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Activation of pro-inflammatory and pro-angiogenic pathways in the retina and the bone marrow contributes to
pathogenesis of diabetic retinopathy. We identified miR-15a as key regulator of both pro-inflammatory and pro-
angiogenic pathways through direct binding and inhibition of the central enzyme in the sphingolipid metabo-
lism, ASM, and the pro-angiogenic growth factor, VEGF-A. miR-15a was downregulated in diabetic retina and
bone marrow cells. Over-expression of miR-15a downregulated, and inhibition of miR-15a upregulated ASM
and VEGF-A expression in retinal cells. In addition to retinal effects, migration and retinal vascular repair function

f;‘fﬂ‘i?gﬁ&inopatw was impaired in miR-15a inhibitor-treated circulating angiogenic cells (CAC). Diabetic mice overexpressing miR-
microRNA 15a under Tie-2 promoter had normalized retinal permeability compared to wild type littermates. Importantly,
Sphingolipids miR-15a overexpression led to modulation toward nondiabetic levels, rather than complete inhibition of ASM
Dyslipidemias and VEGF-A providing therapeutic effect without detrimental consequences of ASM and VEGF-A deficiencies.

Vascular system injuries

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diabetic retinopathy (DR) is a leading cause of preventable blindness
(Hammes, 2013; Prokofyeva and Zrenner, 2012). Recent progress in un-
derstanding of DR pathogenesis has led to significant advances in avail-
able pharmacotherapy; however a cure for DR has yet to be realized.

MicroRNAs (miRNAs) are small non-coding RNAs that non-perfectly
anneal to target genes leading to gene silencing through cleavage, desta-
bilization, or inhibition of mRNA translation. Each miRNA targets multi-
ple genes, and, in turn, one gene may be regulated by multiple miRNAs.
Hence, targeting one or a few miRNAs provides the unique opportunity
to prevent expression of multiple genes and for development of RNA-
based therapeutics. MiRNAs have been implicated in a variety of cellular
processes, such as differentiation, proliferation, apoptosis, metabolism,
and various signal transduction pathways (Chuang and Jones, 2007;
He and Hannon, 2004). Expression of select miRNAs results in a post-
transcriptional feedback control mechanism, which is believed to be in-
volved in modulation of lipid and carbohydrate metabolism and
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inflammatory pathways (Feng et al., 2011; Poy et al., 2004), thereby po-
tentially playing a key role in the pathogenesis of diabetes and its com-
plications (Pandey et al., 2009). The role of miRNAs in DR pathogenesis
is beginning to unfold. A recent study showed that 86 miRNAs were dif-
ferentially expressed in the retina and 120 miRNAs differentially
expressed in retinal endothelial cells isolated from diabetic rats when
compared with control (Kovacs et al., 2011). Prominent among these
were miRNAs controlled by the pathways playing an important role in
the pathogenesis of diabetic retinopathy, namely NF-«B, VEGF, and
p53-controlled miR-146, miR-31 and miR-34 (8). Consistent with this
study, our previously published data demonstrated diabetes-induced
dysregulation of daily rhythms of miR-146a and inflammatory path-
ways under miR-146a control in the retina (Wang et al.,, 2014). A grow-
ing body of literature identified miR-200b as miRNA contributing to
VEGF upregulation and pathogenesis of diabetic retinopathy
(McArthur et al., 2011; Suarez and Sessa, 2009; Chan et al., 2011).
High glucose-induced downregulation of miR-152 led to increased ex-
pression levels of downstream VEGF, VRGFR-2, and TGF1 in HRECs
through interaction with the (pro)renin receptor (Haque et al., 2015).
Overexpression of miR-15b and miR-16 decreased TNFa and suppres-
sor of cytokine signaling 3 (SOCS3)-mediated insulin resistance path-
ways while increasing insulin-like growth factor binding protein-3
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(IGFBP-3) levels in HRECs, and thus prevented hyperglycemia-induced
apoptosis through activation of Akt phosphorylation and decreased
cleavage of caspase 3 (Ye and Steinle, 2015).

Pro-inflammatory and pro-angiogenic factors are known to be acti-
vated in the diabetic retina. Prominent among these are the inflamma-
tory cytokine, interleukin (IL)-1f3, tumor necrosis factor o (TNFo) and
IL-6; the adhesion molecules ICAM1 and VCAM1; and the growth factor,
vascular endothelial growth factor A (VEGF-A). Elevated VEGF-A pro-
duction results in increased retinal endothelial permeability and cell in-
jury (Caldwell et al,, 2005; Hu et al., 2013; Penn et al., 2008; Wang et al.,
2015; Yang et al., 2013; Boyer et al., 2013; Harhaj et al,, 2006; Simo et al.,
2014).In addition to these key factors, we previously identified that acid
sphingomyelinase (ASM), the enzyme converting sphingomyelin into
pro-inflammatory and pro-apoptotic ceramide, is highly activated by di-
abetes in the retina (Opreanu et al., 2011). Endothelial cells, which rep-
resent a major source of ASM, had the highest level of activation of ASM
in diabetic retina. The mechanism(s) of this activation remains largely
unknown.

Retinal endothelial cell damage in diabetes (Joussen et al., 2001; Roy
et al., 2015; Chronopoulos et al., 2011) is further confounded by inade-
quate vascular repair due, in part, to compromised function of the bone
marrow (Busik et al., 2009; Caballero et al., 2007; Grant et al., 2002;
Bhatwadekar et al.,, 2010; Chakravarthy et al.,, 2016). Bone marrow-de-
rived circulating angiogenic cells (CACs) normally serve to mitigate en-
dothelial injury, but are unable to participate in vascular repair in the
retina of humans and rodents with chronic diabetes (Busik et al.,
2009; Chakravarthy et al., 2016; Abu El-Asrar et al., 2011; Krady et al.,
2005; Li Calzi et al,, 2010; Tan et al., 2010; Liu et al., 2013; Sukmawati
and Tanaka, 2015; Balaiya et al., 2014; Caballero et al., 2013). In
human subjects we and others have used CD34 + cells as a marker of
vascular reparative populations. We used the term CAC, however in
the literature the term circulating progenitor cells (CPCs) is also used
to define the same population of immature bone marrow (BM)-derived
cells, mostly of hematopoietic origin, which have been associated with
several aspects of CVDs, from diagnosis to therapy. In clinical studies,
CACs/CPCs are generally defined by flow cytometry based on the surface
expression of the hematopoietic stem cell markers CD34 and CD133
(Ingram et al., 2005). CPCs include phenotypes with vascular endotheli-
al specification, usually called endothelial progenitor cells (EPCs). EPCs
account for <15% of CPCs and are characterized by the co-expression
of endothelial markers (mostly the type 2 vascular endothelial growth
factor receptor KDR) (Fadini et al., 2008; Fadini et al.,, 2012). We have
used a single marker, CD34, as Fadini et al. demonstrated that it was
as predictive as using multiple markers (Rigato et al., 2016) and with
isolation of human cells, in particular cells from diabetic patients, it is
difficult to obtain sufficient numbers of cells and with the selection of
each additional maker the number of cells isolated decreases, limiting
what is available for study. In animal models, BM-derived progenitor
cells contribute to vascular repair and include linage negative cells
which are then positively selected for Sca-1.

