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Abstract
The outbreak of a global pandemic called coronavirus has created unprecedented circumstances resulting into a large

number of deaths and risk of community spreading throughout the world. Desperate times have called for desperate

measures to detect the disease at an early stage via various medically proven methods like chest computed tomography

(CT) scan, chest X-Ray, etc., in order to prevent the virus from spreading across the community. Developing deep learning

models for analysing these kinds of radiological images is a well-known methodology in the domain of computer based

medical image analysis. However, doing the same by mimicking the biological models and leveraging the newly developed

neuromorphic computing chips might be more economical. These chips have been shown to be more powerful and are

more efficient than conventional central and graphics processing units. Additionally, these chips facilitate the imple-

mentation of spiking neural networks (SNNs) in real-world scenarios. To this end, in this work, we have tried to simulate

the SNNs using various deep learning libraries. We have applied them for the classification of chest CT scan images into

COVID and non-COVID classes. Our approach has achieved very high F1 score of 0.99 for the potential-based model and

outperforms many state-of-the-art models. The working code associated with our present work can be found here.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious

respiratory disease caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). It is responsible

for an ongoing global pandemic. It has caused a large

number of deaths worldwide, with the count of affected

people increasing day by day. It has been detrimental to

both the economy and the society. Since no vaccine has

been developed, preventive measures such as social dis-

tancing, quarantining, use of face-masks, etc., have been

recommended. The management of the disease involves

prompt identification of infected individuals via wide-scale

testing and isolation of the infected population. The opti-

mal mode of testing would be by real-time reverse tran-

scription polymerase chain reaction (rRT-PCR). Chest

X-Rays and CT images have also been used, though they

are not recommended. However, in many cases, X-Ray and

CT images can be beneficial to radiologists in an initial

screening process. In this work, an approach for detecting

COVID-19 in CT images is discussed.
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With the advent of high computing power and deep

learning algorithms for leveraging the same, deep convo-

lutional neural networks (DCNNs) have brought a drastic

upliftment in the performances achieved in the domain of

computer vision. In many cases, such models perform way

better than human vision in various object recognition

tasks. Even in the presence of models with high levels of

working efficiency and accuracy, the search for computa-

tional algorithms which are inspired by the functioning of

brains is continuously growing and has been a centre of

attraction for researchers from all over the world. Con-

sidering this domain of research, a plethora of architectures

and computational models based on spiking neural net-

works (SNNs) have been proposed. Though DCNNs out-

perform SNNs in terms of recognition accuracy, the

obvious question that arises is that, if performance is not

the key then what is the reason for this new trend of

increasing interest towards neurobiologically modelled

SNNs. Previously the problem used to be the limitation in

computational abilities; however, in the present time and

immediate future, the need of the hour is environment

friendly, power-efficient algorithms and computational

devices. The human brain has been evolving since a mil-

lions of years. The resultant optimization from this evo-

lution has made this fact possible that the human brain

consumes approximately 20W power. This is equivalent to

the power consumption of an average laptop. Understand-

ing this efficiency of brain is beyond our current capabil-

ities, but using computation based on spikes has already

helped researchers for designing neuromorphic energy-ef-

ficient microchips [3, 4]. The era of Internet of Things

(IoT) calls for evolution of on-device artificial intelligence

(AI)-based models. Biologically inspired learning mecha-

nisms such as spike-timing-dependent plasticity (STDP)

[1, 7] can be unimaginably friendly to hardware and might

be the perfect match for online on-chip training [31]. Apart

from these reasons, the natural ability of SNNs of handling

spatio-temporal patterns has inspired the researchers to try

various methods for applying SNNs for various visual

tasks. Using structured neural networks in a hierarchical

manner is one of the most common approaches, but con-

figuration of other hyperparameters like the count of layers,

neuron models and information encoding needs a lot of

experimentation. In the context of brain-inspired algo-

rithms, STDP-based SNNs are the most biologically plau-

sible. By making use of STDP, the network can

successfully extract those visual features which are the

most frequently occurring. However, after feature extrac-

tion, for the purpose of decision making, external classi-

fiers such as support vector machines (SVMs) and radial

basis functions (RBFs) or supervised variants of STDP, are

usually required.

