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Abstract

The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipo-

cyte stores a significant amount of cholesterol. Moreover, obese adipocytes are character-

ized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane,

suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used

methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly

deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this pertur-

bation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a che-

mokine that is elevated in obesity and is linked to obesity-associated chronic diseases.

Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and pro-

tein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibi-

tion revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated

MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug,

filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interest-

ingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdo-

mains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese

adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory

signaling and MCP-1 secretion in adipocytes.

Introduction

The physiological function of adipose tissue is to store lipids. Excess energy intake results in

the storage of triglyceride, a neutral lipid composed of esterified fatty acids and glycerol, in the

lipid droplet of adipocytes. When energy expenditure exceeds energy intake, stored
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triglycerides are hydrolyzed to generate and release fatty acids to supply the energy demand of

other tissues. In addition to triglycerides, other lipid species such as cholesterol are also present

in the lipid droplet of the adipocytes. In fact, the adipose tissue is the largest pool of cholesterol

in the human body [1, 2]. Moreover, the cholesterol found in the adipocytes is mostly in its

free form, which distinguishes it from the cholesterol esters stored in the steroid hormone-pro-

ducing adrenal cortical cells or cholesterol-laden foam cells [3]. Thus, the unique form and sig-

nificant amount of cholesterol in adipocytes suggest a possible role for cholesterol in

regulating adipocyte function. Indeed, both cholesterol and triglycerides are elevated and accu-

mulated in hypertrophied adipocytes [2, 4]. However, cholesterol is redistributed in these

obese adipocytes, resulting in the depletion of cholesterol in the plasma membrane of hyper-

trophied adipocytes [1–3, 5–7]. Therefore, cholesterol imbalance may have an impact on adi-

pocyte function during obesity or other disease conditions. Currently, the role of cholesterol in

adipocyte function is not fully understood.

In addition to being a structural component that modulates the fluidity of the plasma

membrane, cholesterol has many other cellular functions. Lipid rafts, the specific mem-

brane microdomains that are enriched in cholesterol and sphingolipids, as well as caveolae,

a subset of lipid raft domains consisting of the structure protein caveolin, are involved in

many cellular processes, such as signal transduction [8], endocytosis [9], and cellular traf-

ficking [10]. In adipocytes, depletion of membrane cholesterol, which disrupts the integrity

of lipid rafts and caveolae [11], has been shown to affect the translocation of the insulin-

responsive glucose transporter 4 (GLUT4) [12] and insulin signaling [13]. However, the

role of cholesterol levels and lipid rafts in other adipocyte functions remains largely

unknown.

Adipose tissue is now recognized as an endocrine organ that actively secretes peptide

hormones and cytokines, which are collectively called adipokines. Abnormal secretion of

adipokines has been linked to the dysfunction of adipose tissue and many chronic diseases.

Among the adipokines secreted by adipocytes, monocyte chemoattractant protein-1 (MCP-

1) is a chemokine that plays an important role in the recruitment of monocytes and T lym-

phocytes to the sites of inflammation. MCP-1 is expressed and secreted by adipocytes [14]

and other cell types such as macrophages, smooth muscle cells, and endothelial cells [15].

The expression and secretion of MCP-1 are elevated in obesity [14, 16], and these higher lev-

els have been linked to obesity-associated chronic diseases such as insulin resistance, diabe-

tes, or cardiovascular disease (for reviews, [17, 18]). Factors that are elevated in obesity,

such as tumor necrosis factor α (TNFα) and interleukin 6 (IL6), increase the expression and

secretion of MCP-1. In contrast, factors that prevent insulin resistance such as adiponectin

and the anti-diabetic drug thiazolidinediones, down-regulate the secretion of MCP-1 in adi-

pocytes [17]. These observations suggest a link between the MCP-1 level, obesity, and insu-

lin resistance. In this study, we added methyl-β-cyclodextrin (MβCD), a cyclic

oligosaccharide with high affinity to cholesterol, in culture medium to rapidly deplete cho-

lesterol in differentiated 3T3-L1 adipocytes [19] and measured the effect on MCP-1 secre-

tion in adipocytes. Interestingly, MβCD treatment increased MCP-1 expression and

secretion in 3T3-L1 adipocytes through activation of nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB). However, the disturbance of lipid raft integrity rather

than the decrease of cellular or membrane cholesterol may account for the MβCD-mediated

increase of MCP-1 expression and secretion. Thus, the depletion of membrane cholesterol

in obese adipocytes may lead to the disturbance of lipid rafts, which results in elevated

proinflammatory responses and production of proinflammatory cytokines and chemokines

in obesity.

Lipid Raft Disruption Increases MCP-1 Production
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Materials and Methods

Chemicals and Reagents

MβCD (#C4555), water-soluble cholesterol (WSCL, #C4951), filipin complex (#F9765), BMS-

345541 (#B9935), SP600125 (#S5567), and SB203580 (#S8307) were purchased from Sigma

Chemical (St. Louis, MO). Recombinant murine TNFα (No. 410-MT) was from R & D Sys-

tems (Minneapolis, MN). Polyclonal antibodies against phospho-ERK1/2 (Thr202/Tyr204,

#4377), ERK1/2 (#9102), NF-κB p65 (#8242), phospho-IκBα (Ser32, #2859), IκBα (#9242),

MEK1/2 (#9122), caveolin-1 (#3267), and MCP-1 (#2029) were from Cell Signaling Technol-

ogy (Beverly, MA). Anti-α-tubulin (#T5168) antibodies were from Sigma Chemical (St Louis,

MO). Anti-flotillin antibodies (#610820) were purchased from BD Biosciences (San Jose, CA).

Anti-IKKβ antibodies (#05–535) were from Millipore (Billerica, MA). GSK1120212 was pur-

chased from Selleck Chemicals (Houston, TX).

