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Abstract

The recommended method for measuring respiratory rate (RR) is counting breaths for 60 s using a timer. This method is not
efficient in a busy clinical setting. There is an urgent need for a robust, low-cost method that can help front-line health care
workers to measure RR quickly and accurately. Our aim was to develop a more efficient RR assessment method. RR was
estimated by measuring the median time interval between breaths obtained from tapping on the touch screen of a mobile
device. The estimation was continuously validated by measuring consistency (% deviation from the median) of each
interval. Data from 30 subjects estimating RR from 10 standard videos with a mobile phone application were collected. A
sensitivity analysis and an optimization experiment were performed to verify that a RR could be obtained in less than 60 s;
that the accuracy improves when more taps are included into the calculation; and that accuracy improves when
inconsistent taps are excluded. The sensitivity analysis showed that excluding inconsistent tapping and increasing the
number of tap intervals improved the RR estimation. Efficiency (time to complete measurement) was significantly improved
compared to traditional methods that require counting for 60 s. There was a trade-off between accuracy and efficiency. The
most balanced optimization result provided a mean efficiency of 9.9 s and a normalized root mean square error of 5.6%,
corresponding to 2.2 breaths/min at a respiratory rate of 40 breaths/min. The obtained 6-fold increase in mean efficiency
combined with a clinically acceptable error makes this approach a viable solution for further clinical testing. The sensitivity
analysis illustrating the trade-off between accuracy and efficiency will be a useful tool to define a target product profile for
any novel RR estimation device.
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Introduction

Respiratory rate (RR) plays a fundamental role in routine

clinical assessment for disease diagnosis, prognosis, and treatment

in children [1]. Accurate measurement of RR is of paramount

importance because an elevated RR is a marker of serious

respiratory illness [2] and is the main diagnostic criterion for

childhood pneumonia [1], the leading cause of death in children

aged 0 to 5 years worldwide [3]. However, many studies have

demonstrated clinically obtained measures to be inaccurate,

lacking both reliability and reproducibility in a variety of health

care settings [4–6].

The current recommended method for measuring RR is to

count the number of breaths in one minute. This method was

promoted by the World Health Organization (WHO) [7], and

since 1990 facilitated by the distribution of the Acute Respiratory

Infection (ARI) Timer in the developing world. The ARI Timer is

a simple device providing auditory feedback in the form of ticks at

1 s intervals for 60 s. The ARI Timer has shown many limitations

in the field, mostly related to usability aspects [8,9]. The

measurement duration of 60 s is perceived to be too time

consuming. Also, counting the number of breaths in a fixed

amount of time requires that measurements be restarted from the

beginning in case of a noticed artifact (e.g. missing a breath) or

distraction, further increasing total measurement time. Counting

the number of breaths over 60 s can be especially difficult in sick

children who may breathe at a rate that is upwards of 60–70

breaths/min. In practice, health care workers do not count RR for

a whole minute, but instead count for only a fraction of 60 s and

then scale up the number of breaths to 60 s. This decreases the

accuracy of RR measurement by amplifying the counting error

[10]. Thus, there is an urgent need for a robust, low-cost device

that can help front-line health care workers to measure RR quickly

and accurately. An effective way for improving efficiency and

accuracy of rate estimations is incremental and continuous analysis

of time intervals instead of counting events in a fixed time interval

[11]. However, there is a trade-off between accuracy and

efficiency which has to be addressed by design [10].
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The user interfaces and the ubiquitous availability with health

workers make mobile phones the ideal platforms for mobile health

projects. A growing number of initiatives are leveraging the wide

availability, affordability, portability, and usability of mobile

phones to tackle the health challenges of developing countries

[12]. The capabilities of mobile devices allow advanced rate

calculations, such as time interval analysis. When such algorithms

are packaged into user-friendly software applications, health

workers could install the software through popular channels onto

their existing devices without significant increase in cost for the

health workers or the supporting health systems.

