larval development and are likely important in the regula-
tion of this process. Furthermore, most miRNAs slightly declined in levels between instar 1
and early instar 3 before either continuing this decline (e.g. miR-10-5p) or increasing again
from late instar 3 to adults (miR-184-3p, miR-31a-5p, miR-276a-3p). This increase in expres-
sion at late instar 3 could be associated with feeding and rapid growth. The increase in later lar-
val stages, pupae and adults of these miRNAs was also reported for the silkworm moth Bombyx
mori [49]. Conversely, miR-10-5p appears to peak at instar 1 and then gradually decline in lev-
els in late instar 3 to adult, which is not recapitulated in the silkworm moth. miR-956-3p,
which is expressed higher in the gut and ES compared to the crop and SG, was found at much
higher levels in the newly emerged adult fly than in the other developmental stages. This
miRNA has predicted gene targets involved in muscle development, growth and signaling in
Drosophila [50].

The variation in miRNA abundance between the developmental stages proposes the poten-
tial for them to be used in aging of maggots. Gene expression analysis has proven valuable in
forensics for accurate determination of developmental stages. A set of miRNAs, such as miR-
10-5p which decreases through instars and miR-956-3p which increases could therefore be use-
ful in forensic staging. Furthermore miRNAs are more stable than messenger RNAs which are
currently assayed [51]. In addition, we have identified various miRNAs, such as miR-8-3p, that
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are present in all larval stages of L. sericata. It is possible that novel siRNA-based therapeutics,
aimed at the interference of these insect-specific miRNAs might be useful in the treatment of
blow-fly infections in agriculture to hinder larval development.

The multimodal effects seen when maggot ES is used in the clinical setting is probably due
to their diverse molecular composition, with proteins, fatty acids and peptides all found to be
functional in promoting wound healing [8,12–15,52]. The RNA component of ES that we have
identified here may also have activity in wound healing. Indeed Wang et al discussed the poten-
tial for miRNAs to act as antimicrobials by downregulating bacterial gene expression [53]. In
the literature, RNA within bioactive insect secretions are limited to the study of the Honey Bee
(Apis) which produces both honey and royal jelly. The components of the royal jelly secretions
have epigenetic effects on gene expression such that a worker bee fed on it will develop into a
queen bee. Like the maggot ES, royal jelly has recently been shown to contain specific miRNAs,
including miR-184, -276a, -10, -8, -31a and bantam [54], all of which overlap with our maggot
ES findings. Furthermore, royal jelly itself is a proposed natural therapy for treatment of chron-
ic wounds [55] and has potent anti-bacterial properties [56].

Conclusions
The small RNA profile and in particular the miRNA profile in L. sericatamay hold great interest
for many research fields from forensics to agriculture. We have identified common subcatego-
ries of small RNA in the tissues of L. sericata and shown that these also vary by developmental
stage. Furthermore, these tissues commonly contain specific fragments of ribosomal and trans-
fer RNAs which appear to be more than simply degradation products. Finally, we have shown
for the first time that the secretions of L. sericatamaggots contain RNA, which we propose may
be directly involved in its potency as an antimicrobial and wound healing agent.
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