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a b s t r a c t 

Pyroptosis is a type of programed cell death that differs from apoptosis, ferroptosis, or necrosis. Numerous studies 

have reported that it plays a critical role in tumorigenesis and modification of the tumor microenvironment in 

multiple tumors. In this review, we briefly describe the canonical, non-canonical, and alternative mechanisms of 

pyroptotic cell death. We also summarize the potential roles of pyroptosis in oncogenesis, tumor development, 

and lung cancer treatment, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Pyrop- 

tosis has double-edged effects on the modulation of the tumor environment and lung cancer treatment. Further 

exploration of pyroptosis-based drugs could provide novel therapeutic strategies for lung cancer. 
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Lung cancer is associated with the highest global mortality rate. 1 

nti-tumor therapies, such as chemotherapy, targeted therapy, and im-

unotherapy, have been developed over the past decade. However,

ven though anti-tumor treatment can be successful during the initial

eriod, therapy resistance eventually occurs, resulting in disease recur-

ence or progression. 2 Tumors exist within a tumor microenvironment

TME) that has been adapted and substantially modified owing to inter-

ctions between tumor cells and non-cancerous tissues. Identifying how

ells in the TME react is of great importance. 

In recent years, programmed cell death (PCD), which plays a vital

ole in cancer therapy, has been gradually understood. There are several

orms of PCD including apoptosis, necroptosis, and ferroptosis. Among

hese, pyroptosis is the most common pro-inflammatory cell death path-

ay, can elicit the most robust immune response, and is associated with

istinct morphological features, such as cell swelling, chromatin con-

ensation, and the loss of cell membrane barrier functions. 3 As shown

n Fig. 1 , the word pyroptosis was proposed by Cookson et al. 4 in 2001

o describe a form of caspase-1-dependent pro-inflammatory PCD based

n the Greek roots pyro (fire/fever) and ptosis (falling). It was clearly

nderstood as a defined concept in 2015 5–7 and consentaneously rede-
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ned in 2018. 8 Finally, scientists have defined pyroptosis as a type of

CD in which plasma membrane pores are formed, mediated by gas-

ermin (GSDM) protein family members, frequently in response to in-

ammatory caspase activation. 8 An understanding of the mechanisms

nderlying cell death is indispensable for investigations of the TME, as

his process is tightly associated with anti-cancer therapy. 

This review focuses on the molecular mechanisms underlying py-

optotic cell death, as well as the association between pyroptosis and

ncogenesis, tumor development, and the clinical outcomes of lung can-

er treatment. We also discuss recent research achievements in the im-

unological effects of pyroptosis on lung cancer. This review will help

esearchers and physicians understand the roles of pyroptosis in lung

ancer tumorigenesis and develop and identify novel therapeutic strate-

ies for this disease. 

echanisms of pyroptosis 

There are two crucial pathways that lead to the activation of pyrop-

osis with several alternatives ( Table 1 ). In these two pathways, pyrop-

osis is initiated in cells depending on gasdermin D (GSDMD), which

nvolves caspase-1 (canonical) or caspase-4/5/11 (non-canonical) path-
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Fig. 1. Timeline of pyroptosis research. GSDMA: gasdermin A; GSDMB: gasdermin B; GSDMB: gasdermin B; GSDMC: gasdermin C; GSDMD: gasdermin D; GSDME: 

gasdermin E; gasdermin E; GZMA: granzyme A; GZMB: granzyme B; ICE: interleukin-1 beta converting enzyme; LPS: lipopolysaccharide; PCD: programed cell death; 

PD-L1: programed cell death protein ligand 1; S. flexneri : Shigella flexneri . 

Table 1 

Comparison of different pyroptotic pathways. 