We propose a method of estimating RR in less than 60 s using a

mobile phone application. RR is estimated by measuring the

median time interval between breaths, and then dividing 60 s by

this time interval. The time interval between breaths is measured

as the user taps on the touch sensitive screen of a mobile device in

time with the inhalation phase of breathing. The accurate

measurement of the breath intervals using an electronic system

allows for additional tests to validate the RR estimation. We use

the measure of consistency (% deviation from the median tap time)

to exclude aberrant breath intervals while the measurement

process is ongoing. We hypothesize that:

1. RR estimations using median tap interval times can provide a

RR in less than 60 s, therefore increasing efficiency compared

to the recommended 60 s counting.

2. Accuracy improves when more taps are included in the

calculation of the median RR.

3. Accuracy improves when inconsistent time intervals are

excluded.

In this manuscript we present the development of the algorithms

to calculate RR from tapping time intervals and demonstrate the

gain in efficiency through experimental tests using standardized

videos of children breathing at a wide range of RRs. A sensitivity

analysis and optimization experiment for the novel algorithm will

facilitate the definition of target product profiles and device

specifications for the development of RR measuring devices that

allow for shorter assessments to increase acceptance with health

care practitioners.

Methods

Estimating RR from time intervals
RR is calculated from the median time interval ~tt between

breaths from a finite set of consecutive time intervals

txz1 . . . txzz , where the number of intervals in a set = z.

RR ~
60 s

~tt

z+1 determines the minimum number of taps to complete a

measurement and consequently the duration of the measurement.

Measuring consistency of time intervals
The consistency C of a measurement is reported as the

maximum percentage of absolute deviation of each time interval

ti from the median time interval ~tt of the set:

Figure 1. Estimation of respiratory rate (RR) with a set size of 3 tap time intervals. The median time interval ~tt is calculated for the set and
the consistency C is derived. RR is reported and the measurement stopped if C is below a specified consistency threshold ThC , otherwise tapping
continues and a new set is created, until an acceptable C is obtained.
doi:10.1371/journal.pone.0099266.g001

Figure 2. Screenshot of tapping screen of the RRate application.
A button records taps and an indicator displays how many taps have
been performed (bottom).
doi:10.1371/journal.pone.0099266.g002
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C~ max
i~ xz1 xzz½ �

Dti{~ttD
~tt

:100

Reporting the estimated RR
A RR calculated from a set is reported if the consistency C is

equal or lower than a consistency threshold (ThC). If C exceeds

the consistency threshold (CwThC), the earliest time interval is

discarded from the set and a new time interval is recorded and

added to the set. This is repeated until a valid set is obtained

(Figure 1).

Mobile device application
A mobile phone application called RRate was developed for this

study. The application was built using a software framework that

allows cross-platform development for medical applications [13].

A non-study version of this application is available from public

software repositories for free [14,15].

The application allows the user to measure at any RR between

2 and 140 breaths/min and displays the number of taps completed

(Figure 2). When a set of tap intervals with a consistency smaller or

equal than (ThC) is obtained, a sound is played (chimes) and a

second screen is presented to the user with an animated baby,

breathing at the frequency of the calculated RR (Figure 3). The

user can compare the breathing movement of the patient with that

of the animated baby in order to confirm the accuracy of the

calculated RR. The animation is supported through vibro-tactile

feedback, reducing distractions caused by auditory feedback.

For conducting the present study, the RRate application was

modified to accommodate all requirements specific to each study

phase and then installed on an iPod Touch 3rd generation (Apple

Inc, Cupertino, CA, USA) with a screen resolution of 4806320

pixels.

Ethics statement
The protocol for this study (video recording and assessment of

accuracy) was approved by The University of British Columbia/

Childrens and Womens Health Centre of British Columbia

Research Ethics Board, Vancouver, Canada (#H13-01116).

Written informed consent was obtained from study subjects or in

the case of minors, from their parent or guardian, before

enrollment into the study.