In this study, we identified miR-15a as a miRNA that provides inhibi-
tion to both ASM and VEGF-A activation. MiR-15a was shown to be sig-
nificantly downregulated in the blood of diabetic patients and T2D
hyperglycemic Lep®® mice (Zampetaki et al., 2010). Importantly, we
provide an entirely new mechanism for the pathogenesis of diabetic ret-
inopathy based on diabetes-induced downregulation of miR-15a ex-
pression leading to pro-inflammatory and pro-angiogenic changes in
the diabetic retina due to unopposed activation of miR-15a target
genes, ASM and VEGF-A.

2. Methods
2.1. Mouse Models and Rat Model

All procedures involving animal models were approved by Institu-
tional Animal Care and Use Committee at MSU. The Tie-2 promoter

driven miR-15a transgenic (Tie2-miR-15a TG) mice were from Dr. Y. Eu-
gene Chen's group (Yin et al., 2012). C57BL/6] and C57BL/6-Tg(CAG-
EGFP) mice were purchased from Jackson Laboratory. Eight week old
male Tie2-miR-15a TG, C57BL/6] or C57BL/6-Tg(CAG-EGFP) mice were
made diabetic by injections of 55 mg STZ (Sigma-Aldrich)/kg body
weight for five consecutive days. Eight week old male Long Evans rats
with body weights of 240 g were purchased from the Harlan laborato-
ries (Haslett, MI, USA) and made diabetic by injections of 65 mg STZ
(Sigma-Aldrich)/kg body weight for five consecutive days.

Control animals (mice and rats) received vehicle (100 mM citric acid
buffer, pH = 4.5) injections. Body weight and blood glucose were mon-
itored biweekly for these mice and rats during the induction of diabetes.
Permeability was examined 4 weeks after the induction of diabetes to
mimic early stage diabetic retinopathy for the control and STZ- induced
Tie2-miR-15a TG mice. Sample and data were collected 8 weeks after
the induction of diabetes for real-time PCR analysis and CACs isolation
for the STZ- induced Tie2-miR-15a TG mice, C57BL/6], C57BL/6-
Tg(CAG-EGFP) mice and rats.

2.2. Cell Culture

Primary cultures of Human retinal endothelial cells (HRECs) were
prepared from the retinas provided by National Disease Research Inter-
change (Philadelphia, PA) as previously described (Wang et al., 2014),
or purchased from cell systems (Cell Systems, Kirkland, WA, USA). In
brief, primary cultures of HRECs were obtained from at least three sep-
arate donors. Passages 3-6 were used in the experiments. Purity of the
cells was determined using acetylated LDL uptake and Von Willebrand
factor staining. Only 99% and higher purity HRECs preparations were
used in the study. HRECs were grown in six-well plates coated with
0.1% gelatin in 2 ml growth medium/well consisting of Dulbecco's mod-
ified Eagle's medium/F12 (1:1 ratio, 5 mmol/I glucose) supplemented
with 10% fetal bovine serum, 5% ECGS, 1% penicillin/streptomycin, and
1x ITS at 37 °C in humidified 95% air and 5% CO, until fully confluent.
The cells were maintained at 37 °C in 5% CO, in a humidified cell culture
incubator and passaged at a density of 40,000 to 100,000 cells/cm? in
75-cm? flasks. Passaged cells were plated to yield near-confluent cul-
tures at the end of the experiments. Characteristics of the donors are
summarized in Supplemental Table S1. Human retinal pigment epithe-
lial cell line ARPE-19 cell culture (HRPE) cells were grown in 2 ml
growth medium/well consisting of Dulbecco's modified Eagle's medi-
um/F12 (1:1 ratio, 5 mmol/l glucose) supplemented with 10% fetal bo-
vine serum, 1% penicillin/streptomycin, at 37 °C in humidified 95% air
and 5% CO,.

For tube formation assay, HRECs were seeded into tissue culture
flasks coated with attachment factor (Cell Systems, Kirkland, WA,
USA) and cultured in CSC Complete Medium (Cell Systems, Kirkland,
WA, USA). When experimental conditions required serum-free medi-
um, CSC Complete Serum-Free Medium was used. All cultures were in-
cubated at 37 °C, 5% C02, and 95% relative humidity (20.9% oxygen).
Passages 6 to 8 were used for tube formation assay.

2.3. High Glucose Treatment and Transfection of HRPE Cells

HREPE cells were grown to 70% confluence in serum-free medium for
12 h and then treated with serum-free medium containing 5 mmol/l
glucose (NG) or 25 mmol/I glucose (HG), respectively. After 24 h, NG
or HG treated HRPE cells were transfected with 100 nM miRIDIAN
miRNA mimic or antagomir for miR-15a and the negative controls
(scrambled) (Dharmacon, Lafayette, CO). The transfected HRPE cells
were maintained in serum-free medium with 5 mmol/l glucose or
25 mmol/I glucose respectively in 37 °C/5% CO, incubator. After 48 h,
cells were harvested for total miRNA, RNA, lipid and proteins extraction.
The results were confirmed by repeating experiment at least three
times.
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2.4. Real-Time PCR-Based miRNA Expression Profiling

HRECs isolated from retinas of diabetic (n = 6) and control donors
(n = 6) were analyzed for the presence and differential expression of
total 752 best characterized miRNAs in the human miRNA genome
using human RT? miRNA PCR arrays (RT? Profiler; SABiosciences) ac-
cording to the manufacturer's instructions. Data analysis was performed
with the web-based software package for the miRNA PCR array system
(http://www.sabiosciences.com/pcr/arrayanalysis.php) and TargetScan
(http://www.targetscan.org/).

