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Cloud-based applications 
for accessing satellite Earth 
observations to support malaria 
early warning
Michael C. Wimberly    ✉, Dawn M. Nekorchuk    & Ramcharan R. Kankanala

Malaria epidemics can be triggered by fluctuations in temperature and precipitation that influence 
vector mosquitoes and the malaria parasite. Identifying and monitoring environmental risk factors 
can thus provide early warning of future outbreaks. Satellite Earth observations provide relevant 
measurements, but obtaining these data requires substantial expertise, computational resources, and 
internet bandwidth. To support malaria forecasting in Ethiopia, we developed software for Retrieving 
Environmental Analytics for Climate and Health (REACH). REACH is a cloud-based application for 
accessing data on land surface temperature, spectral indices, and precipitation using the Google Earth 
Engine (GEE) platform. REACH can be implemented using the GEE code editor and JavaScript API, as 
a standalone web app, or as package with the Python API. Users provide a date range and data for 852 
districts in Ethiopia are automatically summarized and downloaded as tables. REACH was successfully 
used in Ethiopia to support a pilot malaria early warning project in the Amhara region. The software can 
be extended to new locations and modified to access other environmental datasets through GEE.

Introduction
Global environmental change has myriad influences on human health, and researchers are increasingly study-
ing the connections between climate variation and health outcomes. Extreme heat events are becoming more 
frequent as the climate warms, leading to greater risk of heat-related illnesses and death1,2. Climate change also 
affects the transmission cycles of many infectious diseases and shifts the geographic distributions of important 
vector and host species3. Because climate is intimately connected with the hydrological cycle, changes in patterns 
of rainfall and resulting risks of flooding and drought influence the transmission of water-related diseases4. If the 
associations between environmental change and health outcomes can be elucidated, then monitoring climate 
variations can provide novel data on risk factors for environmentally sensitive diseases. These data can support 
the development of disease risk maps5,6, early warning systems for forecasting outbreaks of climate sensitive dis-
eases7,8, and projections of the long-term effects that climate and land use change will have on human health9,10.

Earth-observing satellites produce an abundance of data that can be used in the study of human health. 
Measurements of reflected, emitted, and backscattered radiation track spatial and temporal variation in the envi-
ronment, including vegetation, surface water, soil moisture, temperature, and precipitation. The resulting data 
provide information about habitats for vector and host species and environmental suitability for transmission of 
disease-causing pathogens11–13. Satellite remote sensing can also be used to map heat waves14, monitor air pollu-
tion15, and delineate human populations at risk of disease16. Most of these data are available at no cost and many 
have global coverage, making them particularly important for monitoring environmental health risks in low- 
and middle-income countries where the availability of ground-based environmental measurements is limited.

To implement climate services such as early warning systems for climate-sensitive diseases, it is essential to 
acquire, process, and integrate new data on a regular basis. Accessing geospatial environmental data requires 
navigating a vast landscape of available datasets, determining which are most suitable, and downloading large 
volumes of data. The data must be extracted from complex archive files, projected to new coordinate reference 
systems, processed to detect and fill data gaps, and summarized to generate relevant environmental indices at 
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appropriate spatial and temporal scales17. Most epidemiological researchers and public health practitioners do 
not have expertise with satellite data and lack the necessary computational resources and specialized software. In 
many low- and middle-income countries, access to broadband internet is another barrier to working with large 
geospatial datasets18. There is a need for tools that facilitate the retrieval and use of satellite imagery for public 
health research and applications.

Cloud computing provides access to geospatial datasets along with processors, data storage, and software, 
as virtualized resources over the internet. Google Earth Engine (GEE) is a cloud-based system for analysis of 
satellite remote sensing and other gridded environmental data19. Computations are carried out via parallel pro-
cessing in the Google Cloud, facilitating the analysis of very large datasets. A variety of data are available, includ-
ing precipitation estimates, land surface temperature, and vegetation indices from Earth-observing satellites. 
Because data do not have to be downloaded, stored, and processed locally, GEE facilitates data access, process-
ing, and summarization for end users with limited computational resources in low-bandwidth environments. 
GEE has used extensively for a variety of remote sensing applications, including public health20.

