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Abstract
Purpose Polo-like kinase 4 (PLK4) inhibitors, such as CFI-400945 and centrinone, are emerging as promising antineoplastic 
agents. However, their effectiveness against Ewing’s sarcoma, a highly aggressive childhood cancer, remains to be established.
Methods CFI-400945 and centrinone were tested in three Ewing’s sarcoma cell lines with different TP53 status. Effects 
were assessed by flow-cytometric analyses of cell death, dissipation of the mitochondrial transmembrane potential and cell 
cycle distribution, by cell viability assay as well as by caspase 3/7 activity measurement, by immunoblotting and by immu-
nofluorescence microscopy.
Results CFI-400945 and centrinone elicited cell death in p53 wild-type and mutant Ewing’s sarcoma cells. Both agents 
induced mitochondrial membrane depolarisation, caspase 3/7 activation, PARP1 cleavage and DNA fragmentation, indicat-
ing an apoptotic form of cell death. In addition, the PLK4 inhibitors induced a G2/M cell cycle arrest, particularly when 
cell killing was attenuated by the pan-caspase inhibitor z-VAD-fmk. Moreover, CFI-400945 treatment produced polyploidy.
Conclusion Our findings show that PLK4 inhibitors were effective against Ewing’s sarcoma cells in vitro and thus provide 
a rationale for their evaluation in vivo.
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Introduction

Ewing’s sarcoma (ES) is the second most common bone can-
cer in children and adolescents (Balamuth and Womer 2010; 
Grünewald et al. 2018). The pathognomonic feature of ES is 
the gene fusion of a member of the FET gene family (con-
sisting of FUS, EWSR1 and TAF15), by far most frequently 

EWSR1 (EWS RNA binding protein 1), with a member of the 
ETS gene family of transcription factors, most commonly 
FLI1. The resulting fusion protein is causative for neoplastic 
transformation and tumour progression; other mutations at 
diagnosis are rare (Grünewald et al. 2018). ES is one of the 
most aggressive childhood cancers: patients with localised 
disease have a survival probability of about 75%, while of 
those with detectable metastasis at initial presentation less 
than 40% survive (Balamuth and Womer 2010; Grünewald 
et al. 2018). The standard of care is a treatment combination 
consisting of cytotoxic chemotherapy, surgery and radiation 
(Balamuth and Womer 2010). Of note, the prognosis for 
patients with ES has reached a plateau over the last two 
decades, as no further therapy improvement by optimising 
treatment protocols could be achieved (Casey et al. 2019). 
It is thus imperative to identify druggable targets to improve 
the outcome for ES patients.

This has spurred us to conduct a systematic exploration 
of potentially clinically actionable targets. So far, special 
emphasis was placed on the family of histone deacetylases 
(HDACs), i.e., on the inhibition of class I and II HDACs 
(Sonnemann et al. 2007) as well as on the modulation of 
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the sirtuin class of HDACs (Marx et al. 2018; Sonnemann 
et al. 2016). Other efforts aimed at drugging the p53 system 
(Sonnemann et al. 2011, 2015). We have recently extended 
this exploration to polo-like kinases (PLKs), a family of 
five serine/threonine protein kinases, whose dysfunction 
is associated with cancer (Archambault et al. 2015). PLKs 
play a key role in cell cycle control and progression (Zitouni 
et al. 2014). Their structure contains a C-terminal polo-box 
(PB) domain consisting of two or three PBs which mediate 
substrate interaction. In addition, PLKs contain an amino-
terminal kinase domain responsible for substrate phospho-
rylation (Zitouni et al. 2014).

To date, most attention on PLKs as anticancer targets 
has focused on PLK1 (Lee et al. 2015), yet presently also 
PLK4 is emerging as an opportunity for inferring antineo-
plastic strategies (Maniswami et al. 2018; Zhao and Wang 
2019). PLK4 is essential for centriole biogenesis and plays 
an important role in the mediation of cytokinesis (Habed-
anck et al. 2005; Press et al. 2019). It differs in its structure 
from the other PLK family members in that it contains a 
cryptic PB domain with two PBs and an additional third 
single PB (Zitouni et al. 2014). The cryptic PB enables the 
homodimerization of PLK4, in turn leading to autophos-
phorylation and activation of its catalytic function. Active 
PLK4 is responsible for the initiation and control of centri-
ole duplication (Zitouni et al. 2014). PLK4 is also involved 
in the regulation of cell motility and migration (Zhao and 
Wang 2019) and its overexpression can promote metastasis 
(Kazazian et al. 2017). PLK4 has been found to be aber-
rantly expressed in patient-derived tumour samples, further 
underscoring its potential as a therapeutic target (Zhao and 
Wang 2019).

