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Abstract The prevailing view of motor cortex holds that motor cortical neural activity represents

muscle or movement parameters. However, recent studies in non-human primates have shown that

neural activity does not simply represent muscle or movement parameters; instead, its temporal

structure is well-described by a dynamical system where activity during movement evolves lawfully

from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor

cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find

that activity in human motor cortex has similar dynamical structure to that of non-human primates,

indicating that human motor cortex contains a similar underlying dynamical system for movement

generation.

Clinical trial registration: NCT00912041.

DOI: 10.7554/eLife.07436.001

Introduction
Neurons in motor cortex exhibit complex firing patterns during movement (Fetz, 1992; Churchland and

Shenoy, 2007; Churchland et al., 2010). Though motor cortex has been extensively studied over the

past century (Lemon, 2008), the complexity of these patterns remains poorly understood. Early work

demonstrated that neural firing correlates with external variables such as movement direction

(Georgopoulos et al., 1982), and an ongoing debate centers on whether the firing patterns represent

muscle or movement parameters (e.g., joint position, intended velocity, reach endpoint, muscle forces,

and so on; reviewed in Kalaska, 2009). A recent approach has been to ask, instead, whether these

patterns of activity reflect an internal dynamical system across the population (Fetz, 1992; Todorov and
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Jordan, 2002; Churchland and Shenoy, 2007; Scott, 2008; Churchland et al., 2010, 2012;

Graziano, 2011; Shenoy et al., 2013; Kaufman et al., 2014). In this view, the system’s initial state is

set by preparatory activity, and consistent rules govern how firing rates evolve over time across

movement conditions, regardless of movement direction or other externally changing variables.

This dynamical view is supported by recent studies in rhesus macaques (Churchland et al., 2010,

2012; Shenoy et al., 2013; Kaufman et al., 2014). At the level of single neurons, responses during

movement show brief but strong oscillatory components, even for straight point-to-point reaches

(Churchland and Shenoy, 2007; Churchland et al., 2010). Furthermore, at the population level, the

responses are well-described by a simple dynamical model in which the population response (the neural

state) rotates with time (Figure 1A) (Churchland et al., 2012). Importantly, the presence of a strong

rotational component in these dynamics is not predicted by the prevailing view of motor cortical activity

(i.e., cosine direction tuning, linear speed scaling) that, instead, predicts solely expansive and contractive

dynamics (detailed in Churchland et al., 2012, Figure 4 and associated text).

In humans, studies in research participants with tetraplegia have demonstrated that motor cortical

action potential (AP) responses contain information about intended movement kinematics (Truccolo

et al., 2008). Here, we investigated whether these AP responses also contain rotational dynamical

structure at the ensemble level.

Results
We analyzed multi-neuron AP activity from 2 people with tetraplegia enrolled in the BrainGate2 pilot

clinical trial. This ongoing, multi-site, pilot clinical trial is performed under an FDA Investigational

Device Exemption and has been approved by local institutional review boards at all study sites. The

study participants (T6, T7) had differing degrees of motor impairment due to Amyotrophic Lateral

Sclerosis (ALS). T6 retained the ability to make several dexterous movements (especially of the fingers

and wrist), while T7 retained limited finger movements.

eLife digest Every conscious movement a person makes, whether lifting a pencil or playing

a violin, begins in the brain. To be more specific, neurons in a part of the brain called the motor

cortex send signals to muscles to cause them to move.

But many of the details about how messages from the motor cortex produce movements remain

unclear. Some scientists believe that individual neurons in motor cortex send direct messages that

tell the muscles which direction to move in, how fast, and how forcefully. But other scientists suggest

that this is not the case. Instead, they propose that neurons in motor cortex work together as part of

a dynamic system to create rhythmic patterns of activity for movement. These rhythmic patterns then

sum together to create the signals that muscles need to carry out the movements.