Cell Culture, Differentiation, and Electroporation

3T3-L1 fibroblasts (#CL-173, from American Type Culture Collection, Manassas, VA) were

cultured and differentiated as described previously [20]. Briefly, cells were grown in the growth

media [Dulbecco’s modified Eagle medium (DMEM) supplemented with 4.5 g/L glucose, 10%

fetal bovine serum, 1% glutamine, and 0.5% penicillin/streptomycin]. Differentiation was

induced in post-confluent cells with growth media containing 500 μM isobutylmethyl-

xanthine, 0.2 μM dexamethasone, and 2.5 μg/ml insulin for 3–4 days, and cells were replen-

ished with growth media every 3–4 days. Experiments were performed in adipocytes 12–16

days post differentiation.

Electroporation of 3T3-L1 adipocytes was performed with cells on 10–12 days post differen-

tiation. Differentiated 3T3-L1 adipocytes were electroporated at 200 V and 950 μF with 2

nmole siRNA using a Gene Pulser Xcell electroporator (Bio-Rad, Hercules, CA) and plated

onto 12- or 24- well plates for experiments. The siRNA sequences were as follows: MEK1 and

2 (MEK1/2), 5’-AGUCGG ACA UCU GGA GCA U-3’, or 5’-CAGUCG GAC AUC UGG AGC
A-3’; IKKβ, 5’-CGACAG GAG CUC AGC CCA A-3’, or 5’-GGA CAU CGU UGU UAG UGA
A-3’; caveolin-1, 5’-AAC CAG AAG GGA CAC ACA G-3’ [21].

RNA Analysis

Total cellular RNA was isolated and purified using TRIzol reagent (Ambion, Austin, TX)

according to the manufacturer’s instructions. First strand cDNA was synthesized from 1 μg

total RNA using high-capacity cDNA RT kits (Applied Biosystems). SYBR Green PCR was

performed using the MiniOpticon real-time PCR detection system (Bio-Rad, Hercules, CA).

The following primers were used for PCR: MCP-1 forward 5’-AGG TCC CTG TCA TGC TTC
TG-3’, reverse 5’-GCTGCT GGT GAT CCT CTT GT-3’; 36B4 forward 5’-GCG ACC TGG
AAG TCC AAC TAC-3’, reverse 5’-ATC TGC TGC ATC TGC TTG G-3’. Gene expression

levels were calculated after normalization to the housekeeping gene 36B4 using the ΔΔCT

method as described by the manufacturer and expressed as relative mRNA levels compared

with the control.

Enzyme-Linked Immunosorbent Assay (ELISA)

Adipocytes were placed into growth medium or DMEM with 0.1% BSA containing the treat-

ments. Media were collected at indicated time points and centrifuged at 14,000 rpm for 5 min

to remove floating cells. Conditioned medium was assayed for mouse MCP-1 using an ELISA
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kit (Biosource, Camarillo, CA) following the manufacturer’s protocol. The cell lysates were col-

lected and protein concentrations were measured and used to normalize MCP-1 secretion.

Membrane Fractionation

Differentiated 3T3-L1 adipocytes grown on two ten-centimeter dishes were scraped and col-

lected in a 50-ml tube. After centrifugation at 3,500 rpm for 15 min, the pellet was resuspended

in 15 ml lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 1 mM MgCl2, 1% aprotinin).

After another centrifugation, the pellet was resuspended in lysis buffer, diluted with resuspen-

sion buffer (TSNa buffer, 20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 250 mM sucrose, and 1%

aprotinin) and was subjected to homogenization. Unbroken cells or nuclei were removed by

centrifugation at 3,500 rpm for 15 min, and the supernatant was transferred to a Ti45 rotor

tube. After centrifugation at 35,000 rpm (120,000 x g) at 4˚C for 1 h, the supernatant was

stored for cholesterol measurement or was precipitated by trichloroacetic acid for Western

analysis. The membrane pellet was resuspended with storage buffer [TSNa buffer containing

10% (v/v) glycerol and 1% aprotinin] using a 23-gauge syringe needle.

Measurement of Cellular and Cholesterol Levels

Cellular and plasma membrane cholesterol levels were determined using the Amplex Red Cho-

lesterol Assay Kit (Molecular Probes/Life Technologies, Grand Island, NY) according to the

manufacturer’s instructions. In brief, 50 μl sample was mixed with 50 μl Amplex Red Reagent

containing 2 U/ml HRP, 2 U/ml cholesterol oxidase, and 0.2 U/ml cholesterol esterase and was

incubated for 30 min at 37˚C. Fluorescence was measured by the TECAN infinite M200 PRO

microplate reader (Mannedorf, Switzerland) using excitation and emission at 530 and 590 nm,

respectively.

Western Blot Analysis

Western blot analysis was performed as previously described [20]. Briefly, cells were extracted

with RIPA lysis buffer [50 mM HEPES, pH 7.4, 1% NP-40, 150 mM NaCl, 1 mM EDTA, 1

mM phenylmethylsulfonyl fluoride, 1% protease inhibitor cocktail (Sigma #P2714), 1 mM

sodium orthovanadate, 1 mM sodium fluoride]. Twenty microliters of cellular protein lysate

was electrophoresed through standard Laemmli SDS polyacrylamide gels (8–12% gels), and

then transferred to polyvinylidene fluoride membranes. Membranes were blocked for 1 h in

5% BSA or non-fat milk in TBST (100 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 0.1% Tween

20) and then incubated in primary antibodies at 4˚C overnight. Membranes were washed

three times with TBST and then incubated with secondary antibodies in 5% milk or non-fat

milk in TBST at room temperature for 1 h. Membranes were washed three times with TBST,

and then signals were visualized by enhanced chemiluminescence using the ChemiDoc XRS+

imaging system (Bio-Rad, Hercules, CA).

Lipid Raft Fractionation

Lipid raft fractionation was performed as described previously [22]. In brief, differentiated

3T3-L1 adipocytes grown from two ten-centimeter dishes were washed and collected. After

centrifugation at 100 x g for 5 min, the cell pellet was lysed in 1 ml TNE/Triton X-100 buffer

(25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, and 1% Triton X-100) on ice for 20

min. Cell lysate was homogenized with eight strokes of a Dounce homogenizer and was trans-

ferred to an ultracentrifuge tube. The lysate was brought to 40% sucrose by adding equal vol-

ume of 80% sucrose. A 5% to 30% linear sucrose gradient was layered over the lysate. Samples
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were centrifuged at 200,000 x g at 4˚C for longer than 15 h in a Beckman SW41 rotor. Each 1

ml fraction from the top to the bottom was transferred and collected.

