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Pseudoprogression prediction 
in high grade primary CNS tumors 
by use of radiomics
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Our aim is to define the capabilities of radiomics and machine learning in predicting 
pseudoprogression development from pre-treatment MR images in a patient cohort diagnosed 
with high grade gliomas. In this retrospective analysis, we analysed 131 patients with high grade 
gliomas. Segmentation of the contrast enhancing parts of the tumor before administration of radio-
chemotherapy was semi-automatically performed using the 3D Slicer open-source software platform 
(version 4.10) on T1 post contrast MR images. Imaging data was split into training data, test data 
and an independent validation sample at random. We extracted a total of 107 radiomic features by 
hand-delineated regions of interest (ROI). Feature selection and model construction were performed 
using Generalized Boosted Regression Models (GBM). 131 patients were included, of which 64 patients 
had a histopathologically proven progressive disease and 67 were diagnosed with mixed or pure 
pseudoprogression after initial treatment. Our Radiomics approach is able to predict the occurrence 
of pseudoprogression with an AUC, mean sensitivity, mean specificity and mean accuracy of 91.49% 
[86.27%, 95.89%], 79.92% [73.08%, 87.55%], 88.61% [85.19%, 94.44%] and 84.35% [80.19%, 
90.57%] in the full development group, 78.51% [75.27%, 82.46%], 66.26% [57.95%, 73.02%], 78.31% 
[70.48%, 84.19%] and 72.40% [68.06%, 76.85%] in the testing group and finally 72.87% [70.18%, 
76.28%], 71.75% [62.29%, 75.00%], 80.00% [69.23%, 84.62%] and 76.04% [69.90%, 80.00%] in the 
independent validation sample, respectively. Our results indicate that radiomics is a promising tool 
to predict pseudo-progression, thus potentially allowing to reduce the use of biopsies and invasive 
histopathology.

Infiltrating gliomas are high grade malignant entities, according to the World Health Organization (WHO). They 
entail diffuse astrocytoma (IDH mutant), anaplastic astrocytoma (IDH-mutant), glioblastoma (IDH wildtype and 
mutant), diffuse midline glioma (H3 K27M-mutant), oligodendroglioma (IDH mutant and 1p/19q-codeleted) 
and anaplastic oligodendroglioma (IDH-mutant and 1p/19q co-deleted)1. These malignancies are characterized 
by an invasive growth pattern, which results in a poor prognosis. Glioblastomas with IDH-wildtype (WHO 4) 
are the most common primary malignant brain tumor and account for 50–60% of all intracranial gliomas.

It has one of the worst prognoses of all oncologic entities with a median survival of 13.6  months2. The standard 
therapeutic care for these malignancies involves (partial) resection, adjuvant radiotherapy and chemotherapy 
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with temozolomide ± lomustine. Blood–brain barrier breakdown indicated by T1 contrast-enhancement is a 
hallmark of glioblastoma. However, the combination of radiation and chemotherapy may also lead to con-
trast enhancement in MRI mimicking progression of the residual tumor, and/or the appearance of new tumor 
 lesions3,4. This phenomenon is called pseudoprogression. Clinically, it may be associated with worsened neu-
rological deficits, however a discrepancy between minimal clinical changes and disproportionately worsened 
imaging findings is more  common3. Pseudoprogression occurs most frequently during the first three months 
after radiation therapy, followed by re-improvement of imaging findings after further weeks to  months5. Because 
of their overlapping imaging patterns, the differentiation between true progression and pseudoprogression on 
MR images after chemoradiation therapy is extremely challenging. However, the accurate differentiation of these 
two entities is essential for selection of the optimal therapeutic strategy. Therefore, improving the accuracy of 
non-invasive prediction of pseudoprogression would be highly beneficial.