The goal of this study was to facilitate regular access to satellite data in support of the Epidemic Prognosis 
Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) malaria 
early warning project in Ethiopia21. To achieve this goal, we developed a GEE application called Retrieving 
Environmental Analytics for Climate and Health (REACH) to automate the required data processing steps and 
download results in a summarized format suitable for modeling malaria-environment relationships and pre-
dicting future malaria risk. We compared three different GEE implementations: 1) A data visualization and 
downloading tool with a menu-based user interface (UI) developed using the GEE code editor and JavaScript 
API, 2) An Earth Engine App that implemented this tool as a standalone web application, and 3) A Python 
package callable from other software to automate data processing and downloading. We assessed the strengths 
and limitations of each approach and considered how they can be extended to support other efforts to forecast 
climate-sensitive infectious diseases.

Results
Requirements for malaria early warning.  This REACH application was developed as a component of the 
EPIDEMIA malaria early warning system for Ethiopia. EPIDEMIA uses routine malaria surveillance data along 
with multiple streams of climate data to model the effects of climate variation on malaria and generate forecasts of 
future malaria burden up to twelve weeks in advance. Software for data processing and harmonization, predictive 
modeling, accuracy assessment, and formatted report generation are implemented in the R language and environ-
ment for statistical computing21. Machine learning algorithms are used to model weekly fluctuations in malaria 
cases as a function of long-term trends, seasonal cycles, and environmental indicators related to temperature and 
moisture. Weekly malaria surveillance data for every district (woreda) in Ethiopia are collected by regional health 
bureaus and submitted to the Ethiopian Public Health Institute (EPHI). Daily summaries of environmental varia-
bles are also required to calibrate the malaria forecasting models and predict malaria in future weeks.

To implement EPIDEMIA, a historical database of environmental variables must first be downloaded and 
formatted for the initial model calibration. When EPIDEMIA is used to make forecasts, recent environmental 
variables are needed to generate predictions. The summarized data are expected to be tables in comma-separated 
value (CSV) format with one row for each combination of date and woreda and each environmental variable in 
a separate column. These files are copied into an input directory and EPIDEMIA ingests them, resolves dupli-
cate records, fills data gaps, and links the resulting dataset to the malaria data for model calibration and fore-
casting. At the initialization stage, the large volume of raw historical data presents a challenge for storage and 
processing. When making weekly forecasts, it is essential to update the database quickly and reliably with recent 
observations.

Access to climate and weather data has been identified as a critical barrier to the scale-up and implementa-
tion of malaria early warning at a national level in Ethiopia. In 2020, we conducted a series of virtual workshops 
and interviews along with an online survey to assess the opportunities and challenges for scaling up malaria 
early warning in Ethiopia and documented the results in a report to the United States Agency for International 
Development (USAID)22. During workshops and interviews with participants from regional health bureaus, the 
Federal Ministry of Health, and academic research institutions, the problem of environmental data access was 
frequently highlighted as an obstacle to research and public health action related to climate and malaria. Of 22 
Ethiopian malaria professionals who participated in the online survey, 12 considered environmental data access 
to be a major barrier to scaling up malaria early warning, 11 considered it a moderate barrier, and only one felt 
that it was not a barrier.

Based on this assessment and our previous experience co-developing EPIDEMIA with public health part-
ners in the Amhara Region of Ethiopia21, we identified the following key requirements for climate data access to 
support malaria early warning.

	 1.	 Data must be freely available to users in Ethiopia and other low- and middle-income countries.
	 2.	 Variables must characterize climate-related factors that affect vector mosquitoes, including temperature, 

rainfall, and soil moisture availability.
	 3.	 Measurements must have high frequency with a revisit time of one week or less.
	 4.	 There must be sufficient temporal depth (15 years or more) to parameterize models based on historical 

malaria data.
	 5.	 Spatial extent must cover all of Ethiopia and spatial grain must be small enough to summarize individual 

woredas.
	 6.	 Data must be available within approximately one week of acquisition for use in forecasts.
	 7.	 Software must be usable on a standard computer in a regional or federal public health agency without 
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requiring additional specialized software.
	 8.	 The interface must be efficient and processing steps must be automated so users can access data with mini-

mal effort.
	 9.	 Data acquisition must be rapid and functional in environments with low and unstable bandwidth.
	10.	 Outputs must be ready for automated ingestion into EPIDEMIA.

These requirements provided the guidelines for developing the data processing workflow and designing the 
software tools for REACH.