Pathways Trigger Sensor Adaptor Effector GSDM IL-1 𝛽 and IL-18 References 

Canonical Bacillus anthracis NLRP1 ASC Caspase-1 GSDMD + 17 

DAMPs and PAMPs NLRP3 16 

PAMPs NLRC4 (NAIP) 18 , 19 

dsDNA AIM2 20 

Toxin/Rho GTPase Pyrin 21 

Non-canonical LPS – – Caspase-4/5/11 GSDMD − 13 

Alternative Yersinia – – Caspase-8 GSDMD − 27 

Activated NK cells or cytotoxic T cells – – Caspase-3, GZMB GSDME − 25 , 29 

Hypoxia and PD-L1 – – Caspase-8 GSDMC − 28 

– – – Caspase-1, GZMA GSDMB − 30 , 31 

AIM2: absent in melanoma 2; ASC: apoptosis-associated speck-like protein containing CARD; CARD: caspase activation and recruitment domain; DAMPs: danger- 

associated molecular patterns; dsDNA: double-stranded DNA; GSDM: gasdermin; GSDMB: gasdermin B; GSDMC: gasdermin C; GSDMD: gasdermin D; GSDME: 

gasdermin E; GZMA: granzyme A; GZMB: granzyme B; IL: interleukin; LPS: lipopolysaccharide; NAIP: nucleotide oligomerization domain (NOD)-like receptor 

(NLR) family apoptosis inhibitory protein; NK: natural killer; NLRC: nucleotide oligomerization domain (NOD)-like receptor (NLR) family CARD containing; NLRP: 

nucleotide oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing protein; PAMPs: pathogen-associated molecular patterns; PD-L1: 

programed cell death protein ligand 1; –: not available. 
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a  
ays, whereas the other members of the GSDM family (A/B/C and E)

articipate in alternative pathways. 9 , 10 GSDM is composed of an ac-

ive pore-forming region of the N-terminus, a flexible linker region, and

 region of the C-terminus that binds to a domain of the N-terminus

o suppress its activation. The cleavage of the linker, induced by cas-

ases or granzymes, results in the release of a region of the GSDM N-

erminus, leading to the generation of a large pore with a diameter of

0–20 nm. 11 , 12 

anonical pathway 

Canonical pyroptotic death is activated via inflammasome assem-

ly, with subsequent GSDMD cleavage and interleukin (IL) secretion

IL-1 𝛽/18), as shown in Fig. 2 . Inflammasomes comprise assembled sig-

aling complexes composed of sensors, adaptors, and effectors. 13 Pat-

ern recognition receptors (PRRs), known as inflammasome sensors, rec-

gnize pathogen-associated molecular patterns and danger-associated

olecular patterns. A subset of nucleotide oligomerization domain

NOD)-like receptors (NLRs) and Toll-like receptors (TLRs) participates

n pyroptosis as sensors, 14 and NLR family pyrin domain-containing pro-

ein (NLRP) 1, NLRP3, NLR family caspase recruitment domain (CARD)-

ontaining protein 4 (NLRC4), absent in melanoma 2 (AIM2), and pyrin
95 
re relatively well-studied inflammasome sensors at present, 15 as we

ummarzed in Table 1 . NLRP3 senses various stimuli, such as elec-

rolyte imbalances, toxins, pathogens, mitochondrial dysfunction, and

etabolic changes. 16 Meanwhile, NLRP1 is activated after N-terminus

leavage by the anthrax lethal factor protease. 17 Moreover, NLRC4 in-

ammasome assembly is stimulated by cytosolic flagellin or components

f the type 3 secretion system (T3SS) and the recruitment of NLR fam-

ly apoptosis inhibitory protein (NAIP). 18 , 19 AIM2 can recognize im-

aired double-stranded DNA, 20 whereas pyrin is activated when small

TPases of the host Ras homologue (RHO) family are inactivated. 21 Sub-

equently, activated PRRs assemble with apoptosis-associated speck-like

rotein containing CARD (ASC, adaptor) and pro-caspase-1 (effector) to

orm an inflammasome assembly. After cleavage of the inflammasome

ssembly and pro-caspase-1, caspase-1 is activated and cleaves GSDMD,

ro-IL-1 𝛽, and pro-IL-18, causing membrane pores to form, mediated

y N-GSDMD, and the release of pro-inflammatory cytokines (IL-1 𝛽 or

L-18). 