A few PLK4-targeting small molecule compounds have 
been developed (Maniswami et al. 2018; Zhao and Wang 
2019). A systematic drug discovery programme using breast 
cancer cells led to the identification of the PLK4 inhibitor 
(PLK4i) CFI-400945 (Mason et al. 2014; Sampson et al. 
2015). CFI-400945 is an ATP-competitive inhibitor with a 
Ki of 0.26 nM and an  IC50 of 2.8 nM. It is selective for PLK4 
over PLK1-3, but inhibits aurora B kinase with an  IC50 of 
98 nM (Mason et al. 2014). CFI-400945 is orally active, 
and it is currently undergoing clinical trials in patients with 
diverse cancers (Zhao and Wang 2019). Other PLK4i are 
the structurally and functionally closely related centrinone 
and centrinone-B, which reversibly inhibit PLK4 with a Ki 
of 0.16 nM and 0.6 nM, respectively, and show > 1000-fold 
selectivity for PLK4 over aurora kinases (Wong et al. 2015). 
Centrinone-B was effective against melanoma cells in a pre-
clinical study (Denu et al. 2018).

All told, the targeting of PLK4 appears to be a promis-
ing new anticancer strategy. As to childhood cancers, PLK4 
has been reported to be overexpressed in patient-derived 
rhabdoid tumour and neuroblastoma samples (Sredni et al. 

2017b; Tian et al. 2018; Bailey et al. 2018). Moreover, 
PLK4i have been shown to exert anticancer activities against 
cultured rhabdoid tumour, medulloblastoma and neuroblas-
toma cells (Sredni et al. 2017a, b; Suri et al. 2019; Tian et al. 
2018), but they have not yet been tested in ES cells. There-
fore, we examined the PLK4i CFI-400945 and centrinone 
in ES cell lines in vitro, and we found them to be effective 
in inducing cell death and cell cycle arrest.

Material and methods

Cell culture

WE-68 cells were a gift from Dr F. van Valen (Münster, 
Germany). SK-ES-1 and HeLa cells were purchased from 
the DSMZ (Braunschweig, Germany). A673 cells were 
purchased from Sigma Aldrich (Deisenhofen, Germany). 
WE-68, SK-ES-1 and HeLa cells were cultured in RPMI 
1640 medium and A673 cells were cultured in DMEM 
(Lonza, Cologne, Germany). Media were supplemented with 
10% foetal calf serum (Capricorn Scientific, Ebsdorfergr-
und, Germany), 2 mM l-glutamine, 100 units/ml penicillin 
G sodium and 100 µg/ml streptomycin sulphate (Lonza). 
All tissue culture vessels used for the cultivation of ES cells 
were coated with rat tail collagen (Merck, Darmstadt, Ger-
many) at a concentration of 5 µg/cm2. Cells were maintained 
at a temperature of 37 °C in a humidified 5%  CO2 incubator 
and routinely passaged at a confluence of ~ 90%. Cells were 
tested to be negative for mycoplasma with the qPCR Myco-
plasma Test Kit from Applichem (Darmstadt, Germany).

Treatment of cells

For flow-cytometric, caspase 3/7 activity and PCR analy-
ses, WE-68 and SK-ES-1 cells were seeded in 12-well tis-
sue culture plates and A673 cells were seeded in 6-well 
tissue culture plates. For flow-cytometric and PCR analy-
ses, WE-68 and SK-ES-1 cells were seeded at a density of 
150,000 cells/well, and A673 cells were seeded at a density 
of 100,000 cells/well. For measurement of caspase 3/7 activ-
ity, all cells were seeded at a density of 200,000 cells/well. 
For cell viability assays, cells were seeded in 96-well tissue 
culture plates; WE-68 and SK-ES-1 cells were seeded at 
a density of 3000 (72 h incubation) or 4000 (48 h incuba-
tion) cells/well, A673 cells were seeded at a density of 2000 
(72 h incubation) or 3000 (48 h incubation) cells/well. Cells 
were treated with centrinone (0.5–3 µM; MedChem Express, 
Monmouth Junction, NJ, USA) or CFI-400945 (10–50 nM; 
MedChem Express) for 12–72 h, depending on the read-
out. In the respective experiments, cells were pre-exposed 
to 20 µM z-VAD-fmk (Enzo Life Sciences, Lörrach, Ger-
many) 1 h before treatment with PLK4i. In the combination 
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experiments, cells were coexposed to PLK4i and etoposide 
(provided by the Jena University Hospital Pharmacy) for 
48 h and 72 h.