Data processing workflow.  The REACH application was designed to meet these requirements by gener-
ating daily summaries of satellite remote sensing data for every woreda (district) in Ethiopia (Fig. 1). These data 
measured environmental risk factors that have been shown to have lagged associations with malaria outbreaks 
in Ethiopia23–25. Precipitation was obtained from the Global Precipitation Mission (GPM), which produces the 
Integrated Multi-SatellitE Retrievals for GPM (IMERG) gridded precipitation products (Table 1). Land surface 
temperature (LST) and spectral reflectance from bands in the visible and infrared wavelengths were obtained 
from the MODerate resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites. LST 
variables included daytime temperature, nighttime temperature, and the mean of day and night temperatures. 
Spectral bands were used to calculate indices sensitive to vegetation greenness and moisture content, including 

Fig. 1  Flow diagram of REACH data processing for each of the three main sets of data: global precipitation 
measurement (GPM, using the IMERG6 product), spectral indices using the MODIS bidirectional reflectance 
distribution function (BRDF) surface reflectance product, and land surface temperature (LST) from the MODIS 
Terra 8-day product. The summarized output dataset from REACH feeds into the EPIDEMIA forecasting 
system along with epidemiological surveillance data and is used to forecast future malaria incidence.

Data Source Indices

MODIS Terra 8-day land surface temperature and emissivity product 
(MOD11A2) Daytime land surface temperature (LST), Nighttime LST, Mean LST

MODIS bidirectional reflectance distribution function (BRDF) 
adjusted surface reflectance product (MCD43B3)

Normalized Difference Vegetation Index (NDVI), Soil 
Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index 
(EVI), Normalized difference water indices (NDWI5 and NDWI6)

Integrated Multi-SatellitE Retrievals for GPM (IMERG) product 
version 6 Total precipitation

Table 1.  Remote sensing data sources and derived environmental indices.
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the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), enhanced vegetation 
index (EVI), and normalized difference water index (NDWI).

To run the REACH application, the only input required from the user was the range of dates over which to 
process and download data. The software then queried the GEE cloud-based data archive to obtain gridded 
remote sensing data falling within the selected date range and the geographic boundaries of Ethiopia. Cloudy 
pixels and other low-quality observations were screened out of the MODIS data using the pixel-level qual-
ity assurance (QA) data layers for each MODIS product. Next, these datasets were harmonized over time to 
have matching daily resolutions and daily environmental indices were computed for each grid cell. The woreda 
boundaries were overlaid on the environmental indices and daily zonal means were computed for every woreda 
(Fig. 2).

The summarized data were formatted as tables where each row was referenced by a unique combination of 
date, year, woreda name, and region and zone names. For the MODIS variables, the tables included the total 
count of grid cells and the number grid cells containing valid data. These tables were downloaded as CSV text 
files. This process greatly reduced the size of downloads and made it feasible to use the application in Ethiopia 
where internet connections are often slow and unstable. For example, the size of the raw data files required to 
compute a year of daily environmental indices for all of Ethiopia was approximately 3.8 TB, whereas the size of 
the CSV file with one year of daily woreda-level summaries was only 88 MB. The volume of data that had to be 
downloaded and stored was reduced by a factor of more than 43,000. Because all computation took place in the 
cloud, it was not interrupted by temporary slowdown or loss of internet connectivity during the data processing 
stage. Using this approach, we generated an 20-year archive of historical woreda-level data summaries from 
2002-202126.

JavaScript API implementation.  We initially implemented REACH using the GEE code editor and the 
JavaScript API (Fig. 3). The code editor provides a web-based interactive development environment (IDE). The 
JavaScript API includes a variety of functions for accessing and processing remote sensing in the cloud and a 
user-interface (UI) package for creating user controls and displaying maps and charts. Downloads to Google 
Drive can be initiated by a script and are monitored via the task manager window in the code editor. To access 
the code editor, the user must have a Google account and email along with an associated GEE account, which is 
available upon request from Google. The REACH script can be accessed by pasting the text into the code window 
(Fig. 3 Pane 2), saving and opening scripts from the user’s account in the script manager window, or accessing a 
shared script from another GEE account via a URL.

Once the script is loaded, clicking the run button initiates the script and loads the UI (Fig. 3 Pane 3). The 
user specifies a range of dates and the script downloads and processes the remote sensing data for that period. 
The data can then be downloaded by initiating and running a set of GEE tasks that write the output to the user’s 

Fig. 2  Example time series plots and CSV output screenshots for the woreda Seru in the Arsi zone of the 
Oromia region. The plot shows three environmental variables: (a) daytime land surface temperature (the 
“lst_day” column in the LST CSV file), (b) NDWI6 (the “ndwi6” column from the spectral indices CSV file), 
and (c) precipitation (the “totprec” column from the precipitation CSV file) for 2013 through 2021. The LST 
and spectral indices files also contain information about the numbers of cloud-free pixels and total pixels in the 
woreda. The first ten days of 2021 are shown in the CSV outputs.
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Google Drive (Fig. 3 Pane 5). The user can also visualize the data by choosing a date, selecting which environ-
mental indices to display, and panning and zooming in the map interface (Fig. 3 Pane 4 and Fig. 4). The user 
interface was purposefully designed to be simple to facilitate routine data access with a few clicks as possible 
while also provide some basic capabilities for data visualization and exploration.