Chest CT scans have been a well-proven functionality

for providing assistance to the detection of COVID-19.

Methods have been proposed for classifying these CT scan

images to diagnose patients for COVID-19. However, to

the best of our knowledge, application of SNNs for the

same has not been considered by any researchers. In this

work, we have used a 3-layer DCSNN (deep convolutional

spiking neural network) with a structure adopted from [15]

for the binary classification of COVID-19 from CT scan

images. First, the input image is convolved and processed

with Gabor filters at various scales and orientations. Then,

by means of an intensity-to-latency encoding [6], a wave of

spikes is generated and propagated to the next layer. After

propagating through a series of convolutions and pooling

layers with neurons which are capable of firing at most

once, the spike wave finally reaches the penultimate layer.

From this layer, the features are extracted in order to be fed

to an external classifier for the purpose of final decision-

making for class assignment. For every image that is fed to

the network, the neurons present in the final layer with

either the earliest spike time or maximum potential con-

tributes to the decision of the network, respectively.

The rest of the paper has been organized as follows:

Sect. 2 provides a literature survey about the works done on

this topic. Section 3 describes the dataset on which the

proposed framework has been evaluated. The methodology

followed in the present work is described in Sect. 4. This is

followed by the results and concluding remarks in Sects. 5

and 6, respectively.

2 Literature survey

Deep learning has been successfully applied in many areas

of medical imaging like diabetic retinopathy, histological

analysis, cardiac imaging, tumour detection, etc. Conse-

quently, deep learning-based approaches have also been

applied to detect COVID-19 using radiological images of

chest X-Rays, CT scans, etc.

In the work by [26], the authors have proposed an

adaptive feature selection guided deep forest (AFS-DF) for

the purpose of COVID-19 detection using the chest CT

images. They have first extracted location-specific features

from the images and have then applied a deep forest model

in order to capture the high-level representation of these

features with such small-scale data. They have also pro-

posed a feature selection method for the deep forest model

for reducing the redundancy of features. The feature

selection method has been adaptively incorporated with the

COVID-19 classification model. The authors have evalu-

ated their model on the COVID-19 CT scan dataset with

1495 patients of COVID-19 and 1027 patients of com-

munity acquired pneumonia (CAP). Their method has
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achieved 91.79% accuracy, 93.05% sensitivity, 89.95%

specificity and 96.35% AUC, respectively.

Singh et al. [25], in their work, have used a convolu-

tional neural network (CNN) to classify the COVID-19

patients as infected or not. A noticeable point of this work

is that the initial parameters of the CNN have been tuned

using multi-objective differential evolution (MODE). The

authors have performed extensive experiments by consid-

ering their approach and the state-of-the-art machine

learning techniques on the chest CT images. The authors

have reported that their proposed model can classify the

chest CT images at a good accuracy rate of over 90%.

The availability of a large and varied sample of data (X-

Rays, CT scans, etc.) is important for the generalizability

and predictive power of deep learning based models.

However, in reality, there is often a lack of suitable data in

some domains. The work by [30] aims to tackle this

problem by producing synthetic data of normal and

COVID-19-affected chest X-Rays using a generative

model. They have developed a modified auxiliary classifier

generative adversarial network (ACGAN) which they term

as CovidGAN for the generation of synthetic images. The

authors have observed that the inclusion of the synthetic

data in a VGG16 classifier leads to a marked improvement

in the performance metrics. The accuracy and F1 score

increase to 95% and 0.94 from 85% and 0.84, respectively.

Several works also apply transfer learning and ensem-

bling approach to improve the performance of the models

as opposed to training a model from scratch.

The authors in the work by [14] have applied transfer

learning using several models which were previously

trained on the ImageNet dataset. They have noted that the

DenseNet201 model performs the best, as compared to

VGG16, ResNet152V2 and InceptionResNetV2. They have

used the SARS-CoV-2 CT scan dataset1 from Kaggle for

evaluating their approach. The dataset consists of 2492 CT

scans out of which 1262 are COVID-19 positive and the

remaining are COVID-19 negative. The authors have

reported training, validation and testing accuracies of

99.82%, 97.40% and 96.25%, respectively.