Studies in monkeys have supported the idea that the neurons in the motor cortex are not just

direct messengers. These studies showed what appears to be a rotating set of patterns in neuronal

activity in the motor cortex during movement. Now, Pandarinath et al. have shown that a similar

rotation of neuronal activity patterns occurs during movement in two human volunteers. The

participants both had a disease called amyotrophic lateral sclerosis (or ALS for short). This disease

had nearly paralyzed their arms and legs because it causes a progressive loss of muscle control. In

the experiments, the volunteers used their index fingers to try to move a computer cursor to a target

using a touch pad.

Pandarinath et al. recorded activity in the volunteers’ motor cortices while they completed the

tasks. The experiments uncovered a predictable series of patterns that started when the individual

first thought about moving. These patterns progressed in a rotation as the movement was carried

out. The rotation was not tied to the direction of the movements and would be completely

unexpected if the individual neurons were simply acting as direct messengers.

It is hoped that these findings will help efforts to create prosthetic devices (such as robotic arms)

that can better respond to an individual’s thoughts. But further experiments are also needed in

people without ALS to verify that the patterns observed weren’t specifically related to this disease.

DOI: 10.7554/eLife.07436.002
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Neural signals were recorded using 4 mm × 4 mm, 96-channel silicon microelectrode arrays, which

were implanted in the hand area of dominant M1. APs were recorded as participants performed visual

target acquisition tasks. Participants attempted to move a cursor from the center of a computer

screen to one of eight peripheral targets, with the cursor’s position controlled by index finger

movements on a computer touchpad (see ‘Materials and methods’).

We first tested whether an underlying dynamical structure existed in the neural activity. If present,

a population-level analysis should reveal orderly rotational structure that is consistent across

conditions (i.e., independent of the direction of movement). To search for rotational patterns in the

neural population state, we used a three-step procedure: first, for each condition (i.e., for a given

target), we averaged the activity on each electrode across all trials. Next, we performed principal

components analysis (PCA) on the high-dimensional population data. We restricted the data to the

top 6 PCs, that is, we only preserved the six response patterns most strongly present in the data.

Finally, for this reduced-dimensional data set, we applied the jPCA method (Churchland et al., 2012),

which searches the data for 2-dimensional planes that capture the strongest rotational tendencies.

Restricting the jPCA analysis to the dimensionality-reduced data (6-D) ensured that any rotational

structure revealed by the analysis was present in the most prominent response patterns in the data.

For both participants, the population activity exhibited strong rotational dynamics (Figure 1B,C).

Each trace shows the population activity in the top jPC plane for a single condition. 250 ms of data are

shown, beginning with the rapid change in neural activity that precedes movement onset (the

evolution of the neural state over time for each participant is shown in Video 1). Rotations proceeded

in the same direction across conditions, following from the initial pre-movement state. The top jPCA

plane captured 61% (T6) and 27% (T7) of the variance of the high-dimensional neural data (for

comparison, the macaque study reported 28% for the top plane on average).

One potential concern is that the jPCA method might be powerful enough to find rotatory patterns

in state space for any set of responses that contains complex, multiphasic patterns. To test for this

possibility, we performed three control analyses, following Churchland et al., 2012. In these controls,

the data were shuffled to disrupt underlying rotational structure across response patterns, while

preserving the complexity of the individual response patterns. If the previously found rotational

structure were simply a by-product of the analysis technique, then the shuffled data sets should still

show prominent rotations in the top jPCA planes. This was not the case. Rotations were no longer

qualitatively seen in the projected responses after shuffling (Figure 2, top row). We next measured the

fraction of variance of the changes in neural state (6-D) that could be explained by rotational activity

Figure 1. Neural population responses show rotational activity during movement epochs. (A) Projections of the

neural population response onto the first jPCA plane for a monkey during an arm-reaching task (monkey N,

108 conditions; adapted from Churchland et al., 2012). Each trace plots the first 200 ms of activity during the

movement epoch for a given condition. Traces are colored based on the preparatory state projection onto jPC1.

a.u., arbitrary units. (B) Projections for participant T6 during an 8-target center-out task controlled by index finger

movements on a computer touchpad. Each trace plots the 250 ms of activity during the movement epoch (‘Materials

and methods’) for a given condition. (C) Same as (B), for participant T7. Video 1 shows the evolution of the neural

state over time for each participant.