Radiomics represents a comprehensive quantification of medical images. It creates mineable feature spaces 
that can be used to non-invasively evaluate tumor heterogeneity or the underlying  histopathology6. Due to recent 
advances in machine learning, radiomics may allow for personalized therapies and an improved imaging analysis 
beyond the scope of a visual  inspection7. For example, recent radiomics studies showed the non-invasive predic-
tion of histopathological tumor features, e.g. MGMT promoter methylation  status8 and IDH mutation  status9.

Given the potential of radiomics and the clinical importance of diagnosing pseudoprogression in patients 
with diffuse gliomas, we sought to define the diagnostic capacity of radiomics and machine learning in predict-
ing pseudoprogression in a representative patient cohort diagnosed with high grade adult-type diffuse gliomas 
(WHO grade 3 and 4).

Materials and methods
Study design. The single-center study was performed in compliance with the Declaration of Helsinki and 
was approved by the local ethics committee (Ärztekammer Westfalen-Lippe (ÄKWL) Münster 2021-596-f-S). 
Due to its retrospective nature, written informed consent was waived by the local ethics committee (Ärztekam-
mer Westfalen-Lippe (ÄKWL) Münster 2021-596-f-S). We retrospectively screened our databases at the Depart-
ment of Radiology, Nuclear medicine and Neuropathology for patients with histologically-proven high-grade 
gliomas, who were presented to our tertiary referral hospital between January 2015 and June 2020.

From the initially detected 193 patients we excluded those with (1) missing or non-diagnostic pre-treatment 
cerebral magnetic resonance imaging (n = 26), (2) insufficient diagnostic imaging quality (n = 2), (3) inconsistent 
histopathology (n = 3) and (4) insufficient follow-up examinations (n = 31).

Finally, 131 patients were included, of which 64 patients had a histopathologically proven progressive disease 
(PD) and 67 were diagnosed with mixed or pure pseudoprogression (PsP) after initial treatment.

Clinical and imaging data of each individual patient was reviewed for histopathological subtypes such as 
IDH-, MGMT-methylation and ATRX-Status and used therapy scheme.

Image data. Multivendor T1-weighted post contrast images of the included patients were obtained at differ-
ent centers and magnetic field strengths (either 1.5 T or 3.0 T).

The images were available for assessment via our local picture archiving and communication system. The 
studies were evaluated for completeness and image quality by two experienced neuroradiologists (nine and two 
years of experience).

Radiomics. From the available pre-treatment diagnostic magnetic resonance images, we collected the entire 
image stack of the contrast-enhanced T1-weighted images (CE-T1WI) in Digital Imaging and Communications 
in Medicine (DICOM) format.

Segmentation of the enhancing parts of the tumor was semi-automatically performed by the above men-
tioned experienced neuroradiologists using the 3D Slicer open-source software platform (version 4.10, www. 
slicer. org) and utilizing the Segmentation Wizard plugin. Consensus was achieved in cases of differing extent 
of segmentation.

We performed a standardized preprocessing step on all images: first spatial resampling to 2 × 2 × 2 voxels, 
then a bin width of 64 was set.

For the computation of the radiomics features we used the open source PyRadiomics package available as an 
implementable plugin into the 3D Slicer platform.

Finally, 107 radiomic features were calculated for seven different features classes: 18 first order statistics, 14 
shape-based features, 24 Gy level co-occurrence matrix, 16 Gy level run length matrix, 16 Gy level size zone 
matrix, 5 neighboring gray tone difference matrix and 14 Gy level dependence matrix features.

Statistical analysis. Statistical analysis was performed using R software (version 3.5.3). We allocated the 
131 patients to training data, test data and an independent validation sample at random. We denoted the train-
ing data together with the test data as the development sample. The development sample was used to construct 
the models and to optimize the tuning parameters included in the models. The performance of the models was 
determined with the validation sample (i.e. using unknown/ independent data). A stratified 4:1 ratio (develop-
ment sample: 106 patients, validation sample: 25 patients) was used with the distribution of tumor progress (yes/ 
no) and gender (female/ male) kept balanced between both samples (Table 1). All Radiomics features underwent 
a Yeo-Johnson transformation in order to make the data more normal distribution-like. They were z-score nor-
malized and then subjected to a 95% correlation filter keeping 54 features to account for redundancy between 
the features. The feature selection and model construction were performed with the development sample, using 
Generalized Boosted Regression Models (GBM). A GBM is a combination of a decision tree algorithm and a 
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boosting technique. Usually, GBM prediction models are constructed as an ensemble of weak predictions mod-
els (weak learners).