Similarly, the work by [22] combines ensembling with

iterative pruning to detect pneumonia-related and COVID-

19-related abnormalities from chest X-Rays. The authors

use a combination of various datasets as is mentioned in

their work. One notable stage in their pipeline is the

modality-specific training. The models are pretrained on a

pneumonia-related chest X-Ray dataset to learn task-

specific feature representations. The reasoning is that since

COVID-19-related data (chest X-Rays) is limited, the

pretraining can help the models to generalize better. The

authors report their accuracy and AUC as 99.01% and

0.9972, respectively.

In the work by [19], the authors propose a novel 3D

convolutional network with an online attention module for

detecting COVID-19 in chest CT images. They perform

their training and validation on a multi-centre CT data from

eight hospitals comprising of 2186 CT scans from 1588

patients. For the testing stage, a similar dataset of 2796 CT

scans from 2057 patients was used. A custom 3D ResNet34

architecture with an attention module is proposed by the

authors. Two models are trained, one with uniform sam-

pling from the training data and the other with size-bal-

anced sampling due to class imbalance in the data. The

predictions from the two models are then combined using

an ensemble learning strategy. The authors report the AUC,

accuracy, sensitivity, specificity and F1 score as 0.944,

87.5%, 86.9%, 90.1% and 82.0%, respectively.

Goel et al. [8] propose an optimized convolutional

neural network (OptCoNet) for the automatic diagnosis of

Covid-19 from chest X-Rays. The proposed architecture is

composed of feature extraction and classification compo-

nents like a CNN. However, the hyperparameters of the

CNN have been optimized using the grey wolf optimizer

(GWO) algorithm. The data comprised of chest X-rays of

normal and pneumonia-affected patients collected from

publicly available repositories. There were 2700 images in

all, of which 900 were Covid-19 images. The authors

reported that the optimized CNN model outperforms the

state-of-the-art models. The reported accuracy, sensitivity,

specificity, precision and F1-score values are 97.78%,

97.75%, 96.25%, 92.88% and 95.25%, respectively.

The idea of mimicking brain cells is not a new domain.

In fact neural networks themselves are a representation of

neurons present in a human brain. But with the increasing

energy demands and depleting energy resources followed

by the advent of neuromorphic computing various new

works have started evolving in the domain.

In the paper by [13], the authors have proposed a simple

approach of spike response model (SRM) neuron with high

computational efficiency. For representing data, they have

used frequency spike coding based on receptive fields and

encoded the images by the network. The method they have

used for processing the images is equivalent to the mech-

anism followed by the primary layers in visual cortex. The

output of the network has then been used for extracting

primary features for refined classification. The authors have

reported that the model has successfully learnt and classi-

fied greyscale images with added noise or partially

ambiguous image samples at a 20x higher speed at an

equivalent classification ratio as compared to a classic

SRM neuron membrane model. Their solution is a com-

bination of network topology, spike encoding and neuron

membrane model.1 https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset.
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2.1 Research gap

Deep learning-based approaches have become very popular

in the recent years. It has been applied in several domains

of image processing, pattern recognition and computer

vision to achieve state-of-the-art results. In particular, the

fields of medical image processing have seen many

advances recently in various tasks that include image

classification, image segmentation, image retrieval, com-

puter-aided diagnosis, etc. Some works relating to the

domain of COVID-19 have already been mentioned above.

On the other hand, the applications of SNNs are a relatively

new topic in research. As theoretical research is still

ongoing, very few application-based works have been

published. To the best of our knowledge, no SNN-based

works have been proposed till date in the field of COVID-

19 detection from chest CT scans or CXRs. Therefore, our

work might be the first such work.