DOI: 10.7554/eLife.07436.003
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alone (see ‘Materials and methods’) and found

that this greatly decreased after shuffling

(Figure 2, bottom row). (Two additional

shuffle control analyses are presented in

Figure 2—figure supplement 1 and

Figure 2—figure supplement 2).

To quantify the consistency of the rotatory

activity, we measured the angle from the neural

state in the jPCA plane, x, to its derivative, _x, for

each time point across all conditions (Figure 3).

Angles near pi/2 indicate rotational dynamics. As

shown, the distribution of measured angles

peaked near pi/2, similar to previously reported

macaque data.

Discussion
These results demonstrate prominent rotations

of the neural population state in human motor

cortex during movements. As with macaques,

rotations were consistent across conditions and

followed naturally from an initial pre-movement

state. As mentioned above, and in contrast to the

macaque study, both participants in this study

had a diagnosis of ALS with resultant motor

impairment. Participant T7’s movements in par-

ticular were very limited and occurred with a long latency following target onset (detailed in ‘Materials

and methods’). Both participants likely had substantial changes in motor cortex due to their disease

progression; therefore, these results do not conclusively show that dynamical activity is present in

healthy human motor cortex. However, given the finding that dynamical activity is prominent in motor

cortex in people with abnormal motor function, and given the similarity of this activity to that of

healthy non-human primates, the results strongly suggest the presence of dynamical activity in human

motor cortex in general and may also hint at which aspects of motor cortical function are preserved

despite the progression of a severe motor neuron disease.

Given the findings of dynamical activity during overt movements, a potentially exciting open

question is whether motor cortex exhibits dynamical activity during purely imagined movements.

Recent studies (Feldman et al., Society for Neuroscience, 2011, 2012; Pandarinath et al., Society for

Neuroscience, 2013) have demonstrated that motor cortex is active during both overt and imagined

movements. If the functional role of rotational dynamics is to serve as an oscillatory basis set for

generating muscle activation patterns (e.g. electromyogram activity) (Churchland et al., 2012;

Sussillo et al., 2015), then one might expect these dynamics to be absent during imagined

movements, when the subject is specifically trying to avoid generating motor output. However, if

activity during imagined movements serves as a mechanism for the ‘covert rehearsal’ of activity during

overt movements, then dynamics might still be present (but might be, for example, orthogonal to

patterns of activity that drive motor output). Future studies will attempt to directly address this

question.

The current study’s findings also suggest a promising avenue to improve the performance of

Brain–Machine Interfaces (BMIs) for persons with tetraplegia, as previous work with macaques

(Kao et al., 2015) demonstrated that incorporating neural population dynamics into BMI control

algorithms may lead to performance improvements. Finally, as with macaques, the presence of these

rotations calls into question the prevailing model of motor cortical activity (i.e., that motor cortical

firing patterns represent muscle or movement parameters) in favor of a dynamical systems perspective

in humans as well.

Materials and methods
Permission for these studies was granted by the US Food and Drug Administration (Investigational

Device Exemption) and Institutional Review Boards of Stanford University (protocol # 20804), Partners

Video 1. Neural population responses show rotational

activity. Video shows the evolution of the neural state

over time in the first jPCA plane for participants T6 and

T7. Low-dimensional projections were calculated as in

Figure 1. Each colored trace represents one of 8

conditions. All times are relative to target onset (0 ms).

DOI: 10.7554/eLife.07436.004
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Healthcare/Massachusetts General Hospital (2011P001036), Providence VA Medical Center

(2011-009), and Brown University (0809992560). The two participants in this study, T6 and T7, were

enrolled in a pilot clinical trial of the BrainGate Neural Interface System (http://www.clinicaltrials.gov/

ct2/show/NCT00912041). Informed consent, including consent to publish, was obtained from the

participants prior to their enrollment in the study.