Statistics

All of the data are presented as the mean ± S.E. Differences between the means of two groups

were evaluated for statistical significance with paired or unpaired Student’s two-tailed t-tests.

A p value cut-off of 0.05 was considered statistically significant (InStat 3, GraphPad).

Results

Cholesterol Depletion Increases MCP-1 Secretion in 3T3-L1 Adipocytes

It has been reported that de novo cholesterol synthesis is limited in adipocytes [3]. Consis-

tently, treatment with inhibitors that suppress cholesterol synthesis (mevastatin or U18666A)

[7, 23] did not alter cholesterol levels in differentiated 3T3-L1 adipocytes even up to 24 h incu-

bation (S1 Fig). Therefore, we used MβCD, a molecule with high affinity for cholesterol, to

rapidly deplete cholesterol in differentiated 3T3-L1 adipocytes [19]. Treatment with MβCD for

4 h greatly reduced cholesterol level in adipocytes (Fig 1A). We tested whether cholesterol

depletion affected adipocyte secretion of MCP-1, a chemokine involved in obesity-associated

chronic diseases [17, 18]. 3T3-L1 adipocytes were treated without (Ctrl) or with MβCD for 4

hours, and MCP-1 secretion in the medium was measured by ELISA. Interestingly, depletion

of cholesterol by MβCD treatment increased MCP-1 secretion in adipocytes (Fig 1B). In obe-

sity, elevated levels of proinflammatory cytokines, such as TNFα, stimulate MCP-1 secretion

[17]. Therefore, we also tested whether MβCD treatment affected TNFα-induced MCP-1

secretion. As expected, TNFα treatment greatly increased MCP-1 secretion, which is consis-

tent with the idea that TNFα is a strong proinflammatory inducer of MCP-1 in obesity. Simul-

taneous treatment of MβCD and TNFα did not suppress nor enhance the TNFα-induced

MCP-1 secretion (Fig 1B). Together, these results suggested that depletion of cholesterol by

MβCD treatment increased MCP-1 secretion in adipocytes.

To determine the effective MβCD dose needed to increase MCP-1 secretion in adipocytes,

we performed a MβCD dose response experiment. 3T3-L1 adipocytes were treated with differ-

ent MβCD doses (0, 2, 4, 6, 8 mM) for 4 h and MCP-1 secretion was determined. As shown in

Fig 1C, a dose-dependent increase of MCP-1 secretion was observed with 4 h MβCD treatment

at 2 mM or greater. To test if MβCD-induced MCP-1 secretion is time-dependent, a time

course experiment was performed. As shown in Fig 1D, a significant increase of MCP-1 secre-

tion was observed after 2 h MβCD treatment. We also examined whether MβCD treatment

induced cytotoxicity in 3T3-L1 adipocytes, and found that only 24 h treatment with MβCD at

7.5 mM or higher reduced cell viability (S2 Fig).

To confirm that the effects of MβCD treatment were due to cholesterol depletion, we sup-

plied water-soluble cholesterol (WSCL) to restore cholesterol levels and reverse the action of

MβCD (Fig 1A, and [11, 24, 25]). As shown in Fig 1E, simultaneous treatment with MβCD

and WSCL for 4 h partially reversed the MβCD-induced MCP-1 secretion. Moreover, treat-

ment with WSCL for 24 h almost returned MβCD-induced MCP-1 secretion to the Ctrl levels

(Fig 1F).

Depletion of Membrane Cholesterol Increases MCP-1 Biosynthesis

Treatment with the protein synthesis inhibitor cycloheximide reduced the basal MCP-1 secre-

tion and completely blocked MβCD- or TNFα-induced MCP-1 secretion (S3 Fig), suggesting

that elevated MCP-1 secretion induced by MβCD treatment may attribute to the increase in
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PLOS ONE | DOI:10.1371/journal.pone.0169005 December 28, 2016 5 / 21



Fig 1. MβCD treatment increases MCP-1 secretion in 3T3-L1 adipocytes. (A) 3T3-L1 adipocytes were untreated

(Ctrl) or treated with 4 mM MβCD, 250 μg/ml WSCL, or both for 4 h. Cellular lysate was collected and cholesterol levels

were determined. (B) 3T3-L1 adipocytes were untreated (Ctrl) or treated with 4 mM MβCD, together without or with 1 ng/

ml TNFα for 4 h. MCP-1 secretion in the media was determined. Each point represents the mean ± S.E. of three

independent experiments. Asterisks denote significant differences (***p<0.001). (C) 3T3-L1 adipocytes were treated

with increasing MβCD doses (0, 2, 4, 6, 8 mM) for 4 h. MCP-1 secretion was determined. Each point represents the

Lipid Raft Disruption Increases MCP-1 Production
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MCP-1 biosynthesis. Therefore, we measured the mRNA and protein levels of MCP-1 after

MβCD treatment. As shown in Fig 2A, MβCD treatment significantly increased the mRNA

levels of MCP-1 in adipocytes starting at 2 h. Similarly, increased MCP-1 protein levels were

observed after 2 h MβCD treatment (Fig 2B and 2C).

We also examined the effects of combined treatment with MβCD and TNFα on MCP-1

mRNA and protein levels. While both MβCD and TNFα could induce MCP-1 mRNA levels

after 4 h treatment, TNFα treatment induced a much greater increase of MCP-1 mRNA than

MβCD treatment (Fig 2D). Simultaneous treatment with MβCD and TNFα did not further

increase the MCP-1 mRNA level, compared with TNFα treatment alone (Fig 2D). In contrast,

an additive effect was observed in the increase of MCP-1 protein levels when adipocytes were

simultaneously treated with MβCD and TNFα (Fig 2E and 2F).