Standard videos
De-identified video recordings were made of 23 anesthetized

children, aged 0–5 years, breathing for a period of 3–5 minutes, at

the British Columbia Children’s Hospital, Vancouver, Canada.

Only the exposed chest and abdomen were included in the field of

view of the video. No facial features or any other identifying

features were recorded.

Table 1. Standardized Videos.

Ventilation Age (months) RR (breaths/min)

Controlled v1 56

23 33

23 59*

36 47*

43 51*

Spontaneous 23 30

23 38

25 24

53 17

59 17

Ventilation mode, age and reference respiratory rate (RR) for the standard video recordings used in this study. The RRs labeled with an asterisk (*) are considered fast
breathing for the corresponding age[1].
doi:10.1371/journal.pone.0099266.t001

Figure 3. Screenshot of feedback screen of the RRate applica-
tion. An animated (chest, shoulder and mouth) baby presents the RR.
The timing of the animation can be reset with a tap. The consistency of
the tap intervals is displayed on the bottom of the screen as blue dots.
doi:10.1371/journal.pone.0099266.g003
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Five cases of controlled and 5 cases of spontaneous ventilation

were selected for use as standard videos. The RR ranged from 17

to 59 breaths/min (Table 1), and 3 cases included fast breathing

(w40 breaths/min) for the corresponding age [1]. The videos

were each cropped to 60 s, the standard observation time for RR

according to the WHO [7]. A still image of the first frame was

played for 10 s at the start of each video to allow observers time to

orient themselves to the position and anatomy of the child. Two

independent observers (HG and MC) confirmed the RR of the

selected videos by counting the number of breaths from the final

videos by slowing the playback speed to 50% of the recorded

speed. Each observer repeated the counting until the RR from

three consecutive observations were in agreement.

Data collection
Adult subjects were recruited among trainee, volunteer and staff

population from the British Columbia Children’s Hospital. Their

age, gender, education level, profession and mobile phone use

familiarity [16] were recorded. For each subject, all 10 standard

videos were played in a randomized order. The subjects measured

RRs from the video recordings using the study specific version of

the mobile phone RRate application. The study was conducted in

two phases. In Phase I the subjects used the tapping application for

an entire minute where the test for consistency was disabled (no

ThC) in the RRate application. These data were used to perform a

sensitivity analysis to understand the trade-off between accuracy

and efficiency while changing the algorithm parameters ThC and

z.

In Phase II the test for consistency was enabled to provide a

more realistic use scenario. The parameters were set to a

conservative threshold (z = 4, ThC = 6) derived from Phase I.

The conservative thresholds were chosen to obtain a large dataset

providing sufficient flexibility for conducting an optimization

experiment to determine an ideal parameter configuration. Data

obtained from Phase I and II are publicly available from the

researchers’ website (http://www.phoneoximeter.org/projects/

rrate/).

Table 2. Demographics.

Phase I (60 s, no Th ) Phase II (z = 4, Th = 6)

Category Subcategory n % n %

Age v31 y 15 68.18 0 0.00

31–40 y 5 22.73 1 12.50

41–50 y 1 4.55 3 37.50

51–60 y 1 4.55 4 50.00

Gender Female 13 59.09 8 100.00

Male 9 40.91 0 0.00

Highest Education High School 4 18.18 0 0.00

Undergraduate 10 45.45 4 50.00

Postgraduate 8 36.36 4 50.00

Profession Researcher 9 40.91 0 0.00

Medical Student 7 31.82 0 0.00

Engineer 6 27.27 0 0.00

Registered Nurse 0 0 8 100.00

Type of Mobile User [16] Voice/Text Fanatic 10 45.45 4 50.00

Mobile Elite 5 22.73 1 12.50

Minimalist 5 22.73 3 37.50

Display Maven 2 9.09 0 0.00

Demographics and Mobile Phone Use Familiarity for subjects in Phase I (tapping for 60 s without applying a consistency test, no ThC) and Phase II (tapping until 4 tap
intervals (z = 4) comply with ThC = 6).
doi:10.1371/journal.pone.0099266.t002