3 Dataset used

The COVID-CT dataset2 contains 349 CT scan images of

216 patients (multiple images for same patient taken at

different times) diagnosed positive for COVID-19 and 397

CT scan images that are diagnosed negative for COVID-

19. The dataset is open-sourced to the public, to foster the

research works of CT specific testing of COVID-19. From

760 medRxiv and bioRxiv preprints about COVID-19, the

creators of the dataset extracted reported CT images and

manually selected those containing clinical findings of

COVID-19 by reading the captions of the selected images.

The credibility and effectiveness of the dataset have been

confirmed by a highly qualified senior radiologist who has

intensively diagnosed and treated many COVID-19

patients. The personal data of the patients are anonymized

to protect their privacy [28]; there is a metadata file that

allows access to the data through descriptors such as

patient ID, patient information, DOI and image caption.

Some sample images from the dataset are shown in Fig. 1.

4 Proposed methodology

In this section, the working principle of the proposed model

has been described. The overall methodology is shown in

Fig. 2.

4.1 Overall architecture

The work of the input layer is to encode the input image in

the form of a Poisson-distributed spike. The pixel intensity

has a directly proportional relationship with the probability

of spike generation. This resultant encoding is passed on to

the intermediate stages. The intermediate stages of feature

hierarchies consist of hidden layers which are made up of

convolution and spatial-pooling (C) layers stacked alter-

natively. These spikes are then concatenated sequentially

and used as features to be fed to external classifiers for

binary classification of the inputs. Apart from the C layers,

all the other layers consist of trainable parameters. The

local features which are having spatial correlation in the

input patterns can be detected by the adapted convolutional

kernels using convolution, which has an intrinsic property

of rendering the network showing invariance to translation

(shift) in the object location. Thereafter, downscaling of

feature maps in terms of dimension which are produced by

the previous layers is done by the P layer. In the whole

process, retention of the spatial correlation between

neighbourhood pixels in every feature map takes place.

4.2 Preprocessing

Every image is first resized to a dimension of 32� 32 and

converted to greyscale. This image (as shown in Fig. 3) is

then passed through the preprocessing pipeline as shown in

Fig. 4 and the resultant encoded image is passed through

the network for further processing.

Fig. 1 Sample images from

COVID-19 CT Scan dataset

belonging to corresponding

classes

2 https://github.com/UCSD-AI4H/COVID-CT.
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4.2.1 Gabor filters

Gabor filters are a type of band-pass filters which prove to

be quite useful in extracting useful features from images.

Multiplication of a Gaussian envelope function with a

complex oscillating function generates the impulsive

response of these filters. [5] had shown in his work that

these simple functions help in minimizing the space-time

uncertainty product with an immediate implication of ori-

entation selective behaviour of these functions on exten-

sion to two dimensions. We have used the filters for

extracting various features from the images, both frequency

based as well as orientation based features, which have

helped the SNNs in better understanding and setting of

membrane potentials and spiking thresholds, while filtering

out any noise. From these images two features, namely,

Gabor filter entropy and Gabor filter energy, are extracted

using the real and imaginary components. These features

correctly respond to the edges if the edge direction is

perpendicular to the Gaussian kernel wave vector.

4.2.2 Output of preprocessing stage

Figure 5 provides a visualization of the features after the

preprocessing stage for a single input image. The time

values in the bottom are a result of adding the time

dimension. The different features are a result of applying

the different Gabor filters. The summation of these features

produces the final feature vector. The features and hence

their summation are different at different time intervals.

This is due to the intensity-to-latency encoding which is

applied in the last stage of preprocessing.

4.3 Feature extraction

Here we have explained in a detailed manner the feature

extraction process of the architecture.

4.3.1 Convolution

Every convolutional (S-layers) in the proposed network

consists of many 2D grids of Integrate-and-Fire (IF) neu-

rons, which is basically the representation of feature maps.