2.5. MiRNA and RNAi transfection

Cultured HRECs, CACs or HRECs were re-suspended in electropora-
tion solution (Amaxa Biosystems, Gaithersburg, MD) to final concentra-
tion of 5 x 10° cells/100 uL. Then 100 pL cell suspension was mixed with
100 nM miRIDIAN miRNA mimic or antagomir for miR-15a and the neg-
ative controls (scrambled) (Dharmacon, Lafayette, CO) into the electro-
poration cuvette, and HRECs or CACs were electroporated (Nucleofactor
program M-030; Amaxa Biosystems). The electroporated cells were
maintained in supplemented medium in 37 °C/5% CO, incubator. After
48 h, cells were harvested for total miRNA, RNA and proteins extraction.
The results were confirmed by repeating experiment at least three
times.

2.6. Quantitative Real-Time PCR

Quantitative real-time PCR was performed to examine the expres-
sion levels of ASM and VEGF in rat retina (n = 6), HRECs (n = 6) and
HREPE cells (n = 3). Specific primers used for each gene are listed in Sup-
plemental Table S2. Expression levels of ASM and VEGF-A were normal-
ized to cyclophilin A. TagMan miRNA Assays were performed to
examine the miRNA expression and the data were normalized to the ex-
pression of U87, U6 snRNA or RNU58B for rat, mice or human. Mouse
expression levels of ASM, VEGF-A, ICAM-1, VCAM-1, IL-13, IL-6 and
TNF-a were examined using TagMan gene expression assays and nor-
malized to cyclophilin A.

2.7. Western Blotting

Samples were lysed using lysis buffer composed of 50 mM HEPES,
1 mM EGTA, 1.5 mM MgCl2, 150 mM NacCl, 10% glycerol and 1% Triton
X-100, pH 7.5). Phosphatase inhibitor (1 mM Na4PPi, 10 mM NaF,
100 uM glycerophosphate, 1 mM Na3P04) and protease inhibitor
(Sigma-Aldrich, St. Louis, MO) were added fresh to the solution. A pro-
tein quantification assay (Bio-Rad Laboratories) was performed to de-
termine the protein concentration for each sample. Proteins were
loaded on NuPAGE gels containing 10% Bis-Tris (Life Technologies,
Carlsbad, CA) and run for 1.5 h at 100 V. Resolved proteins were trans-
ferred to nitrocellulose membrane and stained with anti-ASM antibody
at 1:1000 dilution (Cell Signaling), followed by Alexa-Fluor secondary
antibody (Life Technologies, Carlsbad, CA). Immunoreactive bands
were visualized using the Odyssey digital imaging program. Image] soft-
ware was used for quantification of scanned blots.

2.8. Immunostaining and Quantitation of Ceramide Production

HRPE cells (3 x 10%) were plated on cover-slips in 6-well plates 48 h
prior to treatment. Rinse cells twice with PBS at room temperature be-
fore fixation. Cells were fixed in a solution of freshly prepared 4% para-
formaldehyde for 10 min at room temperature and then permeabilized
with ice cold acetone for 10 min. After pretreatments, cells were blocked
with 5% normal goat sera (Jackson ImmunoResearch Laboratories Inc.,
West Grove, PA) for 2 h at room temperature and incubated with mono-
clonal mouse anti-ceramide antibody (Sigma-Aldrich, St. Louis, MO) at
1:50 in PBS with 1% BSA for 2 h at room temperature or overnight at

4 °C. After washing with PBS, the goat-mouse Texas Red conjugated sec-
ondary antibody (1:500) (Life Technologies, Carlsbad, CA) was incubat-
ed for 1 h at room temperature in the dark. Following washing with PBS
three times, nuclei were stained for 10 min with DAPI (Sigma-Aldrich,
St. Louis, MO). Slides were rinsed three times with distilled water and
then postfixed with the Prolong Antifade Kit (Life Technologies, Carls-
bad, CA), covered with glass coverslips, and subjected to fluorescent mi-
croscopy. The Texas Red fluorescence was visualized by excitation at
594 nm and collection of emissions at 618 nm, whereas the excitation
and emission wavelengths for the DAPI detection were 350 and
460 nm, respectively. The images were viewed, and pictures were
taken using a Nikon TE2000 fluorescence microscope equipped with
Photometrics CoolSNAP HQ2 camera. All images were taken with
matched exposure time for experimental and control sections and at
least 5 different view areas were selected to collect images for each
slide. The quantitation of ceramide was done using the MetaMorph im-
aging software (Molecular Devices, Downingtown, PA). The fluores-
cence intensity of ceramide signal in HRPE cells was normalized to the
fluorescence intensity of DAPI in the nuclei. The autofluorescence was
excluded from the analysis.

2.9. 3'UTR Luciferase Reporter Assay

Confirmation of miR-15a-binding to the putative 3’ untranslated re-
gion (UTR) binding-site of ASM utilized a dual luciferase reporter assay.
HRPE cells at 80% confluency were transfected with 100 ng reporter vec-
tor pMir-SMPD1 3’UTR, a vector containing the 3’UTR clone of
sphingomyelin phosphodiesterase 1 acid lysosomal (SMPD1), empty
vector pMir empty-3’UTR or the mutant construct of pMir-SMPD1 3’
UTR, which was generated by replacing the seed regions of the miR-
15a binding sites from 5’-TGCTGCT-3’ with 5'-TGTGACT-3’ mutation.
All reporter vectors were purchased and constructed from OriGene
Technologies (Rockville, MD, USA). Reporter vectors were co-
transfected with mimic miR-15a (100 nM), or mimic scrambled nega-
tive control (Applied Biosystems), and a pGL4.74 (hRluc/TK) vector
(Promega, Madison, WI) for normalization. DharmaFECT Duo
(Dharmacon, Lafayette, CO) was used as the transfection reagent in
serum free medium. Following 24 h incubation in transfection media,
luciferase signal was measured using Dual-Luciferase Reporter Assay
System according to manufacturer's instructions (Promega, Madison,
WI).