on-canonical pathway 

Non-canonical pyroptosis pathways rely on caspase-4/5 (humans)

nd caspase-11 (mice), rather than caspase-1 ( Fig. 2 ). 22 Intracellu-
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Fig. 2. Mechanisms of pyroptosis. Pyroptosis mechanisms can be divided into three types, canonical, non-canonical, and alternative. In the canonical pathway, 

inflammasome assembly is triggered by intracellular signals, which cleave GSDMD and pro-IL-1 𝛽/18 into N-GSDMD and IL-1 𝛽/18, respectively. IL-1 𝛽/18 is released 

through pores formed by N-GSDMD. In the non-canonical pathway, caspase-4/5/11 cleaves GSDMD into N-GSDMD after LPS stimulation. The latter forms membrane 

pores, leading K + efflux, which mediates inflammasome formation and induces pyroptosis. In the alternative pathway, caspase-8 cleaves GSDMD or GSDMC to induce 

pyroptosis. Under hypoxic conditions, PD-L1 facilitates self nuclear translocation through interactions with p-Stat3, which cleaves GSMDC and switches apoptosis 

to pyroptosis. Moreover, caspase-3/GZMB cleaves GSDME, caspase-1/GZMA cleaves GSDMB, and streptococcal pyrogenic exotoxin B cleaves GSDMA to activate 

pyroptosis. GSDM: gasdermin; GSDMA: gasdermin A; GSDMB: gasdermin B; GSDMC: gasdermin C; GSDMD: gasdermin D; GSDME: gasdermin E; GZMA: granzyme A; 

GZMB: granzyme B; IL: interleukin; LPS: lipopolysaccharide; PD-L1: programed cell death protein ligand 1; p-Stat3: phosphorylated-signal transducer and activator 

of transcription 3. 
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ar lipopolysaccharide (LPS) triggers direct caspase-4/5/11 activation

o cleave GSDMD to form N-GSDMD. 5 , 11 , 22 , 23 Notably, in contrast to

aspase-1, caspase-4/5/11 cannot cleave pro-IL-1 𝛽 or pro-IL-18, but

embrane pores shaped by N-GSDMD lead to K 

+ efflux, which results

n formation of the NLRP3 inflammasome and further activates the

LRP3/caspase-1 pathway to induce pyroptosis. 6 

lternative pathways 

Apoptosis is tightly correlated with pyroptosis as the two processes

hare caspases. Accordingly, crosstalk between the two is frequently ob-

erved. Pyroptosis-related caspase-1 mediates apoptosis in the absence

f GSDMD. 24 Similarly, apoptosis-related caspase proteins can induce

yroptosis under certain conditions, such as those associated with tar-

eted therapy or chemotherapy. 25 , 26 Multiple studies have elaborated

n the role of other GSDM proteins in alternative pyroptosis pathways

 Fig. 2 ). For example, pyroptosis is activated through the cleavage of

SDMD 

27 or GSDMC, 28 mediated by caspase-8. Under hypoxic condi-

ions, PD-L1 facilitates self nuclear translocation by interacting with

hosphorylated-signal transducer and activator of transcription 3 (p-

tat3), which further promotes the cleavage of GSMDC and switches

poptosis to pyroptosis. 28 Caspase-3 and granzyme B (GZMB) cleave

asdermin E (GSDME), 25 , 29 and caspase-1 and granzyme B (GZMA) are

nvolved in the cleavage of GSDMB. 30 , 31 A recent study first reported

hat streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers py-

optosis. 32 

ole of pyroptosis in lung cancer 

As a mode of PCD, pyroptosis is involved in tumorigenesis and anti-

umor defense in lung cancer. Further research has shown that the roles

f pyroptosis in cancers are variable and contingent on cellular types,

enetic characteristics, and the duration of pyroptosis activation. Clari-

ying the role of pyroptosis in lung cancer might help to understand its

iology and further improve treatment strategies for lung cancer. 
96 
nvolvement of pyroptosis in lung cancer development and progression 

Recent studies have revealed that several pyroptosis components are

nvolved in tumor oncogenesis, including NLRP3 inflammasome, AIM2,

nd IL-1 𝛽; involved in tumor progression including NLRP3 inflamma-

ome, GSDMD, and GSDMC. 