Depletion of Membrane Cholesterol Increases ERK Phosphorylation

The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-

regulated kinase (ERK) [15, 26], c-Jun N-terminal kinase (JNK) [16, 27–29], p38 [15, 29],

mediates MCP-1 expression and secretion in many cell systems including adipocytes. To

determine the signaling pathways involved in MβCD-induced MCP-1 expression and secre-

tion in adipocytes, we used pharmacological inhibitors directed against each MAPK and tested

their effects on MβCD-induced MCP-1 expression and secretion. We also included TNFα
treatment for comparison because TNFα is a known inducer of MCP-1 and MAPK signaling

pathways. We first determined if MβCD treatment induced phosphorylation of ERK1/2 in

3T3-L1 adipocytes. As shown in Fig 3A, TNFα treatment increased phosphorylation of ERK1/

2 in a dose-dependent manner. MβCD treatment also greatly increased ERK1/2 phosphoryla-

tion (Fig 3A and 3B). Simultaneously treating cells with MβCD and TNFα led to an additive

elevation of ERK1/2 phosphorylation (Fig 3A). Moreover, addition of WSCL, which increased

cholesterol levels in adipocytes (Fig 1A), reduced TNFα-induced ERK phosphorylation (S4

Fig). Simultaneously treating cells with MβCD and WSCL reversed MβCD-inducde ERK

phosphorylation (S4 Fig). These results demonstrated that MβCD treatment, which depleted

cholesterol levels, induced ERK1/2 phosphorylation in adipocytes.

We used GSK1120212, which inhibits mitogen-activated protein kinase kinases (MEKs)

that are the upstream kinases to ERK1/2, to test whether ERK1/2 is involved in MβCD-

induced MCP-1 secretion. GSK1120212 treatment inhibited basal, MβCD-, or TNFα-induced

ERK phosphorylation, consistent with its suppression of MEKs and ERK1/2 (Fig 3B). We then

determined if inhibition of MEK1/2 affected MβCD-induced MCP-1 secretion and expression.

As shown in Fig 3C and 3D, GSK1120212 treatment not only reduced basal MCP-1 secretion,

but also reduced MβCD- and TNFα- mediated increases of MCP-1 secretion (Fig 3C) and

expression (Fig 3D).

To confirm the results from pharmacological inhibition, we knocked down MEK1 and

MEK2, the cellular targets of GSK1120212 [30] to test if MEK1/2 mediated MβCD-induced

mean ± S.E. of three independent experiments. **p<0.01, compared with 0 mM MβCD treatment. #p<0.05, compared

with 2 mM MβCD treatment. (D) 3T3-L1 adipocytes were untreated (Ctrl) or treated with 4 mM MβCD for different time

points (0.5, 1, 2, 4, 8, or 24 h). MCP-1 secretion was determined. Each point represents the mean ± S.E. of three

independent experiments. Asterisks denote significant differences (*p<0.05, **p<0.01, ***p<0.001). (E) 3T3-L1

adipocytes were untreated (Ctrl) or treated with 4 mM MβCD, 250 μg/ml WSCL, or both for 4 h. MCP-1 secretion in the

media was determined. Each point represents the mean ± S.E. of eight independent experiments. **p<0.01,

***p<0.001, compared with Ctrl. #p<0.05, compared with MβCD treatment. (F) 3T3-L1 adipocytes were untreated (Ctrl)

or treated with 4 mM MβCD, 250 μg/ml WSCL, or both for 24 h. MCP-1 secretion in the media was determined. Each

point represents the mean ± S.E. of six independent experiments. **p<0.01, ***p<0.001, compared with Ctrl.

###p<0.001, compared with MβCD treatment.

doi:10.1371/journal.pone.0169005.g001
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Fig 2. MβCD treatment increases mRNA and protein expression of MCP-1. (A-C) 3T3-L1 adipocytes were untreated (Ctrl) or treated with

4 mM MβCD for 0.5, 1, 2, or 4 h. The levels of mRNA (A) and protein (B,C) were determined by qPCR and Western blot analysis, respectively.

Each point represents the mean ± S.E. of at least three independent experiments. Asterisks denote significant differences (*p<0.05). (D-F)

3T3-L1 adipocytes were untreated (Ctrl) or treated with 4 mM MβCD, together without or with 1 ng/ml TNFα for 4 h. The levels of mRNA (D)

and protein (E,F) were determined by qPCR and Western blot analysis, respectively. Representative immunoblots from three independent

experiments are shown. Each point represents the mean ± S.E. of at least three independent experiments. Asterisks denote significant

differences (*p<0.05, **p<0.01, ***p<0.001).

doi:10.1371/journal.pone.0169005.g002
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Fig 3. Effects of MEK1/2 inhibition and depletion on MβCD-induced MCP-1 secretion. (A) 3T3-L1 adipocytes were

untreated (Ctrl) or pretreated with 4 mM MβCD for 4 h, and then treated with increasing TNFα doses (0, 0.25, 1 ng/ml) for 30 min.

(B) 3T3-L1 adipocytes were untreated (Ctrl), or treated with 4 mM MβCD or 1 ng/ml TNFα, together without or with 10 μM

GSK1120212 for 4 h. Cellular proteins were solubilized and subjected to SDS-PAGE and Western blot analysis with the

indicated antibodies. Representative immunoblots from three independent experiments are shown. (C) 3T3-L1 adipocytes were

untreated (Ctrl), or treated with 4 mM MβCD or 1 ng/ml TNFα, together without (DMSO) or with 10 μM GSK1120212 for 4 h.

MCP-1 released into the media and protein concentrations of cell lysate were determined. Each point represents the mean ± S.E.

Lipid Raft Disruption Increases MCP-1 Production
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MCP-1 secretion. siRNA duplexes were designed in the conserved regions of mouse MEK1

and MEK2 to simultaneously deplete both isoforms in adipocytes. As shown in Fig 3E, MEK1

and MEK2 proteins were greatly depleted after RNA interference. Surprisingly, knockdown of

MEK1 and MEK2 did not affect MβCD-induced MCP-1 secretion (Fig 3G). Moreover,

chronic depletion of MEK1 and MEK2 increased basal and MβCD-induced ERK phosphoryla-

tion (Fig 3F).

To examine if JNK and p38 MAPKs were involved in MβCD-induced MCP-1 secretion

and expression in adipocytes, we used SP600125 and SB203580, the inhibitors of JNK and p38,

respectively. JNK and p38 MAPK are involved in FFA-induced MCP-1 expression in 3T3-L1

adipocytes [16, 29]. Interestingly, we found that JNK and p38 were involved in TNFα-induced,

but not MβCD-induced MCP-1 expression and secretion in 3T3-L1 adipocytes (S5A and S5D

Fig).