Every neuron belonging to a layer has a definite three-

dimensional input window with same height and width of

afferent which is analogous to the units conveying infor-

mation from sensory organs to central nervous system and

depth which is same as the number of feature maps present

in the previous layer [17]. The firing threshold is also ini-

tialized to be equal across all the neurons in every indi-

vidual layer. In every time step, the value of internal

potential for every IF neuron is enhanced by the incoming

spikes within its input window by making use of the

magnitude of the synaptic weights. There is absence of any

Fig. 2 Overall architecture used for feature extraction

Fig. 3 Sample image before preprocessing
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leakage in these neurons. If any neuron attains the firing

threshold, it emits a single spike, and thereafter, it remains

silent until the next input image is passed through the

network.

Whenever the network encounters a new input, the

internal potentials of all neurons are reset to zero. In a

single feature map, a weight-sharing mechanism is applied

to all the neurons. A convolutional layer with a kernel size

Bh � Bw performs a convolution over an input 4D tensor

depicting a spike-wave of size Tmax � Fin �Hin � Sin

having value of stride equal to 1 and produces a tensor of

output potentials having size Tmax � Fout �Hout � Sout,

where:

Hout ¼ Hin � Bh þ 1;Sout ¼ Sin � Bh þ 1 ð1Þ

where Fin and Fout represent the values corresponding to

number of input and output features, respectively. Potential

type tensors ðPÞ are similar to the binary spike-wave ten-

sors, but P½t; f ; r; c� represents the floating-point potential

of any neuron placed at the position (r, c) of any feature

map f, at time step t (see Table 1).

4.3.2 Spike timing-dependent plasticity

Spike timing-dependant plasticity (STDP) is a proven

technique for detecting hidden patterns from the noise

present in spiking data. It belongs to the class of unsu-

pervised learning techniques which works on the basis of

the ordering of the synaptic spikes. The ordering of every

pair of presynaptic spike and post-synaptic spikes as shown

in Fig. 6 decides the potentiation (pre-post) or depression

(post-pre) of the synapse. Changes of weights is based on

the following two rules:

– Any synapse that contributes to the firing of a post-

synaptic neuron should be made strong, that is, its value

should be increased.

– Synapses that do not contribute to the firing of a post-

synaptic neuron should be diminished, that is, its value

should be decreased.

This method helps in learning the repetition of patterns

among a large set of incoming spikes.

Since this simulation of SNN works with the coding

mechanism of time to first spike, the implemented STDP

function that has been used here is shown in Eq. 2:

DSi;j ¼
Kþ � ðSi;j � LÞ � ðU � Si;jÞ if Tj � Ti � 0;
K� � ðSi;j � LÞ � ðU � Si;jÞ if Tj � Ti [ 0

�

ð2Þ

where Si;j refers to the corresponding change of value of

weights of the synapse which connects the post-synaptic

neuron i to the presynaptic neuron j, Kþ and K� signify the

learning rates, and ðSi;j � LÞ � ðU � Si;jÞ is the regularizer
slowing down the change in weight when the synaptic

weight ðSi;jÞ is nearer to the lower(L) and upper(U)

Fig. 4 Image preprocessing pipeline
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bounds. Ti and Tj depict the spike times of the presynaptic

(input) and the post-synaptic (output) neuron, respectively

(see Table 2).

For applying STDP in the process of training, provision

of the input and output spike waves, as well as output

potentials, are necessary in order to find the winners.

Winners-take-all (WTA) is a well-known competition-

based algorithm which is employed in SNNs. WTA is

generally used for plasticity, but is extensible for use for

performing other functions such as decision-making.

Winners are decided first on basis of the earliest spike

times, thereafter based on the maximum potentials. The

number of winners is defaulted to take the value 1. The

phenomenon of lateral inhibition is followed by means of

which the winners’ surrounding neurons present in all of

Fig. 5 Visualization of features after preprocessing

Table 1 Parameter

configuration for S-layers for

feature extraction [18]

Layer Number of feature maps Input window (width, height, depth) Threshold

S1 30 (5, 5, 6) 15

S2 250 (3, 3, 30) 10

S3 200 (5, 5, 250) 1

Fig. 6 Presynaptic and post-synaptic spike pairs

Table 2 Parameter configura-

tion for synaptic plasticity for

feature extraction

Layer Kþ K� k r

S1 0.004 -0.003 5 3

S2 0.004 -0.003 8 2

S3 0.004 -0.003 1 0

Neural Computing and Applications (2021) 33:12591–12604 12597
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the feature maps within a specific distance are completely

inhibited. This helps in enhancing probability of learning

more diverse features.