The NLRP3 inflammasome, a key molecule in the canonical path-

ay, plays an important role in lung cancer oncogenesis. 33 , 34 Duan

t al. 34 demonstrated that human bronchial epithelial cells (BEAS-2B)

ere changed significantly in terms of morphology after stimulation

ith LPS and coal tar pitch extract, and the NLRP3 inflammasome was

ound to be involved in the malignant transformation of BEAS-2B cells.

enzopyrene or LPS induces lung tumorigenesis in mice, which can be

nhibited by the loss of NLRP3. 33 Human AIM2 protein, which recog-

izes impaired double-stranded DNA, is upregulated in non-small cell

ung cancer (NSCLC) and promotes oncogenesis in an inflammasome-

ependent manner. 35 Further, the knockdown of AIM2 hampers NSCLC

evelopment by promoting mitochondrial fusion and reducing reactive

xygen species (ROS). 36 IL-1 𝛽, a product of pyroptosis, mediates lo-

al inflammation and promotes tumorigenesis; as such, its therapeutic

lockade with canakinumab was found to reduce the incidence of lung

ancer in patients with atherosclerosis. 37 Overall, these findings indi-

ate that pyroptosis plays a vital role in inflammation-associated lung

ncogenesis. 

In addition to oncogenesis, the NLRP3 inflammasome also en-

ances the proliferation and metastasis of A549 cells by activating ser-

ne/threonine kinase (Akt) and extracellular-regulated protein kinase

ERK) 1/2 signaling. 38 Moreover, GSDMD expression was found to be

pregulated in NSCLC and correlated with larger tumors and a higher

umor stage. 39 Additionally, high GSDMD expression is associated with

nferior survival in stage II lung adenocarcinoma (LUAD). 39 The knock-

own of GSDMD attenuates cell proliferation, promotes cancer cell apop-

osis through mitochondrial pathways, and inhibits epidermal growth

actor receptor/Akt signaling. 39 Similarly, GSDMC expression was found
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t  
o be upregulated in LUAD and correlated with poor survival. 40 Under

ypoxic conditions, based on bioinformatic tools, PD-L1 was determined

o interact with p-Stat3 and facilitate self nuclear translocation, which

as found to further promote the expression of GSMDC and the switch-

ng from apoptosis induced by tumor necrosis factor 𝛼 (TNF- 𝛼) to pyrop-

osis, mediated by nuclear PD-L1. 28 These results support the hypothesis

hat pyroptotic molecules are involved in lung cancer development and

rogression. 

ffects of pyroptosis on inhibiting lung cancer growth 

Pyroptosis components, including GSDMD and GSDME, also partici-

ated in inhibiting growth of lung cancer cells. There is a positive corre-

ation between the expression of CD8 + T cell marker genes and GSDMD,

nd deficiency of GSDMD can reduce the cytolytic capacity of CD8 + T

ells. 41 It is contradictory with high GSDMD expression in NSCLC pa-

ients with inferior survival. 39 This may be attributed to that GSDMD

as different biological functions in different cancer cell types, which

equires further studies. In terms of GSDME, its expression level in most

ung cancer specimens is lower than that in paired normal tissues. 42 

owever, some studies have reported inconsistent results. 43 , 44 Further

esearch with a larger sample size is needed to conclude on the roles of

SDME expression in lung cancer. Notably, all of these studies reported

hat higher GSDME expression levels correlate with superior survival in

atients with NSCLC. 42–44 Regarding GSDMA/B, there are limited data

n its role in lung cancer, which is worthy of further exploration. 