First, we performed a GBM to identify the 15 most important features. These 15 most important variables 
are listed in Table 2. We created our model with an increasing number of these previously identified features. 
Initially, the model contained only the most important feature (“orig.ngtdm.Strength”). Subsequently, we added 
one feature at a time. The model with the highest performance with respect to the test data set is used as the final 
model. This step-by-step approach determined the final number of features included in the model.

The GBM models contain several tuning parameters: firstly the “tree depth”, secondly the “learning rate”, 
thirdly the “minimum number of observations in the terminal node” and finally the “number of trees”. These 
tuning parameters of the GBM models (tree depth = 1 or 2; learning rate = 0.01 or 0.1; minimum number of 
observations in terminal nodes = 5,7,9,11,13 or 15, number of trees = 125) were determined using a tenfold cross 
validation (i.e. we divided the development sample 10 times into 90% training data and 10% unseen test data). 
This technique ensures that the training and test sample do not overlap. This is a methodology used to obtain 
robust results with small datasets. To determine the stability of the results, each of the models (with a given 
number of features) was optimized 100 times. The predictive power of each model was analyzed using the area 
under the curve (AUC) of the receiver operator characteristic (ROC) and the accuracy (both as the mean of the 
100 cycles/ repetitions with cross validation).

Results
Our cohort included 131 patients (male: n = 74; female: n = 57), diagnosed with progress (n = 64) and pseudopro-
gress (n = 67) of the primary brain tumor. The mean age of our patient cohort was 60.77 years. The histopatho-
logical diagnosis and demographic data of the development group and the validation group are summarized in 
Table 1. A GBM model was used for the feature selection and for the subsequent model construction. Starting 
with the most important of the original 54 features (i.e. the feature “orig.ngtdm.Strength”), we added one addi-
tional feature in each subsequent step.

The optimization of each of these GBM models was repeated 100 times using tenfold cross-validation. The 
results (for each model averaged over 100 cycles) are summarized in Table 3. The performance of the models 
depended only to a limited extent on the number of features used. It is interesting to observe that similar 

Table 1.  Histopathological diagnosis and demographic data.

Development data Validation data

Number 106 25

Progress

Yes (%) 49.06 48.00

No (%) 50.94 52.00

Gender (%)

Male 56,60 56,00

Female 43.40 44.00

Age (years) 61.18 59.04

Table 2.  Feature selection: most important Radiomics features (in descending order of importance).

Level of importance Feature

1 orig.ngtdm.Strength

2 Age

3 orig.glcm.ClusterShade

4 orig.shape.MinorAxisLength

5 orig.shape.Elongation

6 orig.glrlm.LongRunHighGrayLevelEmphasis

7 orig.ngtdm.Busyness

8 orig.shape.Sphericity

9 orig.glcm.Imc2

10 orig.glszm.LowGrayLevelZoneEmphasis

11 orig.glcm.MCC

12 orig.fst.ord.RobustMeanAbsoluteDeviation

13 orig.fst.ord.Median

14 orig.gldm.LowGrayLevelEmphasis

15 orig.ngtdm.Contrast



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5915  | https://doi.org/10.1038/s41598-022-09945-9