Figure 7 [27] represents a simple two-layer network

consisting of N presynaptic neurons (input) and 1 output

neuron. The signals of spikes (siðtÞ) are designed to be

either 0 or 1 in one millisecond of increment. That is, 1

millisecond pulse of amplitude 1 depicts a spike and a

value of 0 depicts absence of a spike. Every signal of spike

contains a weight or synapse associated with it which gets

multiplied with the signal to obtain wisiðtÞ which is termed

as the post-synaptic potential due to the ith input neuron.

These potentials are thereafter aggregated using the Eq. 3.

VðtÞ ¼
XN
k¼1

wkskðtÞ ð3Þ

where, VðtÞ is termed as the membrane potential of the

output neuron. At some instant of time t, if the membrane

potential VðtÞ exceeds a specified threshold, that is, if

VðtÞ[ c, then there is a spike in the output neuron.

4.3.3 Pooling

Pooling layers (C-layers) have been used for the purpose of

position invariance and reduction of information redun-

dancy. Every C-layer or S-layer consists of equal number

of feature maps as present in its previous layer, thus

building a one-to-one relationship between the maps of

both layers. For two variants of SNNs, which are spike

train-based and potential-based, we have used two types of

pooling layers, respectively. Both the variants consist of a

2D input window and a fixed stride. Every neuron in the

layers gives indication of the maximum potential and the

earliest spike time of the neurons within its input window

for the potential based and spike train-based layers

respectively. The value of stride is same as the window size

by default, but can be customized accordingly.

According to the structure of the spike-wave and

potential tensors, if a spike-wave tensor serves as the input,

then the earliest spike within each pooling window is

extracted, whereas if a potential-based tensor serves as the

input, the maximum potential within each pooling window

is extracted. The feature maps of the final pooling layer are

flattened to give a one dimensional vector which is fed to

an external classifier whose work in turn is to produce

inference decisions. The classifier effectively incorporates

the composition of features which are the results from the

alternating convolutional and pooling layers and classifies

into the final output classes. Figure 8 shows an example of

conversion of spike times into tensors of spike-wave (see

Table 3).

4.4 Classifier

Deep learning-based classifiers are the best when there is

presence of a huge number of training instances. However,

if a dataset contains lesser quantities of data, machine

learning-based classifiers are best suited for the decision

making stage [29]. In this work, at the last level of the

whole working pipeline, we have used a Random Forest

classifier [2] for classifying the output class of COVID or

non-COVID on the basis of the features extracted in the

upper levels of the working pipeline. A random forest

classifier is an ensemble-based classifier that generates a

series of decision tree classifiers (shown in Fig. 10) on

various sub-samples of the dataset as shown in Fig. 9. It

uses the principle of averaging to improve the accuracy of

prediction and to control over-fitting. For our work, we

have set the maximum depth hyper-parameter to 8, ran-

dom-state to 32 and other parameters to their default values

as initialized in the scikit-learn library [21].

4.5 Comparison with deep learning models

We also train some state-of-the-art deep learning-based

classifiers to find the performance of these models on the

metrics considered. We use these as baselines in order to

judge the performance of the proposed approach against

the prevalent deep learning based approaches. The models

considered are: VGG16, ResNetV2 and Densenet161

adapted from the works by [, 10, 11, 24] respectively.

We use the transfer learning technique to train the

models under consideration. A schematic diagram of the

technique is highlighted in Fig. 11. Initially, the models are

trained on the ImageNet dataset3. After convergence, the

last dense layer (Head 1 in the figure) is replaced with a

Fig. 7 A simple two-layer network with presynaptic(si) and post-synaptic(output) neurons

3 http://www.image-net.org/.
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randomly initialized dense layer (Head 2 in the figure) with

two outputs corresponding to the two classes. The model is

then trained for 20 epochs with only the weights of the last

layer being updated. After that, the entire model is fine-

tuned for 20 epochs with a very low learning rate.