Participants
Participant T6 is a right-handed woman, 51 year old at the time of this study, with tetraplegia due to

ALS. On December 7, 2012, a 96-channel intracortical silicon microelectrode array (1.0-mm electrode

length, Blackrock Microsystems, Salt Lake City, UT) was implanted in the hand area of dominant motor

cortex as previously described (Hochberg et al., 2006; Simeral et al., 2011). T6 retained dexterous

movements of the fingers and wrist. Data reported in this study are from T6’s trial days 95–213.

Participant T7 is a right-handed man, 54 year old at the time of this study, with tetraplegia due to

ALS. T7 had two 96-channel intracortical silicon microelectrode arrays (1.5-mm electrode length,

Blackrock Microsystems, Salt Lake City, UT) implanted in the hand area of dominant motor cortex on

July 30, 2013. Data reported are from T7’s trial days 231 and 245. At that time, T7 retained very

Figure 2. Rotational dynamics are not a by-product of the jPCA analysis method. For each data set, neural

responses were shuffled in a manner that preserved the complexity of individual response patterns on each

electrode, but disrupted the structure of the data across electrodes. For each channel, the pattern of activity during

the movement epoch was inverted for half the conditions (chosen at random). The inversion was performed around

the initial time point, so that continuity with pre-movement activity was preserved. Performing jPCA on the shuffled

responses did not reveal consistent rotational structure. (A, top) Projection of the population responses onto the first

jPCA plane for a single shuffled trial (participant T6). (bottom) Fraction of variance of the change in neural state (6-D)

explained by rotational activity for the original data set (brown) vs the shuffled data sets (blue). Error bar represents

the standard deviation across 300 shuffle trials. (B) Same as (A), for participant T7. Two additional shuffle control

analyses are presented in Figure 2—figure supplement 1 and Figure 2—figure supplement 2.

DOI: 10.7554/eLife.07436.005

The following figure supplements are available for figure 2:

Figure supplement 1. Results of the second shuffle control analysis.

DOI: 10.7554/eLife.07436.006

Figure supplement 2. Results of the third shuffle control analysis.

DOI: 10.7554/eLife.07436.007
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limited, but consistent, index finger movements. Subsequent to these days, further motor impairment

precluded tasks that relied on finger movements.

Task design
Neural data were recorded during ‘center-out’ target acquisition tasks. The data were originally

collected for neural prosthetic decoder calibration, as part of research testing algorithms for closed-

loop neural cursor control (Gilja et al., Society for Neuroscience, 2013). In the ‘center-out’ task,

participants controlled the position of a cursor on a computer screen by making physical movements

with their fingers on a wireless touchpad (Magic Trackpad; Apple, Cupertino, CA). The cursor began

in the center of the screen, and targets would appear in one of 8 locations on the periphery.

Participants then acquired the targets by moving the cursor over the target and holding it over the

target for 500 ms. In contrast to the prior macaque study (Churchland et al., 2012), the target

acquisition task used in this work did not include a delay period. Therefore, participants were free to

move as soon as the target appeared. Participant T6 was not limited in her ability to span the

workspace of the touchpad. Participant T7’s limited movements spanned a small region on the

touchpad, approximately 1/8″–1/4″ wide.

Recordings and data analysis
Data were aggregated over multiple sessions (T6: 8 sessions, T7: 2 sessions). Trial counts varied

between sessions and across participants (T6: 75–220 trials per session, T7: 128 and 78 trials per

session). The primary data analyzed were multi-neuron APs, which were taken as time points when

a given channel’s voltage exceeded a fixed threshold. Choice of threshold was dependent on the

array (T6: −60 μV, T7, Lateral array: −80 μV, Medial array: −95 μV). Analyses were restricted to

electrodes known to have significant modulation during attempted movements (T6: 39 electrodes,

T7: 78 electrodes). Firing rates per electrode were then averaged across trials and filtered with

a Gaussian kernel with standard deviation of 25 ms (T6) or 30 ms (T7).