Figure 4. Improvement of RR estimation accuracy with larger
set sizes z (continuous curve). The normalized root mean square
error (NRMSE) of counting taps in 60 s is depicted as a dashed line; the
NRMSE of the RR obtained from the median tap times of all taps in 60 s
is depicted as a dotted line.
doi:10.1371/journal.pone.0099266.g004
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Sensitivity analysis
We performed a sensitivity analysis on Phase I data where 60 s

of tapping was available to study the effects of ThC and the

number of tap intervals z in a set, on the performance of the RR

estimation. For performance, we were interested in accuracy

(‘‘How accurate is the RR estimation?’’) and efficiency (‘‘How fast

can the result be obtained?’’). The sensitivity analysis establishes

the relationship between accuracy and efficiency. The sensitivity

analysis was computed by varying z (the numbers of time intervals

in a set) from 2 to 15 time intervals and varying ThC (the

consistency thresholds) from 2% to 30%. This sensitivity analysis

was then used to establish the settings of the application for Phase

II.

Accuracy. The estimated RR was compared to the reference

RR for accuracy. We used normalized root mean square error

(NRMSE) as a measure for accuracy, such as

NRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1
(RRi{RRref )2

r

1

n

Xn

i~1
RRref

where n is the number of observations and RRref is the reference

RR obtained by expert observation. The NRMSE has the

advantage of emphasizing the magnitude of the variance when

the estimator is unbiased, penalizing large errors. This is of clinical

importance where small errors are less relevant.

Efficiency. The time taken for completing the tapping

measurement depends on the RR to be measured, the number

of tap intervals z required in a set, and the consistency threshold

ThC. A RR is only reported when the user has made consistent

taps in all the time intervals of the latest set. Efficiency (E)

measures the time from the first tap until the RR is reported such

as

E~
Xn

x~1

tx

In cases where a valid set was not completed for a given

combination of parameters within 60 s, E was set to 60 s, no RR

was reported and the completion rate (CR) was reduced, thus

penalizing the parameter choice. CR was calculated such as

CR~100(1{
nE§60

n
)

where nE§60 is the number of observations that did not complete

within 60 s.
Relationship Modeling. We built a linear regression model

to determine the relationship between NRMSE, E and the

number of consecutive time intervals z and the consistency

threshold ThC. We also conducted a model diagnostic based on

residual plots to verify that the linear regression assumptions (i.e.

random errors are normally distributed with mean = 0 and

constant variance) were fulfilled. Details of this modeling can be

found in the Materials S1.

Optimization
There is a trade-off between accuracy and efficiency. While a

small consistency threshold ThC can lead to high accuracy, it may

be too restrictive and exclude natural breathing variations. A

restrictive ThC increases the number of required taps to achieve a

valid set or prevents the achievement of such a set in a reasonable

time. Similarly, larger sets increase the accuracy, but also increase

the minimum number of taps to complete the set. The optimal

combination of z and ThC:

1. gives the most accurate RR measurement (lowest NRMSE);

2. in the least amount of time (in terms of median and 95th

percentile time taken); and

3. with the highest CR (where a RR is reported in 60 s or less).

For this, we used a cost function analysis, such as

COST~Ep95z~EEzNRMSE:w1

where Ep95 is the 95th percentile of the Efficiency, E the median

Efficiency and w1 a weighting factor to balance out efficiency and

accuracy. We considered the upper acceptable limit for Ep95 and

E to be 15 s and 4%. Therefore the setting for

w1~(15z 15) = 4 ~ 7:5 should provide an optimal balance

with equal weighted error and time. The CR was taken into

Figure 5. Plot of normalized root mean square error (NRMSE) against consistency threshold for different number of time intervals
in a set. NRMSE decreased (accuracy improved) with tighter consistency thresholds and with increasing number of intervals in a set. At lower ThC

and higher z there were fewer successfully completed cases (Figure 7) that contributed to the results.
doi:10.1371/journal.pone.0099266.g005
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consideration by the fact that a failed measurement is penalized

with E = 60.