Real‑time RT‑PCR

Total RNA was isolated using the Peqgold Total RNA Kit 
including DNase digestion (Peqlab, Erlangen, Germany). 
RNA was transcribed into cDNA using Omniscript (Qia-
gen, Hilden, Germany). Real-time PCR for PLK4 was per-
formed using the Thermo Fisher Scientific (Dreieich, Ger-
many) Applied Biosystems 7900HT Real-Time PCR system. 
PLK4 expression levels were normalised to B2M expression 
levels. Reactions were done in duplicate using Applied Bio-
systems Gene Expression Assays (PLK4: Hs00179514_m1, 
B2M: Hs00187842_m1) and Universal PCR Master Mix. All 
procedures were performed according to the manufacturers’ 
protocols. The relative gene expressions were calculated by 
the  2(−ΔΔCt) method.

Flow‑cytometric analysis of cell death

Cell death was measured by determining the integrity of 
the cell membrane by flow-cytometric analysis of propidium 
iodide (PI; Sigma Aldrich) uptake. Cells were incubated in 
2 µg/ml PI in PBS for 5 min at 4 °C in the dark. 10,000 cells 
per sample were analysed on a BD (Heidelberg, Germany) 
FACSCanto II using BD FACSDiva software; data were 
gated to exclude debris.

Cell viability assay

The assays were done in quadruplicates in 96-well plates. 
At the end of the treatment period, 1/10 volume of the resa-
zurin solution (Promocell, Heidelberg, Germany) was added 
and cells were incubated at 37 °C for additional 3 h. The 
fluorescent signal of reduced resazurin was measured on a 
Tecan (Crailsheim, Germany) Infinite M200 Pro plate reader 
using an excitation/emission wave length of 560/590 nM. 
Results are expressed as the ratio of fluorescence of treated 
to untreated cells.

Flow‑cytometric analysis of mitochondrial 
transmembrane potential (Δψm) decay

The loss of Δψm was measured using 3,3′-dihexyloxac-
arbocyanine iodide  [DiOC6(3)] (Thermo Fisher Scien-
tific). Before harvesting, cells were incubated with 50 nM 
 DiOC6(3) for 45 min at 37 °C. 10,000 cells per sample were 
analysed on a BD FACSCanto II; data were gated to exclude 
debris.

Flow‑cytometric analysis of DNA content

DNA content was measured according to Riccardi and Nico-
letti (2006). After harvesting, cells were washed with PBS 
and fixed in 70% ice-cold ethanol over night at − 20 °C. 
After washing with PBS, cells were incubated in 500 µl 
DNA extraction buffer consisting of 200 mM  Na2HPO4 and 
0.1% Triton X-100 (pH 7.8) for 5 min at room temperature. 
Cells were washed in PBS, resuspended in PBS containing 
20 µg/ml PI and 200 µg/ml RNase A (Roche, Mannheim, 
Germany) and incubated for 30 min at room temperature 
in the dark. 20,000 cells per sample were analysed on a BD 
FACSCanto II. The different cell cycle phases were quanti-
fied using FACSDiva software; data were gated to exclude 
debris.

Caspase 3/7 activity

Caspase 3/7 activity was assessed by measuring the fluoro-
genic substrate Ac-DEVD-AMC (Bachem, Weil am Rhein, 
Germany). After harvesting, cells were lysed in 10 mM 
Tris–HCl, 10 mM  NaH2PO4/NaHPO4 (pH 7.5), 130 mM 
NaCl, 1% Triton X-100 and 10 mM  Na4P2O7 for 15 min at 
4 °C in the dark. The samples were mixed with activation 
buffer consisting of 20 mM Hepes (pH 7.5), 10% glycerol, 
2 mM DTT and 25 µg/ml Ac-DEVD-AMC and incubated for 
2 h at 37 °C. The release of AMC was measured with a BMG 
Labtech (Offenburg, Germany) FLUOstar Omega or a Tecan 
Infinite M200 Pro using excitation/emission wavelengths of 
355/460 nM. The relative caspase 3/7 activities were calcu-
lated as a ratio of the emission of treated to untreated cells.