Activation of NF-κB Mediates MβCD-induced MCP-1 Secretion

Activation of the transcription factor NF-κB can also increase MCP-1 expression [15, 16, 28,

31–33]. Therefore, we tested whether NF-κB is involved in MβCD-induced MCP-1 expression

and secretion. Activation of NF-κB is usually followed by the phosphorylation and degradation

of its inhibitor protein, inhibitor to I kappa B α (IκBα). To test whether MβCD treatment

might activate the NF-κB pathway in adipocytes, differentiated adipocytes were treated with

TNFα or MβCD for 0, 15, 30, or 60 min, and the phosphorylation and protein levels of IκBα
were determined. As shown in Fig 4A, TNFα treatment induced IκBα phosphorylation and

degradation as early as 15 min, suggesting the NF-κB signaling pathway is activated. MβCD

treatment also induced IκBα phosphorylation and degradation, but were less potent compared

with TNFα treatment. We also examined the cellular localization of the p65 subunit of NF-κB,

which localizes into the nucleus after being activated. While the p65 remained in the cytoplasm

of the untreated Ctrl cells, TNFα or MβCD treatment induced nuclear localization in adipo-

cytes (S6 Fig). Moreover, MβCD treatment also increased the mRNA levels of other NF-κB-

dependent genes (S7 Fig). These results demonstrate that MβCD treatment activates the NF-

κB pathway in adipocytes.

To test whether activation of NF-κB is involved in MβCD-induced MCP-1 secretion, we

used BMS-345541, the inhibitor of IκB kinase (IKK) [28, 34]. IKK is the upstream kinase that

phosphorylates IκBα and leads to degradation of IκBα and activation of NF-κB. BMS-345541

treatment abolished TNFα- (Fig 4B, left panel) or MβCD-induced (Fig 4B, right panel) IκBα
phosphorylation and degradation in 3T3-L1 adipocytes, consistent with its suppression of NF-

κB activation. Additionally, BMS-345541 treatment not only reduced basal MCP-1 secretion,

but also greatly decreased MβCD- or TNFα-induced MCP-1 secretion in adipocytes (Fig 4C).

Consistent with the ELISA results, BMS-345541 treatment also reduced the MCP-1 protein

increase induced by MβCD or TNFα treatment (Fig 4D). To confirm the results from pharma-

cological inhibition, we knocked down IKKβ (Fig 4E), the cellular target of BMS-345541. As

of three independent experiments. Asterisks denote significant differences (*p<0.05, ***p<0.001). (D) 3T3-L1 adipocytes were

untreated (Ctrl), or treated with 4 mM MβCD or 1 ng/ml TNFα, together without or with 10 μM GSK1120212 for 4 h. Cellular

proteins were solubilized and subjected to SDS-PAGE and Western blot analysis with the indicated antibodies. Representative

immunoblots from three independent experiments are shown. (E) 3T3-L1 adipocytes were transfected with non-targeting

luciferase siRNA (-), or siRNA against MEK1/2 (+). Protein levels of MEK1/2 were determined by Western blotting. (F,G) 3T3-L1

adipocytes were transfected with luciferase (Luc) or MEK1/2 siRNA. 48 h post transfection, cells were untreated (Ctrl) or treated

with 4 mM MβCD for 4h. Total and phosphorylation of ERK1/2 were detected (F). MCP-1 released into the media was

determined by ELISA (G). Each point represents the mean ± S.E. of three independent experiments. Asterisks denote significant

differences (***p<0.001).

doi:10.1371/journal.pone.0169005.g003
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Fig 4. Inhibition of IKK suppresses MβCD-induced MCP-1 expression and secretion. (A) 3T3-L1 adipocytes were treated with 1 ng/ml

TNFα or 4 mM MβCD for 0, 15, 30, or 60 min. (B) 3T3-L1 adipocytes were untreated (Ctrl), or treated with 1 ng/ml TNFα or 4 mM MβCD,

together without or with 10 μM BMS-345541 for 30 min. Cellular proteins were solubilized and subjected to SDS-PAGE and Western blot

analysis with the indicated antibodies. Representative immunoblots from three independent experiments are shown. (C, D) 3T3-L1 adipocytes

were untreated (Ctrl), or treated with 1 ng/ml TNFα or 4 mM MβCD, together without or with 10 μM BMS-345541 for 4 h. The MCP-1 released

into the media (C) and the MCP-1 protein in cell lysate (D) were determined. Each point represents the mean ± S.E. of three independent

experiments. Asterisks denote significant differences (**p<0.01). (E) 3T3-L1 adipocytes were transfected with non-targeting luciferase siRNA

(-) or siRNA against IKKβ (+). Protein levels of IKKβwere determined by Western blotting. (F) 3T3-L1 adipocytes were transfected with

luciferase (Luc) or IKKβ siRNA. 48 h post transfection, cells were untreated (Ctrl) or treated with 4 mM MβCD for 4h. MCP-1 released into the
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shown in Fig 4F, depletion of IKKβ reduced MβCD-induced MCP-1 secretion. These data sug-

gest that MβCD treatment activates the NF-κB pathway to increase MCP-1 biosynthesis and

secretion.

Filipin Treatment also Induces MCP-1 Expression and Secretion in

3T3-L1 Adipocytes without Affecting Cholesterol Levels

MβCD treatment depleted cholesterol and increased MCP-1 expression and secretion in adi-

pocytes. Depletion of membrane cholesterol may lead to the disruption of lipid rafts, which are

the microdomains of plasma membrane enriched in cholesterol and sphingolipids, as well as

caveolae, a subset of lipid raft domains consisting of structure protein caveolin [11, 35]. To

determine if another cholesterol-binding reagent would also induced MCP-1 similarly to

MβCD, we treated 3T3-L1 adipocytes with the polyene antibiotic filipin, which can also bind

and sequester membrane cholesterol [36]. We performed a dose response experiment of filipin

treatment. As shown in Fig 5A, filipin treatment induced a dose-dependent increase of the

MCP-1 secretion in 3T3-L1 adipocytes. Similarly to the results of the MβCD treatment, filipin

treatment did not further increase TNFα-induced MCP-1 secretion (Fig 5A).