ovel treatment strategies to induce pyroptosis in lung cancer 

ctivation of pyroptosis in cancer cells as a new treatment strategy 

Given that inflammasomes, caspases, and GSDM proteins play key

oles in mediating pyroptotic cell death, drugs that can activate these

omponents have the potential to be used as new cancer treatments

 Fig. 3 ). The NLRP3 inflammasome triggers the conversion of dormant

rocaspase to active caspase via proteolytic cleavage, which converts

SDM into the active GSDM N-terminal domain. Cucurbitacin B, a nat-

ral triterpenoid derived from a Cucurbitaceae plant, upregulates the lev-

ls of ROS/Ca 2 + and triggers GSDMD-dependent pyroptosis via NLRP3,

uppressing NSCLC growth in vitro and in vivo . 45 In addition, polyphyllin

I induces pyroptosis by activating the ROS/NLRP3/GSDMD pathway

n NSCLC. 46 Compound 8, a novel chalcone analog, triggers caspase-

-mediated pyroptosis via ROS modulation and further inhibits the

roliferation of NSCLC cell lines. 47 Moreover, a novel piperlongumine

nalog effectively induces pyroptosis through ROS-mediated nuclear

actor- 𝜅B (NF- 𝜅B) inhibition. 48 In addition, simvastatin treatment sup-

resses the proliferative and migratory capabilities of NSCLC cells via

LRP3/caspase-1-mediated pyroptosis. 49 In 2020, Tang et al. 50 found

hat the inhibition of maternal embryonic leucine zipper kinase (MELK)

pregulates caspase-3 expression and induces GSDME-dependent pyrop-

osis. Dasatinib was also found to increase the expression of GSDMD

nd GSDME and induce pyroptotic cell death in lung cancer cells. 51 

urthermore, the secretoglobin (SCGB) 3A2 chaperones LPS into cells,

nd induces pyroptosis via the non-canonical inflammasome pathway in

SCLC cells, which might serve as a novel anti-cancer therapeutic. 52 , 53 

Although the mechanism is yet to be fully elucidated, switching from

poptosis to pyroptosis under certain conditions might contribute to

nti-tumor effects. L61H10, a new thiopyran derivative, induces pyrop-

osis, shifting from apoptosis via inhibiting the NF- 𝜅B signaling path-

ay. 54 Similarly, 13d, emerging as a novel NF- 𝜅B inhibitor, was shown

o lead to an apoptosis-to-pyroptosis switch that correlates with the in-

ibition of NF- 𝜅B. 55 Surprisingly, multiple lung cancer cells display the

o-occurrence of and interplay between apoptosis and pyroptosis dur-

ng tyrosine kinase inhibitor exposure, which indicates that pyroptosis

artially contributes to the response to molecular-targeted drugs. 26 One

ecent study showed that apurinic/apyrimidinic endonuclease 1 (APE1)
97 
nhibition induces apoptosis, pyroptosis, and necroptosis in A549 and

CI-H460 lung cancer cells, which increases their sensitivity to both

isplatin and erlotinib. 56 Additionally, sea hare hydrolyzates, extracted

rom sea hares, stimulate M1 macrophages, activate caspase-1 and IL-

 𝛽, and induce pyroptotic/necroptotic NSCLC cell death. 57 

yroptosis in cytotoxic chemotherapies 

Pyroptosis is a double-edged sword for cancer chemotherapy. On one

and, pyroptosis in normal tissue mediates the toxicity of chemothera-

eutic drugs. On the other hand, pyroptosis in cancer cells produces

nti-tumor effects and is a potential mechanism underlying the effects

f chemotherapeutic agents. As such, balancing the contradictory ef-

ects of pyroptosis might help to optimize the clinical application of

hemotherapeutic drugs. 

Previous studies have demonstrated that chemotherapy induces

poptosis by activating caspase-3. 58 , 59 In 2017, Wang et al. 25 reported

hat chemotherapy also induces pyroptosis by activating caspase-3 and

leaving GSDME, which is silenced by promoter methylation in most

ancers. Furthermore, pyroptosis activation was observed in lung cancer

ells with high GSDME expression upon exposure to chemotherapeutic

gents. 25 The switch from apoptosis to pyroptosis in cancer chemother-

py thus depends on the expression of GSDME. 

The activation of GSDME-dependent pyroptosis in tumors induced

y chemotherapeutic drugs generates anti-tumor effects, and the degree

f activation differs between drugs. In vitro experiments have shown

hat paclitaxel and cisplatin trigger pyroptosis in LUAD through caspase-

/GSDME activation in a slightly different manner. 60 Compared to that

f paclitaxel, cisplatin has a stronger ability to activate caspase-3 and

enerate N-GSDME. Caspase-3 inhibitors or GSDME knockdown sup-

ress cisplatin-induced, but not paclitaxel-induced, pyroptosis. These

ndings suggest that cisplatin induces caspase-3/-7 activation and GS-

ME cleavage more efficiently than paclitaxel, resulting in a stronger

yroptosis-promoting effect. 