2.10. Mass Spectrometry

1-5 million cells were subjected to monophasic lipid extraction.
10 pL of lipid sample was directly infused by nanoelectrospray ioniza-
tion (nESI) into a high resolution/accurate mass Thermo Scientific
model LTQ Orbitrap Velos mass spectrometer (San Jose, CA) using an
Advion Triversa Nanomate nESI source (Advion, Ithaca, NY). High reso-
lution mass spectra and Higher-Energy Collision Induced Dissociation
(HCD-MS/MS) product ion spectra were acquired in positive ionization
mode to confirm lipid headgroups and elucidate the sphingosyl back-
bone/acyl chain compositions of selected sphingolipid ions using the
FT analyzer operating at 100,000 mass resolving power. Lipid identifica-
tions were achieved using the Lipid Mass Spectrum Analysis (LIMSA)
v.1.0 software linear fit algorithm, in conjunction with a user-defined
database of hypothetical lipid compounds for automated peak finding
and correction of 3C isotope effects. Relative quantification between
samples was performed by normalization of target lipid ion peak areas
to appropriate internal standards. Individual molecular species of
ceramides are shown at magnification ranging from 20 x-300x, and in-
dividual molecular species of sphingomyelin (SM) are shown under
10 x magnifications for clarity and to demonstrate the dynamic range
of the Orbitrap mass spectrometer (Lydic et al., 2014).
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2.11. In Situ Hybridizations (ISH) of miR15a

ISH was performed on frozen retinal section fixed in 4% PFA. MiRs
were demasked by incubation with proteinase K for 30 min. Slides
were incubated overnight at 58 °C using double (5’and 3’) DIG-labeled
locked nucleic acid miRNA detection probes specific for mouse miR-15a
(Exigon; Woburn, MA) coupled with DyLight 594 anti-DIG fluorescent
antibody (Vector Laboratories; Burlingame, CA). Slides were then
washed in 2%, 1x and .1x concentrations of sodium citrate (SSC)
buffers at 58 °C, 53 °C, and 37 °C, respectively, followed by a one hour
incubation with anti-DIG (Roche Diagnostics, Indianapolis, IN) and
mounting with Fluoromount. Images were captured by light microsco-
py using Zeiss Axioplan2.

2.12. Retinal Vascular Permeability

Two months after induction of diabetes in the littermate wild-type
control and Tie2-miR-15a TG mice, in vivo vascular permeability in the
retina was measured. Briefly, mice were injected with FITC- albumin
(0.5 mg in 100 pL PBS) (Sigma-Aldrich, St. Louis, MO). After two
hours, blood was collected from each mouse and centrifuged to obtain
plasma; the animal was perfused with 1% formaldehyde and enucleat-
ed. Retinas were removed, flat-mounted with four slits and kept on
glass slides with Fluoromount mounting medium (Sigma-Aldrich, St.
Louis, MO). Images were acquired using an Olympus FluoView 1000
scanning laser confocal microscope and at least 5 different view areas
were selected to collect images for each sample. Retinas were disrupted
mechanically and cleared by centrifugation. FITC-albumin in superna-
tant was quantified using spectrofluorometer and normalized to plasma
fluorescence (Kielczewski et al., 2011).

2.13. Retinal Ischemia-Reperfusion (I/R)

All procedures involving the animal models adhered to the ARVO
statement for the Use of Animals in Ophthalmic and Vision Research.
I/R were created by temporal increase in intraocular pressure to
90 mm Hg as described previously (Zheng et al., 2007). The intravitreal
injection procedure was performed 7 days after retinal I/R.

2.14. CAC Isolation and Migration

Age matched male control (n = 10) or diabetic gfp™ mice (n = 10)
were euthanized and tibias and femurs were collected. Ice-cold PBS was
used to flush bones, and single cell suspension was made. Ammonium
chloride (STEMCELL technologies) was used to eliminate erythrocytes
contaminating the bone marrow cells. Next, negative selection using
magnetic beads (STEMCELL Technologies) was used to isolate hemato-
poietic stem/progenitor cells from mouse bone marrow, and positive se-
lection for Sca-1 (STEMCELL Technologies) was used to obtain Lin-
Sca + progenitor cells. Enriched progenitor cells were kept in a cell cul-
ture incubator with 5% CO, at 37 °C overnight, in EGM-2 media with
SingleQuot supplements and growth factors added (Lonza) to enable
recovery from the enrichment process. The wells below were loaded
with 100 nM SDF-1, 10% FBS as positive control or PBS as negative
control. The migration set-up was incubated with 5% CO, at 37 °C
for 4 h. To determine the number of migrated cells, fluorescence
emitted at 550 nm was measured using a microplate reader. Samples
were analyzed in triplicate and data expressed as percentage relative
to positive control 4+ SEM (Tikhonenko et al., 2013). The cells isolat-
ed by this protocol were formerly called EPCs (endothelial progeni-
tor cells).The terminology has now been updated to CACs
(circulating angiogenic cells), which is more reflective of the func-
tion of these cells.