5 Experimental results

5.1 Metrics used

We have used various classification metrics [16] for mea-

suring the effectiveness of our model in classifying COVID

from the CT scan images, which are as follows:

– F1-score: Weighted average of precision and recall

values.

– Accuracy: Overall probability of a patient being

correctly classified.

– Sensitivity: Probability of positive test results when

person is actually having the disease .

– Specificity: Probability of negative test results when

person is actually not having the disease.

– Positive likelihood ratio: Ratios of the probabilities of a

test result being positive provided the disease is present

and a test result being positive given the disease is

absent.

– Negative likelihood ratio: Ratios of the probabilities of

a test result being negative provided the disease is

present and a test result being negative given the

disease is absent.

– Positive predictive value: Probability that provided the

test is positive, the disease is present.

– Negative predictive value: Probability that provided the

test is negative, the disease is absent.

Fig. 8 Simultaneous processing

of spikes over time steps to

convert to tensor containing

potentials in all of the time steps

Table 3 Parameter configuration for C-layers for feature extraction

[18]

Layer Input window (width,height) Stride Type

C1 (2,2) 2 Spike train-based

C2 (3,3) 3 Spike train-based

C3 (5,5) 0 Potential based
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Fig. 10 Sample decision tree of an estimator of the random forest classifier

Fig. 9 Overview of working of

a random forest classifier
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5.2 Results and analysis

At the outset, it is to be noted that training the deep

learning models from scratch results in overfitting on the

training dataset. This leads to poor performance on the test

dataset, with the accuracy being close to approximately

60% while the training accuracy is 100%.

The potential-based classification achieves much better

results compared to the spike train-based model as shown

in Tables 4, 5, 6 and 7 . This occurs due to the collective

errors which keeps on accumulating due to improper firing

of spikes resulting due to improper thresholding at the IF

neurons while using spike train-based classification. This

error accumulation is absent in case of potential based

model due to direct relationship of the potential of neurons

with the decision making. This can be understood from the

natural phenomenon itself which the SNNs mimic.

Action potential marks the beginning of the chain of

events which lead to contraction for example in muscle

cells, while the temporal sequence of these action poten-

tials are called spike trains. So errors occurring in the

action potentials propagate and keep on accumulating in

the spike trains.

The learning in the network goes on quite smoothly as it

can be seen from the iterative training accuracy graphs in

Fig. 12. Both the potential-based and spike train-based

Fig. 11 A schematic diagram of

the transfer learning approach

Table 4 Classification results of potential-based model

Class Precision Recall F1-score Support

COVID-19 1.00 0.99 0.99 95

Non-COVID 0.99 1.00 0.99 110

Macro avg. 1.00 0.99 0.99 205

Table 5 Medical results [23] associated with the classification using

potential-based model

Statistic Value 95% CI

Sensitivity 98.96% 94.33% to 99.97%

Specificity 100.00% 96.67% to 100.00%

Negative likelihood ratio 0.01 0.00 to 0.07

Disease prevalence (*) 46.83% 39.84% to 53.91%

Positive predictive value (*) 100.00%

Negative predictive value (*) 99.09% 93.94% to 99.87%

Accuracy (*) 99.51% 97.31% to 99.99%

Table 6 Classification results of spike train-based model

Class Precision Recall F1-score Support

COVID-19 0.63 0.92 0.74 95

Non-COVID 0.88 0.54 0.66 110

Macro avg. 0.75 0.72 0.70 205

Table 7 Medical results associated with the classification using spike

train-based model

Statistic Value 95% CI

Sensitivity 91.58% 84.08% to 96.29%

Specificity 53.64% 43.88% to 63.20%

Positive likelihood ratio 1.98 1.60 to 2.44

Negative likelihood ratio 0.16 0.08 to 0.31

Disease prevalence (*) 46.34% 39.37% to 53.42%

Positive predictive value (*) 63.04% 58.03% to 67.79%

Negative predictive value (*) 88.06% 78.79% to 93.61%

Accuracy (*) 71.22% 64.50% to 77.31%
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models start to learn with almost equal accuracy but with

time the learning of the spike train-based model does not

keep up with the learning capabilities of the potential-based

model and hence gives worse results comparatively

because of exactly the same reason as explained above.