GSDME-dependent pyroptosis is involved in overcoming chemore-

istance. One study revealed that the ablation of miR-556-5p induces

yroptotic cell death in cisplatin-resistant NSCLC cells by promoting

LRP3 expression and caspase-1 cleavage, which suggests a novel strat-

gy to sensitize NSCLC cells to cisplatin. 61 Another study reported

hat the knockdown of long non-coding RNA-X inactive specific tran-

cript (lncRNA-XIST) hampers cancer cell growth and exerts cisplatin

ensitivity-enhancing effects by facilitating both apoptosis and pyrop-

osis in NSCLC cells. 62 It was further illustrated that the downregula-

ion of lncRNA-XIST reduces NSCLC cell proliferation by activating miR-

35/superoxide dismutase 2 (SOD2)/ROS pathway-mediated pyroptotic

ell death. 63 

To some extent, pyroptosis also contributes to the adverse effects of

ytotoxic chemotherapies. For example, Gsdme − / − mice do not exhibit

hemotherapy-associated tissue damage and show better chemotherapy

olerance. 25 Furthermore, pyroptosis via caspase-3 and GSDME is in-

olved in doxorubicin (DOX)-induced cardiotoxicity. 64 , 65 A subsequent

tudy also demonstrated that chemotherapy-induced nephrotoxicity is

nduced by caspase-3/GSDME signaling. 66 These results suggest that

argeting GSDME in specific organs might reduce the toxicity of cy-

otoxic chemotherapies. In summary, cytotoxic chemotherapies can in-

uce pyroptotic cell death in both normal tissues and tumor cells, which

s associated with adverse effects, anti-tumor effects, and sensitization

o chemotherapeutic drugs. 

yroptosis in radiotherapy 

Pyroptosis might play a role in the adverse effects during radio-

herapy. The AIM2 inflammasome, which recognizes impaired double-

tranded DNA, contributes to radiation-associated DNA damage. The

nockout of AIM2 was found to protect mice from radiation-induced gas-

rointestinal and hematological toxicity caused by caspase-1-mediated
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Fig. 3. Pyroptosis-mediated therapy in lung cancers. Drugs that can activate the NLRP3 inflammasome, caspases (such as caspase 1/4/5/11/3), and GSDM proteins 

(such as GSDMD and GSDME) in the pyroptotic pathway exert pyroptosis-mediated antitumor effects in lung cancer. GSDM: gasdermin; GSDMD: gasdermin D; 

GSDME: gasdermin E; LPS: lipopolysaccharide; MELK: maternal embryonic leucine zipper kinase; NLRP3: nucleotide oligomerization domain (NOD)-like receptor 

family pyrin domain-containing protein 3; ROS: reactive oxygen species. 
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yroptotic cell death. 67 Moreover, NLRP3 inflammasome-mediated py-

optosis is triggered in macrophages derived from the bone marrow dur-

ng radiotherapy and is suppressed after NLRP3 deletion. 68 Overall, py-

optosis in normal tissues constitutes a side effect of radiotherapy, and

LRP3 and AIM2 inflammasomes could be potential therapeutic targets

o diminish irradiation-induced injuries. 