www.nature.com/scientificreports/

performances are obtained with the unseen test sample and the independent validation sample. The best models 
in terms of AUC were obtained with six features (Fig. 1). The correlation matrix for the best model (including the 
last six features) is shown in Fig. 2. The small absolute values of most of the correlation coefficients indicate that 
the features used in this model were majorly independent of each other. The mean AUC, sensitivity, specificity 
and accuracy of this model for predicting true progression in the testing group were 78.51% [75.27%, 82.46%], 
66.26% [57.95%, 73.02%], 78.31% [70.48%, 84.19%] and 72.40% [68.06%, 76.85%], respectively (brackets indi-
cate the 95% confidence intervals). In the independent validation group, the mean AUC, sensitivity, specificity 
and accuracy were 72.87% [70.18%, 76.28%], 71.75% [62.29%, 75.00%], 80.00% [69.23%, 84.62%] and 76.04% 
[69.90%, 80.00%] and finally in the full development group 91.49% [86.27%, 95.89%], 79.92% [73.08%, 87.55%], 
88.61% [85.19%, 94.44%] and 84.35% [80.19%, 90.57%], respectively. Hence, this final GBM model showed 
similar good prediction performance in the test and validation group. The model with ten features achieved a 
slightly higher discriminatory power on the validation data. The mean AUC, mean sensitivity, mean specificity 
and mean accuracy of this model were 78.21% [73.72%, 82.39%], 71.67% [58.33%, 83.33%], 82.85% [69.23%, 
92.31%] and 77.48% [69.90%, 84.00%]. Figure 3 shows the receiver operating characteristic (ROC) curves of the 
two models with six and ten features for the independent validation group.

Table 3.  Classification results per group. AUC  area under the curve (receiver operator characteristics, Sens. 
Sensitivity, Spec. specificity, Acc. accuracy. Significance values are in bold.

Number of features

Test data Development data Independent validation data

AUC (%) Sens. (%) Spec. (%) Acc. (%) AUC (%) Sens. (%) Spec. (%) Acc. (%) AUC (%) Sens. (%) Spec. (%) Acc. (%)

1 69.50 52.94 75.29 64.32 82.55 61.58 88.70 75.40 65.46 62.50 67.15 64.92

2 74.98 63.18 77.72 70.59 86.06 69.38 83.22 76.43 66.16 53.58 73.00 63.68

3 77.26 65.65 76.10 70.97 91.00 79.04 87.61 83.41 66.59 68.33 72.92 70.72

4 77.79 66.02 75.37 70.78 91.74 81.81 89.13 85.54 72.51 70.00 78.46 74.40

5 78.04 66.39 77.21 71.90 91.50 80.25 88.98 84.70 73.91 74.17 75.38 74.80

6 78.51 66.26 78.31 72.40 91.49 79.92 88.61 84.35 72.87 71.75 80.00 76.04

7 77.75 65.90 77.89 72.01 91.90 80.98 89.65 85.40 73.89 72.75 82.23 77.68

8 78.06 68.21 76.04 72.20 94.02 83.65 91.93 87.87 75.28 73.42 82.31 78.04

9 76.63 66.47 75.22 70.92 93.71 83.17 91.78 87.56 76.72 71.75 80.85 76.48

10 77.09 67.44 74.38 70.98 95.44 85.83 92.96 89.46 78.21 71.67 82.85 77.48

11 75.88 66.36 72.95 69.72 95.21 86.35 93.02 89.75 77.42 71.08 81.54 76.52

12 75.12 65.31 72.80 69.13 94.04 84.04 91.37 87.77 76.49 69.83 80.38 75.32

13 75.26 65.69 71.94 68.87 96.09 88.02 94.06 91.09 75.37 69.58 82.15 76.12

14 76.28 66.39 72.09 69.30 97.19 90.63 95.69 93.21 75.13 69.00 82.85 76.20

15 75.29 64.89 72.09 68.56 96.03 89.13 94.50 91.87 74.60 68.00 80.54 74.52

Figure 1.  Mean area under the curve (AUCs) of 100 cycles for the GBM models with ascending number of 
Radiomics features.
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Figure 2.  Pearson Correlation for selected GBM model with 6 features.