Immunoblotting

3 × 106 (WE-68, SK-ES-1) or 1.2 × 106 cells (A673) were 
seeded in petri dishes and harvested after a 2-h or 24-h treat-
ment, washed with PBS and lysed in RIPA buffer [50 mM 
Tris/HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Tri-
ton X-100, 1% sodium deoxycholate and 0.1% SDS] sup-
plemented with protease and phosphatase inhibitor cock-
tails (Roche) for 30 min at 4 °C, followed by sonication 
for 3 min and centrifugation at 4 °C for 15 min to separate 
lysate from debris. After SDS–polyacrylamide gel electro-
phoresis, proteins were transferred to PVDF membrane (Carl 
Roth, Karlsruhe, Germany) using NuPAGE Transfer Buffer 
(Thermo Fisher Scientific). Membranes were blocked for 
1 h with 5% dry milk in PBS at room temperature, followed 
by incubation with antibodies over night at 4 °C. Primary 
antibodies used were rabbit anti-PARP1 (Cell Signaling, 
Danvers, MA, USA, #9542; 1:1000), mouse anti-vinculin 
(Bio-Rad, Feldkirchen, Germany, #MCA465GA; 1:10.000), 
mouse anti-p53 (Santa Cruz Biotechnology, Heidelberg, 
Germany, #sc-126; 1:2000) and mouse anti-phospho-histone 
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H2A.X Ser139 (Merck, #05–636; 1:1000). HRP-conjugated 
goat anti-rabbit IgG (Thermo Fisher Scientific, #31,460; 
1:2000) or HRP-conjugated goat anti-mouse IgG (Thermo 
Fisher Scientific, #31,430; 1:2000) was used as secondary 
antibodies followed by detection of specific signals using 
Supersignal West Pico Plus Chemiluminescent Substrate 
(Thermo Fisher Scientific). Imaging was carried out using 
a Fusion Solo S imager (Vilber Lourmat, Eberhardzell, 
Germany).

Immunofluorescence microscopy

WE-68 cells were seeded on collagen-coated cover slips. 
24 h after treatment, cells were fixed in 1 ml methanol for 
5 min at − 20 °C and washed three times in PBS. Prior to 
staining, each sample was blocked in 1% BSA in PBS for 
20 min at room temperature. Cells were incubated with a 
rat anti-α-tubulin antibody (Bio-Rad, #MCA77G; 1:500) 
for 1 h at room temperature. Cover slips were washed three 
times with PBS, followed by incubation with a secondary 
Cy3-conjugated goat anti-rat antibody (Jackson Immu-
noResearch, Ely, UK, #112–165-167; 1:1000) for 45 min 
at room temperature in the dark. Finally, cover slips were 
washed three times with PBS and stained with 5 µg/ml 
DAPI (Sigma) for 20 min at room temperature, followed 
by repeated washing with PBS and sealing with Fluores-
cence Mounting Medium (Agilent, Waldbronn, Germany). 
Mounted cells were imaged using a Zeiss (Jena, Germany) 
Axiovert 200 microscope.

Statistical analysis

Statistical significance of differences between experimental 
groups was evaluated by the paired two-tailed Student’s t 
test.