We also examined if NF-κB activation was involved in filipin-induced MCP-1 secretion.

Treatment with BMS-345541 reduced basal and filipin-induced MCP-1 secretion, suggesting

the involvement of NF-κB activation in filipin-induced MCP-1 secretion (Fig 5B). Filipin

treatment by itself increased MCP-1 protein expression, whereas BMS-345541 treatment

greatly reduced filipin-induced MCP-1 protein levels (Fig 5C). These results confirmed that

filipin treatment, which also disrupts the integrity of lipid rafts like MβCD treatment, increases

MCP-1 expression and secretion in adipocytes.

MβCD is known to be a cholesterol acceptor that depletes cellular and membrane choles-

terol levels. As shown in Fig 6A, 4 h MβCD treatment reduced the total cholesterol level in the

adipocytes, consistent with its function as a cholesterol acceptor. In contrast, filipin treatment

did not affect cholesterol levels (Fig 6A). To determine how MβCD or filipin treatment

affected the membrane cholesterol level, we fractionated MβCD- or filipin- treated 3T3-L1 adi-

pocyte cell lysates to obtain the membrane fraction. As expected, the 4 h MβCD treatment

reduced membrane cholesterol to 50% of the Ctrl cells (Fig 6B). In contrast, filipin treatment

did not affect membrane cholesterol (Fig 6B), which is consistent with its function to sequester

membrane cholesterol without depleting it [36, 37]. Thus, MβCD treatment, which depletes

cellular and membrane cholesterol, may increase MCP-1 expression and secretion and activate

ERK and NF-κB by disrupting lipid raft integrity or function. To confirm this, we performed

lipid raft fractionation assay. 3T3-L1 adipocytes were pretreated with vehicle (Ctrl), 4 mM

MβCD, or 10 μg/ml filipin, and cell lysates were subjected to sucrose density-gradient ultra-

centrifugation. As shown in Fig 6C, distribution of lipid raft marker proteins (caveolin-1 and

flotillin) was altered after treatment with MβCD or filipin, consistent with a disturbance of

lipid raft integrity in adipocytes.

Discussion

In this study, we used MβCD treatment to acutely deplete cholesterol to determine how MCP-

1 secretion in 3T3-L1 adipocytes would be affected. Depletion of cholesterol induced increases

in mRNA, protein, and secretion of MCP-1 in adipocytes through the activation of NF-κB.

media was determined by ELISA. Each point represents the mean ± S.E. of four independent experiments. Asterisks denote significant

differences (*p<0.05, **p<0.01, ***p<0.001).

doi:10.1371/journal.pone.0169005.g004
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Fig 5. Filipin treatment increases MCP-1 secretion and protein expression. (A) 3T3-L1 adipocytes were

treated with increasing doses of filipin (0, 1, 2, 5, 10, 20 μg/ml), together without or with 1 ng/ml TNFα for 4 h.

MCP-1 released into the media was determined. Each point represents the mean ± S.E. of three independent

experiments. Asterisks denote significant difference compared with untreated value of 0 μg/ml group

(**p<0.01, ***p<0.001). (B) 3T3-L1 adipocytes were treated with vehicle (Ctrl) or 10 μg/ml filipin, together

with DMSO or 10 μM BMS-345541 for 4 h. MCP-1 secretion into the media was determined. Each point
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Moreover, the increase in MCP-1 expression and secretion and proinflammatory signaling

due to MβCD-induced cholesterol depletion may be a result of the disturbance of lipid raft

integrity, since filipin treatment, which did not alter membrane or total cholesterol levels, also

increased MCP-1 expression and secretion. Filipin can insert into the cell membrane and dis-

turb the function of lipid rafts by sequestering rather than extracting cholesterol [36, 37]. Addi-

tionally, we confirmed that MβCD and filipin treatment disturbed the integrity of lipid rafts in

adipocytes (Fig 6C). Because cholesterol redistribution was observed in hypertrophied adipo-

cytes [1–3, 5–7], the depletion of membrane cholesterol in obese adipocytes may result in a

disturbance of the lipid raft function, leading to elevated MCP-1 expression and secretion and

activation of proinflammatory signaling pathways such as ERK and NF-κB.

Lipid rafts have been shown to be involved in many cellular functions, including signaling

[8, 38], exocytosis [39], and endocytosis [9]. However, the role of lipid rafts in modulating adi-

pocyte function is not fully understood. Lipid rafts are necessary for the proper compartmen-

talization of insulin signaling. A portion of the insulin receptor is localized to caveolae, a

subset of lipid rafts [40]. Intact lipid rafts are required for insulin-stimulated tyrosine phos-

phorylation of Cbl and the activation of small GTP binding protein TC10 in adipocytes. Dis-

ruption of lipid rafts inhibits insulin-stimulated TC10 activation and subsequent GLUT4

translocation [41–43]. Thus, it has been suggested that insulin resistance may be caused in part

by the disruption of caveolae/lipid rafts that leads to altered localization of insulin receptor

and disassembly of insulin signaling molecules [44, 45]. However, in addition to these effects,

our findings suggest that the disturbance of lipid raft function may also activate proinflamma-

tory signaling pathways (such as ERK and NF-κB) and increase MCP-1 production in adipo-

cytes. Interestingly, both of these changes are known to contribute to insulin resistance in

obesity [46].

Depending on the cell types and signaling pathways, disruption of lipid rafts may either

activate or attenuate signaling events. Lipopolysaccharide (LPS)-stimulated signaling mole-

cules are localized to and assemble in lipid rafts of human blood cells. Disruption of lipid rafts

attenuates LPS-stimulation and subsequent TNFα secretion [47]. MβCD treatment disrupts

cocaine-induced lipid raft-localization of sigma receptor and attenuates MCP-1 secretion in

microglia [48]. However, disruption of lipid rafts may release the trapped signaling molecules

from the rafts, leading to the activation of a signaling event. For example, the protein tyrosine

kinase LCK is released from rafts after cholesterol depletion to induce tyrosine phosphoryla-

tion of multiple signaling molecules that activate the Ras-ERK pathway in T lymphocytes [49].