Figure 3.  ROC curves of the validation group for GBM model with six features (left) and ten features (right).
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Discussion
Our radiomics approach with only six features was able to predict the occurrence of pseudoprogression with 
an AUC, mean sensitivity, mean specificity and mean accuracy of 91.49% [86.27%, 95.89%], 79.92% [73.08%, 
87.55%], 88.61% [85.19%, 94.44%] and 84.35% [80.19%, 90.57%] in the full development group and 72.87% 
[70.18%, 76.28%], 71.75% [62.29%, 75.00%], 80.00% [69.23%, 84.62%] and 76.04% [69.90%, 80.00%] in the 
independent validation group, respectively.

The detection of pseudoprogression after radiation therapy is an important clinical problem. Conventional 
MRI including pre- and post-contrast T1 weighted images remains the most common diagnostic  method10, limi-
tations persist in enabling an accurate and reliable differentiation of true progression from  pseudoprogression11. 
Recent studies have confirmed the added value of advanced imaging methods, including spectroscopy, amino 
acid PET and perfusion MRI, to improve the differentiation of these two  entities12–15. However, availability, scan 
time restrictions, reimbursement issues and a lack of standardization limit the widespread clinical use of such 
advanced imaging methods.

In clinical routine physicians often resort to a combination of imaging and biopsy to ascertain the final diag-
nosis of true progression or pseudoprogression, as this combination is considered the gold standard with the 
highest diagnostic  accuracy16. However, the invasive nature of biopsy harbors inherent risks for complications.

Several studies have shown the potential of radiomics for adding important diagnostic information to HGG 
diagnosis and prognosis. For instance, based on combining selected MRI radiomics, genetic and clinical risk 
factors, Tan et al. predicted the overall survival using contrast enhanced T1 weighted and T2/ FLAIR weighted 
MR  images17. Zhang et al. predicted the IDH genotype in high-grade gliomas with an accuracy of 89% in the 
validation  dataset9. Similarly, Zhou et al. extracted features from conventional MR images of more than 500 
patients with diffuse low- and high-grade gliomas and predicted IDH mutation and 1p19q codeletion  status18. 
Chiu et al. designed a radiomic-based model with MRIs for the efficient classification of tumor subregions of 
 GBM19. Based on several MRIs, Tian et al. evaluate TERT (telomerase reverse transcriptase) promoter mutations 
in HGG by using radiomics and detected relevant indicators (Age, Cho/Cr, Lac, CNV, and Radscore)20.

However, to the best of our knowledge, no other study used this technique to predict the occurrence of 
pseudoprogression with a similar sample size or similar methodology.

Most importantly, we would like to highlight that in this study special consideration was given towards 
minimizing overfitting in the ML-backed prediction model. Specifically, we divided the data into a development 
sample, which was trained 10 times into 90% training data and 10% unseen test data and repeated 100 cycles 
to determine the mean score each time. We then validated our results in another previously unseen data set. 
Interestingly by using GBM, we get similar results with the unseen test sample and with the truly independent 
validation sample. This further corroborates the reliability and reproducibility of our results.

This study has several limitations that need to be addressed. Firstly, this was a retrospective study with inher-
ent limitations. Secondly, we did not include diffuse astrocytic and oligodendroglial CNS tumors or include 
equal number of patients with different mutations. Furthermore, we had to excluded 62 patients due to various 
reasons. Lastly, our independent, previously unseen validation data set was relatively small. Larger prospective 
cohorts are required to confirm our findings.

Despite these limitations, we obtained robust results with a relatively small dataset using an independent 
external validation data set.

In conclusion, our results indicate that radiomics is a promising tool to predict the occurrence of pseudopro-
gression, thus potentially allowing physicians to reduce the use of biopsies and invasive histopathology. However, 
further prospective clinical data are needed before this technique can be translated into clinical practice.
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