2.15. Reendothelialization of Retinal Vasculature

10,000 Lin~ Sca™ gfp™ CACs isolated from control or diabetic gfp™
mice were treated with miR-15a mimics or inhibitors, or corresponding
controls for 48 h and then were injected intravitreously using 33-gauge
Hamilton syringe into eyes isolated from control or I/R injured mice
(7 days after I/R). After seven days to allow progenitor cells homing to
retinal vessels, mice were sacrificed, eyes removed, pierced with a 30-
gauge needle, fixed in 4% paraformaldehyde for 1 h, and washed in
PBS. Retinas were isolated and flat-mounted with four slits and kept
on glass slides with fluoromount mounting medium (Sigma-Aldrich,
St. Louis, MO). Retinas in the glass slides were then permeabilized over-
night at 4 °C in HEPES-buffered saline containing 0.1% Tween 20 and 1%
BSA. Vasculature was stained with rabbit anti-collagen IV (abcam) dilut-
ed 1:400, followed by PBS wash. Secondary antibody chicken anti-rabbit
(Alexa Fluor 594, Invitrogen) (red), diluted 1:1000 was used to detect
collagen IV. Coverslips were mounted on slides using ProLong® Gold
Antifade Mountan (Life Technologies, CARLSBAD, CA). Single XY confo-
cal fluorescence images were acquired using the Olympus FluoView
FV1000 Confocal Laser Scanning Microscope (Olympus America, Inc.,
Center Valley, PA) configured on a fully automated [X81 inverted micro-
scope using a 20 x UPlanSApo (NA 0.75) objective. The confocal fluores-
cence images were sequentially scanned to prevent fluorescence
emission crossover. The GFP (displayed in green) was excited using
the 488 nm Argon gas laser line and the fluorescence emission was col-
lected using a 522.5/45 nm band pass filter. Collagen IV labeled with
Alexa Fluor 594 (displayed in red) was excited using the 559 nm solid
state laser and the fluorescence emission was collected using a 620/
100 nm band pass filter. All images were taken with matched exposure
times for experimental and control sections and at least 5 different view
areas were selected to collect images for each retina. The co-localization
of gfp™ cells (green) and collagen IV (red) associated with retinal vascu-
lature (yellow) was used to evaluate the incorporation ability of CACs.
The quantitation of co-localization was done using the MetaMorph im-
aging software (Molecular Devices, Downingtown, PA). The fluores-
cence intensity of retinal vasculature (yellow) in the mouse retina was
measured. The autofluorescence of the section was excluded from the
analysis.

2.16. Matrigel In Vitro HRECs Tube Formation Assay

Tube formation assay was performed using the BD BioCoat Angiogen-
esis System-Endothelial Cells Tube Formation Matrigel Matrix 96-well
plate Matrigel (BD Biosciences Discovery Labware, Bedford, MA) as man-
ual provided by manufacture. Briefly, a 96-well culture plate was coated
with 100 pL of matrigel per well and allowed to polymerise for 30 min
at 37 °C. HRECs treated with miRNA mimic or antagomir for miR-15a
and the negative controls (scrambled) at a density of 2 x 10% cells well !

were plated in 0.3 ml of CSC Complete Serum-Free Medium for 18 h at
37 °C. The images of tubes were taken in x10 magnifications using a
Nikon TE2000 fluorescence microscope equipped with Photometrics
CoolSNAP HQ2 camera. All images were taken with matched exposure
time for experimental and control sections and at least 5 different view
areas were selected to collect images for each well. The quantitation of
tube formation was done using the MetaMorph imaging software (Mo-
lecular Devices, Downingtown, PA). Samples were analyzed in triplicate
and data expressed the number of tubes as percentage relative to con-
trol 4= SEM.

2.17. Statistical Analysis

All of results were confirmed by repeating experiment at least three
times. Data are expressed as the mean + SE for gene expression. Two-
way ANOVA with post hoc Tukey test (GraphPad Prism5, GraphPad
Software, San Diego, CA) was used to compare the data obtained from
independent samples. Significance was established at P < 0.05.
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3. Results

3.1. Decreased miR-15a Leads to Increased ASM Expression in Retinal Cells
in Diabetes

We have previously demonstrated that ASM expression is highly up-
regulated in diabetic retinas and this is associated with activation of in-
flammatory cytokines (Opreanu et al., 2011). To determine if altered
miRNA control could contribute to ASM upregulation in diabetes, we
used Target Scan (http://www.targetscan.org/) to identify miRNAs
that have target sequence for the 3’'UTR of ASM mRNA. We found six
predicted miRNAs: miR-497, miR-15a, miR-15b, miR-424, miR-16 and
miR-195.

We next performed the miRNA array to determine differentially
expressed miRNAs in the HRECs isolated from control and diabetic do-
nors. We used RT?> miRNA PCR arrays followed by individual qPCR vali-
dations for selected miRNAs and found 60 miRNAs that were >2.5 fold
upregulated and 16 miRNAs downregulated in HRECs isolated from di-
abetic vs. control eyes (Fig. 1A). Notably, the miRNA PCR array data
showed that miR-15a was down-regulated in HRECs isolated from the
diabetic donors relative to the control donors, but there was no effect
of diabetes on the other five miRNAs targeting ASM (Fig. 1A, B). Further-
more, qRT-PCR verification of selected miRNAs demonstrated that miR-
133b was increased while miR-15a, miR-10a and miR-10b were de-
creased in HRECs from retina of diabetic donors (n = 6) compared
with control donors (n = 6), confirming the array data (Fig. 1B). Nota-
bly, miR-15a was the only miRNA differentially expressed between
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control and diabetic HRECs among six miRNAs predicted to control
ASM (miR-497, miR-15a, miR-15b, miR-424, miR-16 and miR-195).

In agreement with our previous studies (Opreanu et al., 2011),
HRECs had the highest ASM expression level among retinal cells
(Opreanu et al., 2011). Interestingly, higher basal ASM mRNA level
corresponded to lower miR-15a levels in HRECs compared to HRPE
cells (Fig. 2A). In support of Target Scan and miRNA array data, analysis
of HRECs isolated from diabetic donors (n = 6) demonstrated reduction
of miR-15a (Fig. 1B) with concomitant increase of ASM compared to
control (Fig. 2B). Importantly, in agreement with our previous data
(Busik et al., 2008), high glucose did not affect miR-15a and ASM ex-
pression in endothelial cells (data not shown), thus control and diabetic
cells were used to determine the role of diabetic environment in HREC.

Critical to diabetic retinopathy is the function of the retinal pigment
epithelium (RPE), the cell type responsible for the generation of the
outer blood retinal barrier. As RPE cells are highly sensitive to glucose
concentration, high glucose treatment was used to mimic diabetic con-
dition in HRPE cells. We examined the effect of high glucose on expres-
sion of miR-15a and ASM in HRPE. HRPE cells treated with 25 mmol/1
glucose had decreased miR-15a expression and increased ASM expres-
sion compared with 5 mmol/l glucose treated HRPE cells (Fig. 2C).