The optimization experiment was performed using a 15-fold

cross-validation on the combined data set from Phase I and II.

Two observations for each video were randomly assigned to one of

15 data bins. A single data bin was then selected as a test set and

the remaining bins are used as a training set. This was repeated

until all data bins, and consequently each observation, were used

once as a test set. The parameters with the smallest costs were

selected in each repetition. The optimal parameters from each

repetition were then ranked and the most frequent occurrence was

reported and selected to calculate the performance of the test sets.

The performance of the RR from the median tap intervals of the

selected tap interval number without consistency test (z = 4, no

ThC) was calculated on the test sets and compared against the

results from the optimization using a pairwise t-test at a = 0.05

level.

Results

Subject demographics and recordings
Thirty-two adult subjects were recruited from the British

Columbia Children’s Hospital’s trainee, volunteer and staff

population. Twenty-two subjects measured RR using the mobile

app for 60 s (Phase I). Ten subjects from the nursing staff

measured RR using the mobile app until a consistent set was

obtained (Phase II). Two subjects from Phase II were excluded for

not completing all videos. Subject demographics and mobile

phone use familiarity are summarized in Table 2. A total of 220

observations were obtained for Phase I and 80 for Phase II.

Sensitivity analysis
Influence of the number of time intervals on

accuracy. There was a clear reduction of NRMSE with

increased number of intervals (z) used to calculate the median

respiratory interval, without using a ThC (Figure 4) and at different

ThC (Figure 5). Without a ThC, the accuracy improved rapidly

initially with increasing z, but trended towards NRMSE = 3.29%

after z = 12, which was the accuracy that was obtained when using

all available tap times in the 60 s experiment.

The linear regression model for NRMSE indicated that 97% of

the variability in NRMSE can be accounted for by z and ThC.

Therefore, we confirmed that the accuracy improves when the

number of consecutive time intervals increases, provided that

number did not exceed 12. We also concluded that for a fixed

ThC, when z was no greater than 12, NRMSE significantly

decreased, if z increased from x to x+1. Figures and statistical

Figure 6. Plot of mean efficiency �EE for measurement against consistency threshold ThC for the different number of time intervals in
a set (z). �EE became greater with tighter ThC and with increasing z.
doi:10.1371/journal.pone.0099266.g006

Figure 7. Completion rate CR against consistency threshold ThC for the different number of time intervals in a set (z).
doi:10.1371/journal.pone.0099266.g007

Respiratory Rate Measurements in Children Using Mobile Devices

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e99266



analysis for the models can be found in the Materials S2 and

Materials S3.

Influence of consistency on accuracy. Accuracy improved

(smaller NRMSE) when ThC was set tighter (Figure 5). From the

linear regression model we confirmed that the accuracy improved

when time intervals were more consistent since for a fixed z,

NRMSE significantly decreased by 2.63–0.5y if ThC decreased

from (y+1)2 to y2 for y = 2 30½ �.
Influence of consistency and the number of time intervals

on efficiency. The mean time taken for measurement increased

when the number of time intervals in a set increased, and when

ThC was set tighter (Figure 6). While accuracy improved with

tighter parameters, time to completion increased until no

estimation could be obtained within 60 s (Figure 7). The linear

regression model confirmed that the median efficiency ~EE
significantly decreased as z increased for a fixed ThC (p-

valuev0.001), and also significantly increased as ThC increased

for a fixed z (p-valuev0.001). This also held true for the 95th

percentile of the time taken to measure a RR. Thus we confirmed

that the time taken to measure a RR depended on the number of

time intervals and the consistency threshold.

Optimization
Improving the accuracy (smaller NRMSE) was at the cost of

increasing the time taken for measurement (Figure 8). Figure 8 also

shows that z = 4 displayed a similar trend to set sizes zw4, as

opposed to z = 2 and z = 3. Set size z = 4 was consequently chosen

for Phase II. For this set size, ThC = 6 was the most conservative

threshold that would still allow a mean efficiency below 20 s

(Figure 6) and a CR of w95% (Figure 7).