yroptosis in targeted therapy 

Pyroptosis has been proven to be a potential mechanism underly-

ng the response to targeted therapy in patients with lung cancer as-

ociated with druggable molecular targets. Lu et al. 26 observed typical

yroptotic cell morphological changes (balloon-like bubbles) in multi-

le lung cancer cell lines during targeted therapy, including A549 cells

ith KARS G12S positivity, PC9 cells positive for an EGFR 19del alter-

tion, and NCI-H3122 cells with an EML4 –ALK fusion. Moreover, GS-

ME overexpression was found to sensitize cells to targeted therapy in

itro , whereas GSDME knockout impaired this efficacy, which could be

eused after exogenous GSDME expression. Similarly, BRAF and MEK

nhibitors promote the cleavage of GSDME and activate pyroptosis, and

SDME-deficient tumors are associated with impaired anti-tumor ef-

ects. 69 These findings indicate that therapies that activate pyroptosis

ight be a potential strategy to enhance efficacy and overcome resis-

ance during targeted therapy. For example, circ7312 mediates osimer-

inib resistance, and its inhibition was found to enhance drug efficacy

y activating pyroptosis. 70 Further, inhibiting apurinic/apyrimidinic en-

onuclease 1 induces apoptosis, pyroptosis, and necroptosis in lung can-

er cells, which increases drug sensitivity to cisplatin and erlotinib. 56 In

onclusion, the activation of pyroptosis might potentiate the efficacy of

argeted therapy and exert a synergistic effect. 
98 
yroptosis-related immunological effects in lung cancer 

Chronic inflammation promotes tumorigenesis, whereas acute in-

ammation facilitates the recruitment of immune cells and modifies the

ME. 71 The infiltration of immune cells into tumor tissues is a prerequi-

ite for anti-tumor immunity. 72 Although the mechanism underlying the

ctivation of anti-tumor immunity mediated by pyroptotic tumor cells

emains unclear, pyroptosis in the TME activates acute inflammation

ith some anti-tumor immunity, which provides a strategy to “warm up

he cold tumor ”, as shown in Fig. 4 . Moreover, the secretion of multi-

le inflammatory chemokines to recruit T cells into cancer tissues might

lay a crucial role in promoting anti-tumor immunity induced by pyrop-

osis. 

Pyroptosis-related components are closely associated with the infil-

ration and function of multiple immune cells in the TME. Peng et al. 42 

bserved that with cisplatin treatment, the overexpression of GSDME

ncreased the number of tumor-infiltrating CD3 + T cells in the TME and

hat the levels of TNF- 𝛼 and interferon 𝛾 (IFN- 𝛾) were increased in both

SCLC tissues and the blood. Similarly, in tumors with low GSDME ex-

ression (such as breast and colorectal cancer), tumor-infiltrating lym-

hocytes (TILs) are more likely to be recruited when GSDME expression

s upregulated. In addition, GSDME expression promotes the functions

f tumor-infiltrating CD8 + T lymphocytes and natural killer (NK) cells,

hich produce IFN- 𝛾 and TNF. 29 Moreover, GSDME is positively corre-

ated with macrophages and CD4 + and CD8 + T lymphocytes in LUAD

pecimens. 73 Treatment with decitabine (DAC), one of the most com-

only used DNA methyltransferase inhibitors, results in the dysregula-

ion of the methylated modifications of DNA and restores the functions

f silenced genes. 74 GSDME expression in macrophages and tumor cells

as found to be upregulated following DAC treatment. The combination
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Fig. 4. Association between pyroptosis and immunological effects. GSDM: gas- 

dermin; GSDMB: gasdermin B; GSDMC: gasdermin C; GSDMD: gasdermin D; GS- 

DME: gasdermin E; GZMA: granzyme A; GZMB: granzyme B; IFN- 𝛾: interferon 

𝛾; IL: interleukin; NK: natural killer; TNF- 𝛼: tumor necrosis factor 𝛼. 
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f DAC with chemotherapeutic drugs induces severe pyroptosis in cancer