Earth engine app.  The REACH script was also implemented as a dynamic, publicly accessible web applica-
tion (Fig. 5). GEE provides tools that allow scripts developed in the code editor to be published as GEE apps. The 
user interface is essentially the same as when the script is run in the code editor, although the UI must be designed 
to operate without access to the code, console, or tasks panes. However, the app can be accessed directly from a 
public URL and does not require a GEE account to run. The downloads are limited to shorter time ranges than 
those made through the JavaScript API, but they are downloaded directly from the browser rather than being 
added to the user’s Google Drive. For users with GEE accounts that need access to the JavaScript API version, a 
link is provided that brings the user to the same code base in the GEE code editor browser page.

Python API implementation.  Both the GEE Code Editor and the Earth Engine App require manual inputs 
from the user to initiate the software, specify dates of interest, and download the data. The Python API implemen-
tation allows for all these steps to be controlled from a Python script run on the client workstation. The REACH 
application was implemented as a Python package with a function called gee_to_drive() with two arguments 
for start date and end date. After installing the package, the user must authenticate their GEE account and save 
an authentication token to the local workstation. The gee_to_drive() function can be called by Python script, or 
called from the R environment using the reticulate package. The script initiates data acquisition and processing 
in GEE and results are downloaded to the user’s Google Drive account. Using this approach, remote sensing data 
acquisition via GEE can be incorporated directly into software applications that also ingest the data, harmonize 
them with other datasets, apply predictive models, and generate forecasting reports. The gee_to_drive() function 
can also be used with job scheduling software to automatically update remote sensing data on a regular basis.

Fig. 3  Screenshot of REACH UI in the Google Earth Engine (GEE) Code Editor with descriptions of the 
sections. 1) GEE is accessible in a web browser via a universal resource locator (URL). 2) The Code Editor pane 
contains the script that is ‘Run’ using the button on the header. 3) The user interface is created by the script 
when it is run, and this is where the user inputs the start and end dates for the download. 4) The map window 
provides visualization of the environmental variables and woreda boundaries. 5) The summaries for the selected 
date range are sent to the Tasks pane, where the user can initiate processes for the CSV files to be generated in 
the cloud and downloaded to the user’s Google Drive.
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Discussion
The REACH application was successfully used in the pilot implementation of the EPIDEMIA malaria early 
warning system in the Amhara region of Ethiopia during 2019-2020. In an earlier version of EPIDEMIA, we 
used a client-side application that automatically downloaded remote sensing data and conducted all necessary 
data processing and summarization on a client-side computer17,21. This approach was successful when imple-
menting EPIDEMIA on computers at a university in the United States. However, it was not feasible for trans-
ferring the technology to partners in Ethiopia because internet connectivity was a barrier to data access and 
the available computer resources did not provide enough data storage and processing capabilities. The REACH 
application for GEE was developed to address these issues and provide a software tool for environmental data 
access that could be implemented by our partners in the public health sector.

Users working at Bahir Dar University and the Amhara Regional Health Bureau were able to use REACH 
through the GEE code editor and JavaScript API to download data on a weekly basis and incorporate them into 
the EPIDEMIA system for predicting future malaria risk. An important goal of the pilot implementation was 
to allow the users to obtain data and generate a forecast in no more than one hour, and this goal was achieved. 
Although unstable internet connectivity presented a challenge, the relatively simple user interface and the small 
sizes of the downloaded data summaries resulted in reliable data access. In EPIDEMIA, the data accessed with 
REACH were harmonized with malaria surveillance data and incorporated into routine reports. District-level 
charts displayed time series of historical climate and malaria patterns and future forecasts (Fig. 6). Maps of 
malaria incidence and environmental variables helped to visualize locations with high malaria burden and unu-
sual climate anomalies (Fig. 7).