3.2. miR-15a Directly Inhibits the Expression of ASM by Binding 3'UTR of
ASM mRNA

To determine whether miR-15a directly recognizes the 3'UTR of
ASM mRNA, we cloned the predicted target site of miR-15a or a mutant
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Fig. 1. Identification and verification of miRNAs differentially expressed in the HRECs isolated from control and diabetic donors (A) Human RT?> miRNA PCR arrays were used to profile the
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target site sequence downstream of the pMir-Target luciferase reporter
gene vector. When the ASM 3’UTR wild-type or mutant luciferase re-
porter gene vector was co-transfected with miR-15a, the luciferase ac-
tivity of the ASM 3’UTR wild-type vector resulted in dose-dependent
decrease compared with the mutant vector (Fig. 2D). Next, miR-15a
mimics or inhibitors were used to test the effect of diabetes and/or
high glucose regulation of ASM in HRECs and HRPE. The validated indi-
vidual negative miRIDIAN mimic or inhibitor controls were used to as-
sure specificity of miRNA modulation experiment. As expected, the
over-expression of miR-15a was able to markedly downregulate the ex-
pression of ASM mRNA in HRECs and HRPE under normal and elevated
glucose conditions. Furthermore, the miR-15a inhibitor was able to up-
regulate the expression of ASM mRNA in HRECs and HRPE under both
normal and elevated glucose conditions (Fig. 2E and F). Importantly,
ASM protein expression in HRPE cells was decreased compared to con-
trol mimic-transfected cells; however, miR-15a inhibitor increased ASM
protein expression by in HRPE cells (Fig. 2G).

3.3. MiR-15a Controls Retinal Ceramide Production

To further confirm the effect of miR-15a on sphingolipid metabo-
lism, immunoreactivity of ceramide using anti-ceramide antibody
was examined in HRPE cells after either the overexpression or inhi-
bition of miR-15a using miRNA mimics and inhibitors, respectively.
As shown in Fig. 3, delivery of miR-15a mimics in HRPE cells sup-
pressed the increase in ceramide observed following the high glu-
cose (Fig. 3A). In contrast, miR-15a inhibitors further increased
ceramide levels (Fig. 3B).

Since endothelial cells represent a major source of ASM and a prima-
ry cell type affected by DR, we next used 10-12 weeks old male Tie2-
miR-15a TG mice to evaluate the effect of endothelial miR-15a on retinal
ceramide production. The sphingolipid profile of Tie2-miR-15a TG
mouse retina was compared to wild type (top) and complete ASM
knockout (middle) mouse retina (Fig. 3C) (n = 5 per group). As expect-
ed, ASM~/~ retina demonstrated dramatic increase in sphingomyelin
species and concomitant decrease in ceramide species (blue bold labels)
(Fig. 3C). Tie2-miR-15a TG mouse retina demonstrated intermediate
sphingolipid phenotype with decreased ceramide levels, but not as pro-
nounced changes in SM profiles. The ratio of total retina ceramide to
total SM content was significantly decreased in ASM ', as well as
Tie2-miR-15a TG mice retinas (Fig. 3C).

3.4. MiR-15a Negatively Regulates the Expression Level of VEGF-A

Recently, miR-15a has been identified as a key regulator of pro-an-
giogenic pathway through direct binding to VEGF-A (but not VEGF-B,
Cand D) 3'UTR (Yin et al,, 2012). Therefore, we next examined the effect
of miR-15a on VEGF-A in human retinal cells. VEGF-A mRNA levels were
upregulated in HRECs isolated from diabetic donors (n = 6) and in high
glucose-treated HRPE. These changes were associated with concomitant
downregulation of miR-15a (Figs. 2A, 4A and B). Over-expression of
miR-15a by miR-15a mimic markedly downregulated while miR-15a
inhibitor upregulated VEGF-A expression in HRECs compared to
mimic and inhibitor controls (Fig. 4C). When HRPE cells were treated
with high glucose and miR-15a mimics or inhibitors for 48 h, over-ex-
pression of miR-15a markedly downregulated the expression of VEGF-
A mRNA in HRPE under normal and high glucose conditions (Fig. 4D).
The miR-15a inhibitor induced upregulation of the VEGF-A mRNA ex-
pression in HRPE under normal and high glucose conditions (Fig. 4D).
Importantly, VEGF-A protein expression in HRPE was decreased

compared to control mimic-transfected cells; miR-15a inhibitor in-
creased VEGF-A protein expression (Fig. 4E). Taken together, these re-
sults suggest that miR-15a controls basal VEGF-A expression in HRECs
and basal and high glucose-induced VEGF-A expression in HRPE (Fig.
4A-E, Supplemental Fig. S1A-B).

3.5. Overexpression of miR-15a in Bone Marrow Improves CAC Release, Mi-
gration and Homing to Retinal Vasculature

Accumulating evidence suggests that bone marrow-derived CACs in
diabetes lose their ability to home to areas of injury and mediate vascu-
lar repair, resulting in retinal vascular pathology (Busik et al., 2009;
Caballero et al., 2007). CACs isolated from the blood of diabetic patients
with DR (CD347) (Supplemental Table S3), and diabetic mouse models
showed decreased miR-15a expression levels (Fig. 5A). To assess the ef-
fect of changes in miR-15a on the repair capacity of CACs, we assessed
their ability to home to injured retinal vessels in the mouse ischemia-re-
perfusion (I/R) model. When control and miR-15a mimic-treated-
healthy CACs were injected into the vitreous of diabetic mice, we ob-
served their participation in vessel repair as demonstrated by
colocalization of green (gfp™ CACs) and red (retinal vasculature stain-
ing). As shown in Fig. 5B, control and miR-15a mimic-treated healthy
CACs demonstrated robust vascular repair function, whereas the repair
function was impaired in miR-15a inhibitor-treated CACs. Diabetic CACs
lose this repair ability and fail to home to areas of retinal injury; howev-
er, miR-15a mimic-treated diabetic CACs recovered their repair ability
(Fig. 5B and Table 1). Next, the effect of miR-15a on migration of CACs
was examined. In agreement with the in vivo retinal vascular repair
studies, healthy control and miR-15a mimic-treated CACs demonstrated
robust migration capacity, but migration was impaired in diabetic and
in miR-15a inhibitor treated CACs. The migration was normalized in
miR-15a mimic-treated diabetic CACs (Fig. 5C). As expected, there was
no effect miR-15a mimics on migration and repair in healthy CAC con-
trols, and, conversely, there was no effect miR-15a inhibitors in diabetic
CACs (Fig. 5C).