The cost function analysis revealed that the parameter

combination z = 4, ThC = 13 ranked highest with lowest cost,

Figure 8. Plot of normalized root mean square error (NRMSE) against mean efficiency �EE for different consistency thresholds ThC

and different number of time intervals in a set (z). Increasing the accuracy (smaller NRMSE) is at the cost of increasing �EE.
doi:10.1371/journal.pone.0099266.g008

Figure 9. Distribution of normalized root mean square error
(NRMSE) of the optimization results for experiments with
consistency threshold (ThC = 13) and without. Adding a ThC

improves the NRMSE significantly. The horizontal lines of each box are
the lower quartile, median, and upper quartile values (from bottom to
top). The whiskers represent the most extreme values within 1.5 times
the interquartile range from the quartile. The outlier (circle) is a value
beyond the interquartile range.
doi:10.1371/journal.pone.0099266.g009

Figure 10. Bland-Altman plot of the optimal parameter
configuration (z = 4, ThC = 13) for the RRate application, deter-
mined by data from Phase I and II (n = 300). The mean difference
(bias) is 20.13 breaths/min and the standard deviation (SD) is 1.98
breaths/min. The number of observations is displayed as marker
intensity. The dashed lines represent the 95th percentile range. The
vertical lines correspond to the limits for fast breathing by age [1].
doi:10.1371/journal.pone.0099266.g010
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being selected unanimously at each cross-validation repetition. For

these 15 repetitions, the NRMSE was 5.6%61.1 (Table 3). As

shown previously with the modeling, this was significantly better

(p = 0.018) than when using z = 4, no ThC (Figure 9). Bias between

RR obtained from tapping and reference observation was 20.13

breaths/min (Figure 10). Only higher RRs (w 40 breaths/min)

lead to observations with errors outside the 95th percentile (62 SD)

error range.

Discussion

We developed a mobile phone application that calculates the

RR by measuring the time intervals between breaths by tapping

the screen of a mobile device. Efficiency E was significantly

improved compared to conventional methods that require

counting for 60 s. The introduction of a consistency threshold

ThC eliminated inconsistent user input and reduced the NRMSE

significantly.

The mobile phone application RRate required the user to tap on

a touch sensitive screen in time with inhalation, and the tap

interval times were recorded into a set. The median of a set of tap

intervals was calculated and each interval was checked for

consistency. If all intervals were within a consistency range, the

RR was reported as 60 s divided by the median. With our

experiments, we have demonstrated that the median efficiency ~EE
improved from 60 s to a mean of 8.161.2 s and a mean 95th

percentile of 17.662.7 s. This was a significant reduction of time

required for achieving a reasonable estimation of RR. The mean

NRMSE of 5.6% corresponded to an error of 2.2 breaths/min at

the critical RR of 40 breaths/min which is the diagnostic threshold

for fast breathing in children aged 1 to 5 years [1].

Accuracy increased with the number of breaths included in a set

of taps to calculate the median. When ignoring the ThC the

reduction in error with more tap intervals was evident. This effect

was most pronounced when increasing small tap intervals

numbers, such as from z = 2 to z = 3. We also confirmed this

finding when ThC was enabled using the regressive modeling.

The sensitivity analysis showed that excluding inconsistent

tapping improved the estimation for a large range of tapping

interval numbers. The measurement of consistency (maximum

deviation of the median) allowed for instant rejection of aberrant

taps. It also gave a measure of confidence to the performed

measurement. The consistency between the taps performed

depended on the natural variation of breathing and the accuracy

of the taps performed by the user. An excessively restrictive

consistency threshold would exclude natural variation of breaths

and impact the usability of the method, forcing the user to tap for

longer than 60 s. On the other hand, an overly relaxed consistency

threshold would allow for user mistakes and negatively impact

accuracy. Similarly, including a large number of breaths in a set

would be detrimental to efficiency by increasing the minimum

number of times a user had to tap before obtaining a RR, while

using very few breaths to calculate the median would decrease

accuracy. In previous work we have shown that accuracy of RR

estimations obtained simultaneously from three independent

sources can be improved when testing for agreement and

excluding observations with large deviations from the mean RR

[17]. The algorithm presented in the present manuscript

successfully applied similar principles to consecutive observations

from a single source.