We examined three different approaches to implementing REACH in GEE, and each had strengths and 
limitations. Running the JavaScript API implementation of REACH through the GEE code editor is relatively 
simple after initial implementation but still allows considerable flexibility. For example, it is straightforward to 
upload a new dataset of updated woreda boundaries if they need to be changed, and the code can be modified 
to use REACH in new locations or add new data sources to the summaries. However, the requirement to have 
a GEE account and the need to navigate the code editor interface could be barriers for some users. Although 

Fig. 4  Visualizations from the REACH map window showing examples of remote sensing data with woreda 
boundaries: (a) precipitation, (b) NDWI6, (c) NDVI, and (d) daytime LST (environmental data shown for 18 
March 2021).
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the interface was designed to minimize the actions require for data access, additional steps are required to log 
into Google, load and run the script, and start the downloads via the Tasks tab. Also, modifying the code base 
requires programming experience combined with knowledge of the GEE JavaScript API.

The GEE App version can be made publicly accessible and run from a URL without logging in to a Google 
account. This simplicity is an advantage for operational malaria early warning because fewer steps are required 
to download the new data required to make a forecast. However, our experience has shown that large data 
requests encompassing multiple years often result in timeouts and other errors when processed through the 
app. Thus, the app is best suited for quickly downloading several weeks or months of data. Requests that require 
longer processing time, for example gathering many years of historical data, still need to be done using the 
JavaScript or Python API. With the appropriate UI design and coding, the same script can be run in the code 
editor and used to create an app.

Running REACH through the GEE Python API offers the prospect of automating remote sensing data access 
and incorporating it directly into software for malaria early warning. The Python API can be accessed directly 
from a client computer and does not require manual inputs through the GEE code editor. Because EPIDEMIA 
is implemented in R, the reticulate package can be used to call Python from R and a scheduling package like 
taskscheduleR can be used to automate the downloads. However, automation makes the system more com-
plex and may ultimately be more challenging to manage than data access through an external application that 
requires some manual steps. For implementation in public health agencies in Ethiopia, we determined that using 
the browser-based GEE App, which required a few manual steps to enter dates and download summary files, was 
the most sustainable approach for enabling routine access to district-level climate data.

Missing data caused by clouds are a common issue with optical and thermal remote sensing, particularly in 
tropical climates that have an extended rainy season27. In the REACH application, cloudy pixels were a common 
occurrence in the MODIS data, particularly from June-August. We removed these data values, computed the 
daily zonal statistics for each woreda using only valid pixels, and reported the number of cloud-free pixels used 
to calculate each summary statistic (Fig. 2). Where there were no cloud-free pixels within a woreda, no value was 

Fig. 5  Screenshot of the publicly accessible REACH Earth Engine App (accessible at https://dawneko.users.
earthengine.app/view/epidemiar-ethiopia-demo).
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returned. When the woreda-level summaries are incorporated into EPIDEMIA, an algorithm is applied to screen 
missing and low-quality observations and to identify and impute missing values. An alternative approach would 
be to impute missing data at the pixel level while processing the data in GEE. However, this approach would 
necessitate a more complicated set of scripts and require more computation time.

The methods used in the REACH application can be readily expanded to new locations and different types of 
geospatial environmental data. The approach can also be extended to different cloud platforms. We implemented 
REACH in Google Earth Engine because it is the most matured cloud-based application currently available 
for accessing and processing satellite data. Other commercial cloud computing service providers, including as 
Microsoft Azure and Amazon Web Services, also provide access to extensive satellite data archives via their plat-
forms. The results of our pilot implementation emphasize that the cloud-based approach is feasible and highly 
effective at providing rapid and timely access to climate data to support climate-sensitive disease forecasting at 
regional and national levels.

Fig. 6  Example woreda-level timeseries charts from an EPIDEMIA forecast report for 2019 week 42. The top 
two series show the observed malaria incidence (solid lines) up to week 42 and forecasted incidence (vertical 
bars) through week 2 2020 (12 weeks ahead) along with expected malaria incidence (dashed lines) with alerts 
for early detection and early warning of outbreaks (triangles). The bottom three timeseries show the observed 
environmental variables from REACH (solid lines) with historical interquartile ranges (gray envelopes) and 
future extrapolations (circles).
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Methods
The REACH application used three remote sensing datasets (Table 1). Land surface temperature (LST) data were 
from the MODIS Terra 8-day product (MOD11A2). Spectral indices were calculated using the MODIS bidirec-
tional reflectance distribution function (BRDF) adjusted surface reflectance product (MCD43B3). Rainfall data 
were obtained from the Integrated Multi-SatellitE Retrievals for GPM (IMERG) product version 6, where GPM 
is an acronym for the Global Precipitation Measurement mission. Details of the processing of each data source 
are provided below.