ells with low GSDME expression, augmenting the anti-tumor immuno-

ogical effects of chemotherapy. 75 Based on these findings, respirable

nhalable microspheres loaded with DAC and DOX, with the capacity to

nduce cell pyroptosis, were examined for orthotopic lung cancer treat-

ent with fewer systemic adverse reactions. 76 Moreover, an increase

n GSDMD cleavage was observed in human active CD8 + T cells, and

SDMD expression was determined to be associated with CD8 + T cell

arkers in a public database. 41 The phenomenon that GSDMD deficits

eaken the cytotoxicity of CD8 + T cells demonstrates that GSDMD is

ndispensable for CD8 + T cell anti-tumor responses in lung cancer. 41 

Multiple pyroptosis-based models or signatures have been con-

tructed, and these were demonstrated to be related to immune infiltra-

ion in lung cancer. For example, a pyroptosis-related five-lncRNA sig-

ature (colorectal neoplasia differentially expressed [CRNDE], HERV-H

TR-associating 3 [HHLA3], MIR193b-365a host gene [MIR193BHG],

ong intergenic non-protein coding RNA 941 [LINC00941], and long

ntergenic non-protein coding RNA 1843 [LINC01843]) was found to

orrelate with the infiltration of CD4 + memory T cells, CD8 + T cells,

nd macrophages in LUAD. 77 Moreover, other signatures based on

yroptosis-related lncRNAs are also associated with prognosis and the

ME in lung cancer. 78 In addition to lncRNAs, multiple models based on

yroptosis-related genes are related to survival and inflamed immuno-

ypes in lung cancer. 79–85 These findings provide a novel perspective for

redicting immune responses and developing targeted drugs. 

The development of immune checkpoint blockade therapies has dra-

atically changed the treatment strategies for lung cancer; however, the

esponse rates are still not satisfactory. 86 , 87 Generally, a high population

f CD8 + T lymphocytes in tumors is associated with superior clinical out-

omes with PD-1 blockade therapy. 88 , 89 P2RX7 (P2X7 receptor), known

s an adenosine triphosphate ( ATP)-gated ion channel, is involved in the

ctivation of NLPR3 and caspase-1. 90 HEI3090, a positive modulator of

2X7R (P2X7 receptor), regulates dendritic cells expressing P2X7R to

roduce IL-18, which facilitates the recruitment and activation of NK

ells and CD4 + T cells and the production of IFN- 𝛾 within tumors. 91 A

ombination of HEI3090 and a PD-(L)1 inhibitor showed remarkable an-

itumor efficacy both in vitro and in vivo , which can be partly attributed

o increased expression of major histocompatibility complex I (MHC-I)
99 
nd PD-L1 on tumor cells stimulated by IFN- 𝛾. Given the effect of pyrop-

osis on the TME, studies on the pyroptosis system can provide valuable

nformation to enhance the efficacy of immunotherapy. Introducing an

-terminal form of GSDM with an activator selectively into tumor cells

o augment the infiltration of T cells might thus be an alternative ther-

peutic strategy. 

At an ineffective dose, nanoparticle-conjugated gasdermin plus Phe-

F3 was found to increase sensitivity to PD-1 inhibitors in 4T1 can-

ers. 92 Three NSCLC patients experienced a survival benefit from a novel

herapeutic regimen comprising low-dose DAC plus camrelizumab, sug-

esting the potential efficacy of combining DAC with PD-(L)1 inhibitors

or NSCLC. 93 Combined chemotherapy with immune checkpoint in-

ibitors displays remarkable clinical efficacy, with a higher response

ate and longer progression-free survival and overall survival. 94 Py-

optosis induced by chemotherapeutic drugs might stimulate T cell re-

ruitment in tumors, enhancing the response to immune checkpoint

nhibitors. However, each coin has two sides. Immune checkpoint in-

ibitors reactivate immune cells, which can secrete GZMA and GZMB,

leave GSDM to induce pyroptosis in normal cells, and recognize normal

ells sharing antigens expressed in tumors and cause cell lysis. 95 Both

an account for immune-related adverse events to some extent. 

onclusion 

In this review, we summarize the roles of pyroptosis in lung can-

er and propose future directions. Many prognostic biomarkers based

n pyroptosis-related genes have been identified, but the effects of py-

optosis on tumorigenesis, progression, and prognosis are not consistent

n lung cancer. Pyroptosis components increase the proliferative and

igratory abilities of lung cancer cells, but also promote an antitumor

mmune microenvironment. The dual mechanism of promoting and in-

ibiting tumor development remains unclear. Moreover, the toxic and

ntitumor effects of pyroptosis during therapy often occur simultane-

usly. Optimizing treatment effectiveness and minimizing side effects

s thus worth exploring. Considering the immunological effects of py-

optosis in lung cancer, the approach of enhancing the efficacy of im-

unotherapy by activating pyroptosis should be explored further in lung

ancer. 
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