The standard videos used for the sensitivity analysis contained a

wide spectrum of RRs, including fast breathing. However, these

videos do not represent all possible breathing patterns. For

example, in neonates the breathing variation is increased through

periodic breathing, a normal breathing pattern characterized by

alternating between regular breathing and short periods of apnea

[18]. In such groups of patients, the estimated RR may not match

the actual RR. A ThC not customized to this patient group may

also be too restrictive and increase the required assessment time.

Also, only a relative small number of health workers (32) have

tested the RRate application in a laboratory setting for this initial

evaluation. However, each subject did perform 10 independent

patient observations. Further tests with a higher number of health

workers and patients with a broader range of breathing patterns

are required to generalize our findings to a broader group of

patients. Before the release of the application, a larger study will be

required to test robustness of the proposed method in the target

setting.

The improvement in estimation of a rate using the continuous

analysis of time intervals instead of counting of events in a fixed

time interval is not entirely new and has been shown to be effective

in improving efficiency and accuracy of rate estimations [10,11].

In [10] it was highlighted that the trade-off between accuracy and

efficiency is a design choice. We showed that such a trade-off

between accuracy and efficiency is present for RR estimation and

provided a cost model for optimizing this trade-off. We have used

a generic cost function that offers a balance between efficiency and

accuracy. Depending on specifications of an application, e.g. type

of diagnosis or measurement setting, the cost function can be

modified to obtain the optimal parameters for the desired task.

Understanding the relationship between accuracy and efficiency is

crucial when designing new RR counters. The proposed

methodology is an essential step for facilitating device specification

developments and a useful tool to define a target product profile

for RR estimation devices for resource limited settings. Usability

studies that will evaluate user acceptance of measurement time

and other design aspects will have to accompany the development

of device specification for these settings.

Table 3. Cross-Validation Results.

15 repetitions z = 4, ThC = 13 z = 4, no ThC

NRMSE (%) 5.661.1 7.461.4

(s) 8.161.2 6.960.1

EE (s) 9.960.6 7.960.2

Ep95 (s) 17.662.7 14.960.2

CR (%) 100 100

Comparison of normalized root mean square error (NRMSE), median efficiency (EE), mean efficiency (EE), 95th percentile efficiency (Ep95) and completion rate (CR) for the
optimal parameters z = 4, ThC = 13 and z = 4 without ThC (mean 6 standard deviation).
doi:10.1371/journal.pone.0099266.t003
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Mobile technology is ubiquitous, even in developing countries

and rural parts of the world [12]. A growing number of initiatives

are using mobile phones to tackle the health challenges of

developing countries [12]. One of these challenges is the accurate

measurement of RR in children. We proposed a RR estimation

algorithm based on measuring the time intervals between breaths

that allows a 6-fold increase in mean efficiency compared to the

current recommended method of counting breaths for 60 s with

the ARI Timer. This algorithm was implemented into the RRate

mobile application, which is freely available for download [14,15].

With the reduction in cost and widespread use of smart phones

and mobile devices, such mobile applications may be a promising

replacement for the ARI Timer. Vibro-tactile and visual feedback

allows the user to focus on the patient and to obtain feedback for

quality assurance at completion of measurement. We are currently

undertaking a direct comparison between the RRate and the ARI

Timer for accuracy, efficiency and usability. Further validation

including clinical testing in the target environment with commu-

nity health workers assessing sick children will be necessary to

demonstrate positive impact on diagnosis of pneumonia and other

respiratory diseases with the RRate application.
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