To evaluate the role of miR-15a in HRECs tube formation, we per-
formed in vitro matrigel tube formation assay. There was no effect of ei-
ther 15a mimics (p-value = 0.098) or 15a inhibitors (p-value = 0.152)
on HRECs tube formation as compared to scrambled control (Fig. 5D and
E).

3.6. miR-15a Expression Profile in Control and Diabetic Retina

Next, we determined the miR-15a expression in control and STZ-in-
duced diabetic rat retinas. As shown in Figs. 5 and 6A, decreased miR-
15a expression in retinas of diabetic rat (n = 6) was followed by in-
creased expression levels of ASM and VEGF-A. Importantly, in situ hy-
bridization of mouse retina demonstrated that miR-15a level was
markedly reduced in diabetic retina as compared to control (n = 4)
(Fig. 6B).

3.6.1. Overexpression of miR-15a Prevented Retinal Inflammation and Vas-
cular Damage In Vivo

Male Tie2-miR-15a TG mice (8-10 weeks old, n = 8) were used to
test the effect of overexpressed miR-15a on retinal inflammation and
vascular damage. The retinal expression profile of miR-15a, ASM,
VEGF, IL6, IL13 and TNFa in Tie2-miR-15a TG mice and littermate con-
trols are shown in Fig. 6C. Overexpression of miR-15a as observed in ret-
inas of the Tie2-miR-15a TG mice (n = 8) resulted in decreased
expression levels of ASM and VEGF-A (Fig. 6C). The expression levels

Fig. 3. MiR-15a regulates ceramide production in retina and retinal cells The immunoreactivity of ceramide was examined in HRPE cells under normal and high glucose conditions for 24 h
(n = 3) after overexpression or inhibition of miR-15a by (A) miR mimics and (B) inhibitors respectively. Representative images show the immunoreactivity of ceramide. Signal detection
and image acquisition were performed by fluorescence microscopy using Photometrics CoolSNAP HQ2 camera. The fluorescence intensity (red) of ceramide in the HRPE cells was
normalized to DAPI (blue) nuclei staining and quantified in triplicates using the MetaMorph imaging software. (C) Orbitrap high resolution/accurate mass spectra were collected in
positive ionization mode from monophasic lipid extracts of WT, ASM —/—, and Tie2-miR-15a TG mouse retina (n = 5 per group). Data are mean + SEM. *** P<0.001; ** P<0.01; *

P < 0.05; not significant at P > 0.05.
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Fig. 4. MiR-15a negatively regulates the expression of VEGF-A in HRPE and HRECs Expression levels of VEGF-A were determined by real-time PCR in (A)HRECs from diabetic donors (n =
6) compared with control donors (n = 6) and (B) HRPE cells treated with 25 mmol/I glucose for 24 h compared with 5 mmol/l glucose (n = 3). RT-PCR analysis of VEGF-A mRNA levels
after miR-15a mimic or inhibitor delivery in (C) HRECs and (D) HRPE cells under normal and high glucose conditions for 24 h (n = 3). (E) ELISA analysis of VEGF-A protein expression after
miR-15a mimic or inhibitor delivery in HRPE cells under normal and high glucose conditions for 48 h (n = 3). Data are mean + SEM (n = 3). *** P<0.001; ** P< 0.01; * P < 0.05; not

significant at P> 0.05.

of IL6, IL1/> and TNFo were trending lower, however there were no sta-
tistically significant differences in these transcripts. To further illustrate
the beneficial effect of overexpression of miR-15a on retinal vascular
damage, vascular permeability was measured in the retinas of these dif-
ferent cohorts. Vascular permeability as assessed by leakage of FITC-al-
bumin was increased in diabetic retinas compared to control (n = 6)
and this increase was prevented in Tie2-miR-15a TG mice (Fig. 6D).

4. Discussion

Diabetic retinopathy is a complex disorder that involves both sys-
temic and retinal tissue-specific initiating factors and cell types. A num-
ber of hyperglycemia- and dyslipidemia-activated pathways leading to
retinal endothelial cell and CAC dysfunction have been identified
(Busik et al., 2009; Grant et al., 2002; Bhatwadekar et al., 2010;
Chakravarthy et al., 2016; Abu El-Asrar et al., 2011; Li Calzi et al,,
2010; Tan et al., 2010; Liu et al., 2013; Caballero et al., 2013). Prominent
among these are pathways promoting the increase of pro-inflam-
matory cytokines, pro-inflammatory lipids and pro-angiogenic fac-
tors. Dysregulation of these pathways is hypothesized to involve
miRNAs. These small non-coding RNAs anneal imperfectly to target
genes and simultaneously control translation and transcription.
Single species of miRNA can interact with a wide range of target
transcripts. Several miRNA classes have been shown to contribute
to diabetes and diabetic complications (Pandey et al., 2009;

Zampetaki et al., 2010), including diabetic retinopathy (Suarez
and Sessa, 2009).