Land surface temperature.  We extracted day and night LST values for every 1000 m pixel within Ethiopia 
along with associated quality assurance (QA) fields. We labelled all pixels that had quality assurance (QA) values 
greater than or equal to two in either daytime or nighttime images as missing data. The MOD11A2 LST product is 
provided as 8-day means, which were converted to daily values by assuming a constant temperature during each 
8-day composite period. Mean daily temperature was the mean of day and night observations. LST measures the 
temperature of the uppermost surface of the Earth, which may consist of soil, vegetation, impervious surfaces, or 
other types of land cover depending on the location. LST is often used as a proxy for near-surface air temperature 
in situations where ground-based meteorological measurements are not available. The relationship between LST 
and air temperature is complex and depends on land cover, time of day, and local meteorological conditions. 
However, spatial and temporal variation in LST and near-surface air temperature are often strongly correlated28,29.

Spectral indices.  The MCD43B3 data provide daily surface reflectance data in the visible, near infrared, and 
shortwave infrared spectra at a 500 m resolution along with QA fields. We labelled all pixels that had QA values 
from the NIR band greater than or equal to two as missing data and masked out permanent water bodies. The 
surface reflectance bands were used to compute a set of spectral indices. The Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), and Soil-Adjusted Vegetation Index (SAVI) measure green 
vegetation30–32. Although vegetation greenness generally does not have a direct influence on malaria transmis-
sion, seasonal and interannual variation in greenness can be a sensitive indicator of environmental factors such 
as temperature and rainfall33. The Normalized Difference Water Index (NDWI) measures the amount of liquid 
water in vegetation and is sensitive to variation in soil moisture34. Two versions of the NWDI were calculated 

Fig. 7  Example maps showing (a) P. falciparum malaria incidence, climate anomalies for (b) rainfall, (c) 
NDWI6, and (d) daytime LST for a four-week time period of week 39 through 42 2019. Incidence is reported 
per 1000 population, and anomalies are defined as the departure of the observed values from historical climate 
averages from 2002 to present.
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using two different shortwave infrared bands, the 1230–1250 nm MODIS band five (NDWI5) and the 1628–1652 
nm MODIS band six (NDWI6).

Rainfall.  The suite of IMERG products provide global precipitation estimates from 2000 to present using data 
from the current Global Precipitation Measurement (GPM) mission, the older Tropical Rainfall Measurement 
Mission (TRMM), and other sources35. Three IMERG products provide precipitation estimates at 30-minute 
intervals for 0.1 arc degree pixels (approximately 11.1 km at the equator). The Early Run is an initial estimate 
produced with a minimum latency of four hours, the Late Run provides an updated estimate based on more data 
with a minimum latency of twelve hours, and the Final Run incorporates monthly rain gauge data with a latency 
of several months. The GEE IMERG data asset combines all these products. Initially, the Early and Late Run prod-
ucts are ingested and then replaced with the Final Run data when they are available.

Zonal statistics.  All variables were summarized as zonal means by woreda. These are the smallest admin-
istrative units in Ethiopia for which weekly surveillance data are routinely compiled and are thus the level at 
which climate-malaria associations are analyzed and predictive models are developed. Geospatial data delineating 
the boundaries of administrative units, including woredas, zones, and regions, are produced by the Ethiopian 
Mapping Agency. We obtained a dataset of 2019 administrative boundaries within Ethiopia from USAID/
Ethiopia. The boundaries of many woredas have changed over time as they have been have subdivided or under-
gone other reconfigurations. We therefore used multiple sources of historical data to construct a set of harmo-
nized woredas that could be associated with long-term malaria surveillance data collected across changing district 
boundaries. These harmonized woredas were uploaded to GEE as a publicly accessible asset and used to summa-
rize the environmental data.

Daily variables of the land surface temperature variables, precipitation, and spectral indices were summa-
rized by taking the mean of all available values within each woreda. The IMERG precipitation data were res-
ampled to a 1000 m resolution to ensure that there was at least one grid cell within each woreda for the zonal 
summaries. For the MODIS LST variables and spectral indices, the total number of cloud-free pixels used to 
generate the zonal summaries was reported along with the total number of pixels in the woreda. Where there 
were no cloud-free pixels within a woreda, no value was returned.