Table 8 shows the precision, recall and F1-score of the

VGG [24], ResNet [9] and DenseNet [12] models,

respectively. The models perform similarly, with the VGG

having a F1 score about 0.02 lower than the other two

models both of which achieve scores of 0.88. On com-

parison with the spike-based model (see Table 6), we find

that the deep learning models have better performance by a

large margin. However, with respect to the potential based

model (see Table 4), we find that these models are lacking

in their performance based on the metrics being considered.

Table 9 highlights the accuracies of all the models that

have been considered in this work. The potential-based

model outperforms all the other models considered here.

The errors in the spike and potential based models are

highlighted in Table 10. It can be noted that the potential-

based model performs better than the deep learning models.

It can be because the potential-based model learns fewer

redundant features with respect to the other convolution-

based deep learning models. Having fewer parameters as

compared to the deep learning models, it also makes more

efficient use of the parameters. However, one trade-off for

this higher performance and efficiency would be the higher

training time for the SNN based models.

From the above results, it can be seen that the potential-

based SNN model performs the best. The spike-train-based

Fig. 12 Iterative accuracy

attained while training in

potential and spike train-based

feature classifiers

Table 8 Classification results of

the deep learning-based models
Model Class Precision Recall F1-score Support

VGG16 COVID 0.83 0.88 0.85 86

Non-COVID 0.89 0.84 0.87 101

Macro avg. 0.86 0.86 0.86 187

ResNet101V2 COVID 0.83 0.92 0.87 86

Non-COVID 0.92 0.84 0.88 101

Macro avg. 0.88 0.88 0.88 187

DenseNet161 COVID 0.89 0.85 0.87 86

Non-COVID 0.88 0.91 0.89 101

Macro avg. 0.88 0.88 0.88 187

Table 9 Accuracy of the models

considered
Model Accuracy

VGG16 0.86

ResNet101V2 0.88

DenseNet161 0.88

Spike train-based 0.71

Potential-based 1.00

Table 10 Errors of the two SNN

variants considered
Model Error

Spike train-based 0.29269

Potential-based 0.00488
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SNN does not provide competitive results as compared to

the deep learning-based models. However, the potential-

based SNN outperforms the state-of-the-art deep learning

models by a significant margin. This demonstrates the

usability of SNNs in real-world scenarios. Additionally, the

benefits provided by the neuromorphic chips make SNNs a

viable option for various practical applications. This is

relevant since deep learning models generally require a

graphics processing unit to obtain fast inference times. The

energy-efficiency and computing power of the chips are

more suited as processing elements. The advantages do

come at a cost. It takes a large amount of time to train

them, even more than the deep learning models which

themselves take hours, or even days in some cases.

6 Conclusion

In this work, we have designed a three-layer DCSNN for

screening of the COVID-19 from CT scan images. In doing

so, the input image is first convolved and processed with

Gabor filters. Then, by means of an intensity-to-latency

encoding, a wave of spikes is generated. After propagating

through a series of convolutional and pooling layers, with

neurons having the ability of firing at most once, the spike

wave reaches the penultimate layer. Finally, the useful

features are extracted that are then fed to a classifier for

making the final decision.

On evaluation on the COVID-CT dataset, the proposed

approach has achieved an impressive F1 score of 0.99 for

the potential-based model. The approach also outperforms

some state-of-the-art COVID-19 classification models.

Although the proposed SNN-based model performs very

well on chest CT images, there is a limitation of this model.

It takes more time to train the model in comparison with

the traditionally used deep learning models. However, the

present model is more efficient compared to these deep

learning models. In future, we plan to come up with an idea

which will help us to cut down the training time. Another

plan is to apply the model to other forms of COVID-19

datasets like chest X-rays which will prove the robustness

of the model.
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