Disruption of membrane cholesterol results in activation of NF-κB in immature B cells,

whereas mature B cells are insensitive to the same treatment [50]. In adipocytes, 30 h MβCD

treatment attenuates palmitate-induced MCP-1 expression [51]. Apolipoprotein A-I, known

to mediate cholesterol efflux through ATP binding cassette transporter A1, attenuates LPS-

induced activation of MAPKs and NF-κB, as well as MCP-1 production in adipocytes [52].

Interestingly, both palmitate and LPS induce signal transduction via toll-like receptor 4

(TLR4) [53–55], a receptor known to localize to lipid rafts [54–56]. We found that cholesterol

depletion did not inhibit TNFα-induced ERK phosphorylation (Fig 3A) and MCP-1 produc-

tion (Figs 1B and 2D–2F) in adipocytes. Thus, cholesterol depletion or lipid raft disruption

may attenuate signaling events mediated by TLR4, but not others (such as TNFα receptors) in

represents the mean ± S.E. of three independent experiments. Asterisks denote significant difference

(**p<0.01, ***p<0.001). (C) 3T3-L1 adipocytes were treated vehicle (Ctrl), 4 mM MβCD, 10 μg/ml filipin, or 1

ng/ml TNFα, together without or with 10 μM BMS-345541 for 4 h. Cellular proteins were solubilized and

subjected to SDS-PAGE and Western blot analysis with the indicated antibodies. Representative

immunoblots from three independent experiments are shown.

doi:10.1371/journal.pone.0169005.g005
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Fig 6. Effects of MβCD and filipin treatment on cholesterol levels and the membrane distribution of lipid raft proteins in

adipocytes. (A) 3T3-L1 adipocytes were treated with vehicle (Ctrl), 4 mM MβCD, or 10 μg/ml filipin for 4 h. Cellular lysate was collected

and cholesterol levels were determined as described in the Methods (B). 3T3-L1 adipocytes were treated with vehicle (Ctrl), 4 mM

MβCD, or 10 μg/ml filipin for 4 h. The membrane fraction was collected after fractionation and cholesterol levels were determined. Each

point represents the mean ± S.E. of three independent experiments. Asterisks denote significant differences (**p<0.01, ***p<0.001).

(C) 3T3-L1 adipocytes were untreated (Ctrl) or treated with 4 mM MβCD or 10 μg/ml filipin for 4 h. Cells were lysed with 1% Triton X-100
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adipocytes. Moreover, our results showed that cholesterol depletion by itself, which caused

lipid raft disruption, could increase basal proinflammatory signaling and MCP-1 production

in adipocytes.

We also examined if knockdown of caveolin-1, the structure protein of caveolae, might

induce MCP-1 secretion in adipocytes as induced by MβCD treatment. However, depletion of

caveolin-1 did not affect basal or TNFα-induced MCP-1 secretion in adipocytes (S8 Fig).

Given that caveolae represent only a subgroup of lipid microdomains, disruption of caveolae

may not affect the function of non-caveolar lipid rafts. Moreover, it has been reported that

caveolae and non-caveolar lipid rafts may have distinct functions in adipocytes [57]. Alterna-

tively, residual caveolin-1/caveolae after knockdown may be enough for cellular function. Adi-

pocytes from caveolin-1 knockout mice may help to address this question.

An early report showing that during adipocyte differentiation, a 4-day inhibition of sterol

synthesis results in elevated expression of TNFα and IL-6 [7]. The authors attribute the up-reg-

ulation of proinflammatory cytokines to the depletion of cholesterol in differentiating adipo-

cytes. However, it is possible that chronic depletion of cholesterol by inhibiting sterol synthesis

during adipocyte differentiation may also lead to disruption of lipid raft function. This effect

could cause the elevated expression of these proinflammatory cytokines found in the study.

The discrepancy between pharmacological inhibition and MEK1/2 knockdown remains to

be elucidated. Although modulation of cholesterol levels by MβCD or WSCL treatment regu-

lated ERK phosphorylation (S4 Fig), knockdown of MEK1/2, the upstream kinases of ERK1/2,

did not affect MβCD-induced MCP-1 secretion (Fig 3G). Moreover, basal and MβCD-induced

ERK1/2 phosphorylation were elevated in MEK1/2-depleted adipocytes (Fig 3F). The duration

of pharmacological inhibition (4 h including the pretreatment) was usually shorter than the

knockdown experiment (last from 24–72 h). Compensated mechanism or elevation of other

signaling pathways may occur after chronic depletion of MEK1/2. Alternatively, MEK-inde-

pendent mechanisms have been reported for chronic activation of ERK1/2, such as PI3K/Akt

pathways [58, 59]. We did not observe activation of Akt, the downstream substrate of PI3K, in

MβCD-treated adipocytes (data not shown). Treatment with selective PI3K inhibitor

LY294002 only moderately reduced MβCD-induced MCP-1 secretion. Further experiments

are required to elucidate these MEK-independent mechanisms.

The mechanism that leads from disruption of lipid rafts to activation of ERK or NF-κB and

increased MCP-1 production in adipocytes remains to be determined. It has been shown that

intact lipid rafts are required for long-chain fatty acid uptake in adipocytes [60, 61]. Depletion

of membrane cholesterol, which disrupts the lipid raft association of the fatty acid transporter

FAT/CD36, inhibits fatty acid uptake [61]. Moreover, free fatty acids have been shown to

induce secretion of chemokines including MCP-1 in 3T3-L1 adipocytes [16]. We did observe

elevated levels of non-esterified fatty acid (NEFA), but not glycerol, in culture medium of

3T3-L1 adipocytes during longer treatment (24 h) with MβCD (S9 Fig). However, shorter

incubation (such as 4 h or less in most of our experiments) with MβCD did not cause measure-

able fatty acids in the medium. These observations eliminate the elevation of fatty acids in

medium as a cause for MβCD-induced MCP-1 secretion or activation of NF-κB in our experi-

mental setup.