Data availability
All of the raw data used by REACH are from publicly available GEE datasets that can be accessed by any user 
with an account. https://developers.google.com/earth-engine/datasets. Summarized data for Ethiopia can be 
downloaded directly using the REACH app, which can be accessed using the following URL: https://dawneko.
users.earthengine.app/view/epidemiar-ethiopia-demo. An archive of daily environmental indices for all woredas 
in Ethiopia from 2002–2021 was generated using REACH and archived on figshare26.

Code availability
The REACH software, including JavaScript code, a sample R script for running REACH using the Python API, 
and a user guide, is accessible via the following GitHub archive: https://github.com/EcoGRAPH/epidemia_reach. 
Computer code for the REACH Python package is accessible via the following GitHub archive: https://github.
com/EcoGRAPH/epidemia_gee.

Received: 24 August 2021; Accepted: 11 April 2022;
Published: xx xx xxxx

References
	 1.	 Habeeb, D., Vargo, J. & Stone, B. Rising heat wave trends in large US cities. Nat Hazards 76, 1651–1665 (2015).
	 2.	 Guo, Y. et al. Heat wave and mortality: a multicountry, multicommunity study. Environ. Health Persp. 125, 087006 (2017).
	 3.	 Franklinos, L. H., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect 

Dis 19, e302–e312 (2019).
	 4.	 Levy, K., Woster, A. P., Goldstein, R. S. & Carlton, E. J. Untangling the impacts of climate change on waterborne diseases: a systematic 

review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ Sci Technol 50, 
4905–4922 (2016).

	 5.	 Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 67, 25–35 
(2018).

	 6.	 Hess, A., Davis, J. & Wimberly, M. Identifying environmental risk factors and mapping the distribution of West Nile virus in an 
endemic region of North America. GeoHealth 2, 395–409 (2018).

	 7.	 Lowe, R. et al. The development of an early warning system for climate‐sensitive disease risk with a focus on dengue epidemics in 
Southeast Brazil. Stat Med 32, 864–883 (2013).

	 8.	 Lowe, D., Ebi, K. L. & Forsberg, B. Heatwave early warning systems and adaptation advice to reduce human health consequences of 
heatwaves. Int. J. Environ. Res. Public Health 8, 4623–4648 (2011).

	 9.	 Semenza, J. C., Suk, J. E., Estevez, V., Ebi, K. L. & Lindgren, E. Mapping climate change vulnerabilities to infectious diseases in 
Europe. Environ. Health Persp. 120, 385–392 (2012).

	10.	 Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1, 
e360–e367 (2017).

	11.	 Ford, T. E. et al. Using satellite images of environmental changes to predict infectious disease outbreaks. Emerg. Infect. Dis. 15, 
1341–1346 (2009).

	12.	 Louis, V. R. et al. Modeling tools for dengue risk mapping-a systematic review. Int. J. Health Geogr. 13, 1–15 (2014).
	13.	 Wimberly, M. C., de Beurs, K. M., Loboda, T. V. & Pan, W. K. Satellite observations and malaria: new opportunities for research and 

applications. Trends Paratisol. (2021).
	14.	 Dousset, B. et al. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol 31, 313–323 (2011).
	15.	 Evans, J. et al. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 120, 33–42 

(2013).

https://doi.org/10.1038/s41597-022-01337-y
https://developers.google.com/earth-engine/datasets
https://dawneko.users.earthengine.app/view/epidemiar-ethiopia-demo
https://dawneko.users.earthengine.app/view/epidemiar-ethiopia-demo
https://github.com/EcoGRAPH/epidemia_reach
https://github.com/EcoGRAPH/epidemia_gee
https://github.com/EcoGRAPH/epidemia_gee


1 1Scientific Data |           (2022) 9:208  | https://doi.org/10.1038/s41597-022-01337-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

	16.	 Stevens, F. R., Gaughan, A. E., Linard, C. & Tatem, A. J. Disaggregating census data for population mapping using random forests 
with remotely-sensed and ancillary data. PLOS One 10, e0107042 (2015).

	17.	 Liu, Y. et al. Software to facilitate remote sensing data access for disease early warning systems. Environ. Modell. Softw. 74, 247–257 
(2015).