Our previous studies identified dysfunctional sphingolipid metabo-
lism, due to pathological activation of ASM in diabetic retina and bone
marrow, as an important metabolic insult contributing to pro-inflam-
matory changes in the retina and development of diabetic retinopathy
(Opreanu et al., 2011; Tikhonenko et al., 2013; Busik et al., 2012;
Chakravarthy et al., 2015; Opreanu et al., 2010). Endothelial cells are
the major source of ASM and we observed the highest activation of
ASM in retinal endothelial cells in diabetes compared to other retinal
cells (Opreanu et al., 2011; Tikhonenko et al., 2013; Opreanu et al.,
2010). VEGF is another well-known factor that is increased in the dia-
betic retina leading to increased retinal vascular permeability and ulti-
mately neovascularization in some species. Intravitreal anti-VEGF
treatments provide the most successful diabetic retinopathy therapy
to date. Both ASM and VEGF-A are, however, essential for normal retinal
function and their inhibition may lead to serious consequences, such as
lysosomal storage disease (Opreanu et al., 2011; Chen et al., 2014;
Kaarniranta et al., 2013) for ASM and damage to cone photoreceptors
and choroidal vasculature for VEGF. Indeed, complete ASM deficiency
leads to neurodegeneration, activation of microglia and loss of retinal
function in ASM —/— mice (Dannhausen et al., 2015; Horinouchi et al.,
1995). Based on the ability of miRNAs to function more like a rheostat
than an on/off switch as they work by “dimming”, rather than complete
silencing of gene expression, we reasoned that miRNAs would provide a
feasible therapeutic approach, particularly for targets such as ASM and
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Fig. 5. Upregulation of miR-15a in bone marrow improves CAC release, migration and homing to retinal vasculature (A) The expression levels of miR-15a were determined in mouse bone
marrow (n = 6 per group), blood (n = 6 per group) and in human CD34 ™" cells isolated from diabetic patients (n = 8 per group) with DR. (B, C) CACs (green) isolated from control or STZ-
induced diabetic gfp™ mice (duration of diabetes 8 weeks, n = 10 per group) were treated with control mimic, miR-15a mimic, control inhibitor or miR-15a inhibitor. Wild-type mice
undergoing I/R model received intravitreal injections of CACs treated with mimic or inhibitor for miR-15a and the negative controls (scrambled) (n = 6 for each treatment). The
retinal vasculature was stained with anti-collagen IV antibody (red). Confocal images of retina isolated from I/R injured mice treated with control mimic, miR-15a mimic, control
inhibitor or miR-15a inhibitor and the quantification of co-localization of gfp™ cells associated with retinal vasculature (yellow) were shown in B. CACs migration towards either
100 nM SDF-1, PBS (negative control), or 10% FBS (positive control) were shown in C. RFU, relative fluorescence units. Data are mean + SEM (n = 6). *** P<0.001; ** P <0.01; *
P < 0.05; not significant at P> 0.05. (D, E) The in vitro tube formation assay was performed in HRECs after overexpression or inhibition of miR-15a by miR mimics and inhibitors
respectively using Matrigel Matrix 96-well plate. (D) Photomicrographs of representative assays for control mimics, 15a mimics, control inhibitor and 15a inhibitor. The images of
tubes were taken in x10 magnifications and at least 5 different fields were randomly selected to collect images from each well. (E) Quantitative data for tube formation expressed as
number of closed network of vessel-like tubes as percentage relative to control. Data is mean 4+ SEM (n = 3).

VEGF-A where partial reductions rather than complete inhibition, is
desirable.

In search of miRNAs that have combined anti-inflammatory and
anti-angiogenic potential, we first performed the miRNA array to

Table 1
The effect of miR-15a on migration and repair capacity of CACs.

miR-15a Mimic miR-15a Inhibitor

Control No effect Impaired migration and repair
CACs function

Diabetic Improved migration and repair No effect
CACs function

determine differentially expressed miRNAs in the HRECs isolated from
control and diabetic donors. Among all the miRNAs downregulated in
diabetic donors, miR-15a was the only one that had the predicted
anti-inflammatory and anti-angiogenic targets, ASM and VEGF-A. More-
over, miR-15a was the most significantly downregulated miRNA in the
blood of diabetic patients and T2D hyperglycemic Lep®® mice
(Zampetaki et al., 2010). Importantly, miR-15a was reported to directly
target 3’'UTR and inhibit VEGF-A and FGF2 (Yin et al., 2012) providing an
important novel mechanism for control of angiogenesis. ASM regulation
by miR-15a had not been previously confirmed, thus we performed 3’
UTR of ASM mutation studies. These studies demonstrated that miR-
15a negatively regulates ASM expression through direct targeting the
3'UTR of ASM mRNA.
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Angiogenesis is strictly controlled by a balance between pro-angio- balance. Disruption of this balance could favor pathological angiogene-
genic and anti-angiogenic factors. Regulation of key angiogenic factors, sis, such as seen in diabetic retinopathy. Indeed, miR-15a was shown
VEGF-A and FGF2, by miR-15a is important in maintaining this delicate to be reduced in pathological angiogenesis in hindlimb ischemia
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model (Yin et al.,, 2012). Our data confirm this finding and demonstrate
that miR-15a could thus be used to simultaneously control both
sphingolipid metabolism and VEGF-A production.

Reduction in miR-15a expression can affect retinal vascular patholo-
gy at two different levels. First, decrease in miR-15a has a direct effect
on the retina leading to ASM activation, low-grade chronic inflamma-
tion and VEGF-A production, resulting in increased retinal endothelial
permeability and cell injury. In addition, low miR-15a leads to high
ASM expression and ceramide production in bone marrow-derived
CACs in diabetes. Previously, we demonstrated that CACs with high
ASM and ceramide levels have diminished migration, homing to the in-
jured tissue and repair function (Opreanu et al., 2011; Tikhonenko et al.,
2013; Busik et al., 2012; Chakravarthy et al., 2015; Opreanu et al., 2010).
Furthermore, the combination of retinal endothelial cell injury and
failed attempts by CACs to repair injured retinal capillaries, eventually
results in progression to the vaso-degenerative stage of diabetic
(Bhatwadekar et al., 2010; Chakravarthy et al., 2016; Abu El-Asrar et
al,, 2011; Li Calzi et al., 2010; Tan et al., 2010; Sukmawati and Tanaka,
2015; Caballero et al., 2013; Chakravarthy et al., 2015).

In this study, we used Tie-2 miR-15a transgenic mice that have
increased miR-15a expression in the endothelial cells and bone
marrow progenitor cells. To further distinguish retinal and bone
marrow specific effects of miR-15a, we used CACs isolated from
control and diabetic animals treated with miR-15a mimics and in-
hibitors. As expected, CACs isolated from diabetic animals had low
miR-15a expression, leading to decreased migration and repair
function compared to control. Treating diabetic CACs with miR-
15a mimics improved their migration and repair function. Control
CACs treated with miR-15a inhibitors lost their migration and repair
capacity similar to diabetic CACs.

5. Conclusion

This study identified novel mechanism of DR pathogenesis through
downregulation of miR-15a in the retina and bone marrow cells. Manip-
ulation of miR-15a to simultaneously control sphingolipid metabolism
and pro-angiogenic pathways through direct regulation of ASM and
VEGF-A production in the diabetic retina and bone marrow provides a
unique and effective “combination therapy” approach that will
add to the pharmacological armamentarium of drug therapies for
diabetic retinopathy. Our studies support the use of this novel ap-
proach for treatment of diabetic retinopathy and other disabling
conditions associated with activation of multiple deleterious signal-
ing pathways.
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