Figure 3. Consistency of the rotational dynamics across conditions. Traces represent histograms of the angle,

q, between the neural state, x, and its derivative, _x, for each time step. The angle was measured as illustrated

schematically (inset) after projecting the data into the first jPCA plane. Purely rotatory activity results in angles near

pi/2, while pure scaling/expansion results in angles near 0 or pi. Y-axis denotes scale for participant data (colored

traces). For comparison, histograms for the example shuffle control data (Figure 2) and monkey composite data are

shown in gray and black, respectively. These traces are normalized to match the participant data range (monkey data

reproduced from Churchland et al., 2012).

DOI: 10.7554/eLife.07436.008
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Analysis of rotational structure in the population response
jPCA analyses were performed as described previously (Churchland et al., 2012). Analyses were

restricted to a 250-ms time period beginning with the rapid changes in neural activity that occur

preceding movement onset. This period began approximately 180 ms and 300 ms after target onset

for T6 and T7, respectively, corresponding to a difference in reaction times between participants.

Overt movement was detectable at approximately 230 ms and 600 ms after target onset for T6 and

T7, respectively. The delayed movements in T7 relative to T6 likely reflect a difference in disease

progression between the two participants.

Pre-processing steps (‘soft’ normalization, mean-centering, and initial dimensionality reduction

using PCA) were performed following Churchland et al., 2012. The initial dimensionality reduction

step restricted the data to the top 6 PCs.

jPCA is a method for finding projections that capture rotational structure in a data set. (The method

is described in detail in Churchland et al., 2012; here, we summarize its key features.) The method is

based on comparing the neural state at a given point in time with its derivative. The initial

dimensionality-reduction step (performed on the trial-averaged firing rates) reduces the data to the

matrix Xred, which has dimensions d × ct (where d is the number of PCs kept, c is the number of

conditions, and t is the number of time points). We computed _Xred, of size d × c (t−1), by taking the

difference in state between adjacent time points (the final time point of Xred was subsequently

removed to equalize the sizes of Xred and _Xred). We then fit the neural state transition matrices, M and

Mskew:

_Xred =MXred;

and

_Xred =MskewXred ;

where M is unconstrained (fit via linear regression), and Mskew is constrained to be a skew-symmetric

matrix (i.e., Mskew =−MskewT , which has purely imaginary eigenvalues), and thus, captures only

rotational dynamics. The first jPCA plane is then constructed from the eigenvectors of Mskew

associated with the largest eigenvalues. For a given jPCA plane, the basis vectors jPC1 and jPC2 are

selected such that the pre-movement activity (the initial state) is maximally spread along jPC1, and

that the net rotation in the plane is anticlockwise.

To measure the fraction of variance of the changes in neural state (i.e., the dimensionality-reduced

data) that could be explained by rotational activity (Figure 3, bottom panels), the data were modeled

as a linear dynamical system, where Mskew perfectly captured the dynamics between time t and t−1,
that is, only purely rotational dynamics were allowed. Fraction of state variance explained for real and

shuffled data was estimated using the top 6 PCs.

Shuffle control analyses
One potential concern is that the jPCA method might be powerful enough to find rotatory patterns

in state-space for any set of responses that contains complex, multiphasic patterns. The likelihood

of finding such spurious rotatory patterns, which are common across conditions, increases as the

number of conditions decreases. Thus, this is a larger concern in the current work (8 conditions per

participant) than previous work with macaques (27–108 conditions per monkey) (Churchland et al.,

2012).

To test for this possibility, we performed the three control analyses performed in Churchland

et al., 2012 (described in their Supplementary Figures 2 and 3). Each of the three ‘shuffle’ controls

preserves the diversity and complexity of responses, but perturbs the structure of the responses at

the population level. Specifically, the dynamical model assumes that neural activity during the

movement epoch follows in an orderly fashion from its pre-movement state. To test this assumption,

the three shuffle control analyses disrupt the relationship between the pre-movement activity and

the movement epoch for each channel. If these shuffled data sets still showed prominent rotatory

activity, it would indicate that rotations might be found by the jPCA method even when not truly

present.
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