With the high affinity for cholesterol, cyclodextrins have been used to manipulate cellular

cholesterol levels. Cyclodextrins, particularly β-cyclodextrins (β-CDs) were widely used as

pharmaceutical excipients of poorly water-soluble drugs [62]. More recently, the use of

at 4˚C and subjected to sucrose density-gradient ultracentrifugation as described in Methods. Representative immunoblots from two

independent experiments are shown.

doi:10.1371/journal.pone.0169005.g006
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2-hydroxypropyl-β-cyclodextrin (HPB-CD) in treating patients with Niemann-Pick type C

disease, a neurodegenerative disease with massive accumulation of cholesterol in the endo-

somes/lysosomes [63], highlights the potential effects of cyclodextrins in human physiology.

Thus, a better understanding of the cellular mechanisms of cyclodextrins may allow for better

therapeutic strategies in the future.

Supporting Information

S1 Fig. Treatment with cholesterol synthesis inhibitors does not alter cholesterol levels in

adipocytes. 3T3-L1 adipocytes were treated with vehicle (Ctrl), 10 μg/ml mevastatin, or

10 μg/ml U18666A in serum free DMEM for 24 h. Cell lysate was collected and cholesterol lev-

els were determined. Each point represents the mean ± S.E. of three independent experiments.

(TIF)

S2 Fig. Dose effects of MβCD on cell viability. 3T3-L1 adipocytes were treated with increas-

ing MβCD doses (0, 1.875, 2.5, 3.75, 5, 7.5, or 10 mM) for 24 h. Cell viability was determined

by the MTT assay. Each point represents the mean ± S.E. of three independent experiments.

Asterisks denote significant difference compared with 0 mM control (��p<0.01, ���p<0.001).

(TIF)

S3 Fig. Cycloheximide treatment abolishes basal, MβCD, or TNFα-induced MCP-1 secre-

tion. 3T3-L1 adipocytes were untreated (Ctrl), or treated with 4 mM MβCD or 1 ng/ml TNFα,

together with DMSO or 50 μg/ml cycloheximide for 4 h. MCP-1 release in the medium was

determined by ELISA. Each point represents the mean ± S.E. of three independent experi-

ments. Asterisks denote significant difference (���p<0.001) compared with DMSO treatment

in each group.

(TIF)

S4 Fig. Modulations of cholesterol levels regulate basal and TNFα-induced ERK phosphor-

ylation. 3T3-L1 adipocytes were untreated (Ctrl), or pretreated with 4 mM MβCD, 250 μg/ml

WSCL, or both for 4 h, and then treated with increasing TNFα doses (0, 0.25, 1 ng/ml) for 30

min. Cellular proteins were solubilized and subjected to SDS-PAGE and Western blot analysis

with the indicated antibodies. Representative immunoblots from three independent experi-

ments are shown.

(TIF)

S5 Fig. Effects of JNK and p38 inhibitors on MβCD-induced MCP-1 expression and secre-

tion. (A, B) 3T3-L1 adipocytes were untreated (Ctrl), or treated with 4 mM MβCD or 1 ng/ml

TNFα, together without (DMSO) or with 10 μM SP600125 for 4 h. (A) Cellular proteins were

solubilized and subjected to SDS-PAGE and Western blot analysis with the indicated antibod-

ies. Representative immunoblots from three independent experiments are shown. (B) MCP-1

secretion in medium was determined by ELISA. Each point represents the mean ± S.E. of four

independent experiments. Asterisks denote significant difference (�p<0.05, ��p<0.01). NS,

not significant. (C, D) 3T3-L1 adipocytes were untreated (Ctrl), or treated with 4 mM MβCD

or 1 ng/ml TNFα, together without (DMSO) or with 10 μM SB203580 for 4 h. (C) Cellular pro-

teins were solubilized and subjected to SDS-PAGE and Western blot analysis with the indi-

cated antibodies. Representative immunoblots from three independent experiments are

shown. (D) MCP-1 secretion in medium was determined by ELISA. Each point represents the

mean ± S.E. of five independent experiments. Asterisks denote significant difference (�p<0.05,
���p<0.001). NS, not significant.

(TIF)
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S6 Fig. MβCD or TNFα treatment stimulates nuclear localization of p65 NF-κB. 3T3-L1

adipocytes were untreated (Ctrl), or treated with 4 mM MβCD or 1 ng/ml TNFα for 30 min.

NF-κB localization was stained with anti-p65 NF-κB antibody (red). Nuclei were stained with

DAPI (blue). Scale bar = 10 μm.

(TIF)

S7 Fig. MβCD treatment increased mRNA levels of NF-κB-dependent genes. 3T3-L1 adipo-

cytes were untreated (Ctrl) or treated with 4 mM MβCD for 0.5, 1, 2, or 4 h. mRNA levels of IL-

6 (A) and IκBα (B) were determined by qPCR. Each point represents the mean ± S.E. of at least

three independent experiments. Asterisks denote significant differences (�p<0.05, ��p<0.01).

(TIF)

S8 Fig. Knockdown of caveolin-1 did not affect basal or TNFα-induced MCP-1 secretion.

(A) 3T3-L1 adipocytes were transfected with non-targeting luciferase siRNA (-) or siRNA

against caveolin-1 (+). Protein levels of caveolin-1 (Cav-1) were determined by Western blot-

ting. (B) 3T3-L1 adipocytes were transfected with luciferase (Luc) or caveolin-1 (Cav-1)

siRNA. 48 h post transfection, cells were untreated (Ctrl) or treated with 1 ng/ml TNFα for 4h.

MCP-1 released into the media was determined by ELISA. Each point represents the

mean ± S.E. of three independent experiments. Asterisks denote significant differences

(�p<0.05, compared with Ctrl value).

(TIF)

S9 Fig. Chronic treatment with MβCD increases NEFA release in adipocytes. 3T3-L1 adipo-

cytes were untreated (Ctrl), or treated with 4 mM MβCD, 250 μg/ml WSCL, or both for 24 h.

Glycerol (A) or NEFA (B) release into the media and protein concentrations of cell lysate were

determined. Each point represents the mean ± S.E. of at least three independent experiments.

Asterisks denote significant differences (�p<0.05, ��p<0.01).

(TIF)
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