	18.	 Labrique, A. B. et al. Best practices in scaling digital health in low and middle income countries. Glob Health 14, 1–8 (2018).
	19.	 Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
	20.	 Tamiminia, H. et al. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J Photogramm 

Remote Sens 164, 152–170 (2020).
	21.	 Merkord, C. L. et al. Integrating malaria surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA 

system. Malar. J. 16, 89 (2017).
	22.	 Wimberly, M. C. & Nekorchuk, D. M. Malaria Early Warning in Ethiopia: A Roadmap for Scaling to the National Level. (USAID 

Technical Report, 2021).
	23.	 Midekisa, A., Beyene, B., Mihretie, A., Bayabil, E. & Wimberly, M. C. Seasonal associations of climatic drivers and malaria in the 

highlands of Ethiopia. Parasit Vectors 8, 1 (2015).
	24.	 Midekisa, A., Senay, G., Henebry, G. M., Semuniguse, P. & Wimberly, M. C. Remote sensing-based time series models for malaria 

early warning in the highlands of Ethiopia. Malar. J. 11, 165 (2012).
	25.	 Davis, J. K. et al. A genetic algorithm for identifying spatially-varying environmental drivers in a malaria time series model. Environ. 

Modell. Softw. 119, 275–284 (2019).
	26.	 Wimberly, M. C. & Nekorchuk, D. M. Satellite Earth Observations for Malaria Epidemiology in Ethiopia. Figshare https://doi.

org/10.6084/m9.figshare.19142177 (2022).
	27.	 Hilker, T. et al. Remote sensing of tropical ecosystems: Atmospheric correction and cloud masking matter. Remote Sens. Environ. 

127, 370–384 (2012).
	28.	 Vancutsem, C., Ceccato, P., Dinku, T. & Connor, S. J. Evaluation of MODIS land surface temperature data to estimate air temperature 

in different ecosystems over Africa. Remote Sens. Environ. 114, 449–465 (2010).
	29.	 Alemu, W. G. & Wimberly, M. C. Evaluation of Remotely Sensed and Interpolated Environmental Datasets for Vector-Borne Disease 

Monitoring Using In Situ Observations over the Amhara Region, Ethiopia. Sensors 20, 1316 (2020).
	30.	 Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 

(1979).
	31.	 Jiang, Z., Huete, A., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. 

Environ. 112, 3833–3845 (2008).
	32.	 Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).
	33.	 Workie, T. G. & Debella, H. J. Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Glob Ecol 

Conserv 13, e00366 (2018).
	34.	 Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. 

Environ. 58, 257–266 (1996).
	35.	 Kirschbaum, D. B. et al. NASA’s remotely sensed precipitation: A reservoir for applications users. Bull Am Meteorol Soc 98, 

1169–1184 (2017).

Acknowledgements
This research was supported by a grant from the National Institute of Allergy and Infectious Diseases 
(R01AI079411).

Author contributions
M.C.W. and D.M.N. conceived the project. M.C.W. programmed the original version of REACH using the GEE 
JavaScript API. D.M.N. updated and improved this initial version and implemented it as a GEE app. R.R.K. 
developed the Python implementation of REACH. M.C.W. wrote the first version of the manuscript, D.M.N. 
created the figures, and all authors critically revised and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.C.W.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01337-y
https://doi.org/10.6084/m9.figshare.19142177
https://doi.org/10.6084/m9.figshare.19142177
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Cloud-based applications for accessing satellite Earth observations to support malaria early warning

	Introduction

	Results

	Requirements for malaria early warning. 
	Data processing workflow. 
	JavaScript API implementation. 
	Earth engine app. 
	Python API implementation. 

	Discussion

	Methods

	Land surface temperature. 
	Spectral indices. 
	Rainfall. 
	Zonal statistics. 

	Acknowledgements

	Fig. 1 Flow diagram of REACH data processing for each of the three main sets of data: global precipitation measurement (GPM, using the IMERG6 product), spectral indices using the MODIS bidirectional reflectance distribution function (BRDF) surface reflect
	Fig. 2 Example time series plots and CSV output screenshots for the woreda Seru in the Arsi zone of the Oromia region.
	Fig. 3 Screenshot of REACH UI in the Google Earth Engine (GEE) Code Editor with descriptions of the sections.
	Fig. 4 Visualizations from the REACH map window showing examples of remote sensing data with woreda boundaries: (a) precipitation, (b) NDWI6, (c) NDVI, and (d) daytime LST (environmental data shown for 18 March 2021).
	Fig. 5 Screenshot of the publicly accessible REACH Earth Engine App (accessible at https://dawneko.
	Fig. 6 Example woreda-level timeseries charts from an EPIDEMIA forecast report for 2019 week 42.
	Fig. 7 Example maps showing (a) P.
	Table 1 Remote sensing data sources and derived environmental indices.