Results

Antineoplastic effects of CFI‑400945 and centrinone 
in ES cells

Of the compounds that have been developed to inhibit 
PLK4 (Maniswami et al. 2018; Zhao and Wang 2019), we 
selected CFI-400945 and centrinone for investigation in 
cultured ES cells. CFI-400945 is the only PLK4i that has 
been tested in a clinical trial (Veitch et al. 2019), and cen-
trinone has been found to be the most selective PLK4i in 
a study exploring several agents for their PLK4-inhibitory 
action (Suri et al. 2019). Since a study on melanoma cells 
observed that centrinone-B was less effective in cells with 
mutant p53 (Denu et al. 2018), we used three ES cell lines 
with different TP53 status, i.e., wild-type p53 WE-68 cells, 

mutant p53 (C176F) SK-ES-1 cells (Sonnemann et  al. 
2015) and p53 null A673 cells (Ottaviano et al. 2010), to 
address a potential impact of p53 on the response of ES 
cells to PLK4 inhibition. Initially, we determined the rela-
tive gene expression levels of PLK4 in the three cell lines 
by real-time RT-PCR. These measurements revealed that 
PLK4 expression levels were considerably higher in ES 
cells than in HeLa cells (Fig. S1), thus underscoring the 
potential of PLK4 as drug target in ES. To examine the 
antineoplastic effects of CFI-400945 and centrinone in ES 
cells, we first measured cell death by flow-cytometric anal-
ysis of PI uptake. Figure 1a shows that the PLK4i induced 
cell death in a concentration-dependent manner in the three 
cell lines. CFI-400945 was active at nanomolar concentra-
tions, while centrinone was effective in the low micromolar 
range, in accordance with their different Ki values (Mason 
et al. 2014; Wong et al. 2015). WE-68 and SK-ES-1 cells 
reacted similarly, albeit slightly more sensitively than A673 
cells to the treatment, suggesting that PLK4i-mediated cell 
killing in ES cells did not hinge on functional p53. We 
also assessed the effects of CFI-400945 and centrinone 
by resazurin-based cell viability assay. As presented in 
Fig. 1b, the results of these assays reflect those of the PI 
uptake analyses: CFI-400945 and centrinone affected cell 
viability in a concentration- and time-dependent fashion 
and were somewhat more effective in WE-68 and SK-ES-1 
cells than in A673 cells.

It has been reported that polyploidy can render cancer 
cells more susceptible to DNA-damaging agents (Hau et al. 
2006). Consistently, CFI-400945 has been shown to enhance 
the cytotoxic activity of the genotoxic drugs etoposide and 
doxorubicin in rhabdoid tumour and medulloblastoma cells 
(Sredni et al. 2017a). We thus tested whether CFI-400945 
and centrinone could increase the susceptibility of ES cells 
to etoposide, a standard drug for the treatment of ES (Ander-
ton et al. 2020), by cell viability assay. As shown in Fig. S2, 
the effect of combined treatment was not more than additve 
in ES cells.

To evaluate if cell death caused by CFI-400945 and 
centrinone involved apoptosis, we examined Δψm loss, 
caspase 3/7 activity, PARP1 cleavage and the effect of 
the pan-caspase inhibitor z-VAD-fmk on PLK4i-elic-
ited cell death. Consistent with the cell death results, 
the PLK4i triggered a concentration-dependent decay 
of Δψm, with a weaker response again being observed 
in A673 cells (Fig. 2a). Caspase 3/7 activity measure-
ments revealed that both agents activated caspase 3/7 in 
the three cell lines (Fig. 2b). As an additional marker for 
apoptotic cell death, we determined PARP1 processing 
in WE-68 cells by immunoblotting. Figure  2c depicts 
that CFI-400945 and centrinone treatment provoked the 
appearance of the 89-kDa PARP1 cleavage product in a 
concentration-dependent manner. To test whether caspase 
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3/7 activation was not a mere side action but essential for 
PLK4i-induced cell death, we applied z-VAD-fmk in the 
PI uptake analyses. Figure 2d shows that the pan-caspase 
inhibitor decreased cell killing caused by CFI-400945 and 
centrinone.

Cell cycle effects of CFI‑400945 and centrinone in ES 
cells

As PLK4 is substantially involved in cell cycle processes, we 
examined effects of the PLK4i on the cell cycle of ES cells 
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Fig. 1  Antineoplastic effects of PLK4i in ES cells. Cells were 
exposed to CFI-400945 or centrinone for 48  h (PI uptake analysis, 
cell viability assay) and 72 h (cell viability assay). a Cell death was 

determined by flow-cytometric analysis of PI uptake. b Cell viability 
was determined by resazurin assay. Means ± SEM of each three sepa-
rate measurements are shown
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Fig. 2  Induction of cell death in ES cells by PLK4i involves apopto-
sis. Cells were exposed to CFI-400945 or centrinone for 24 h (b, c) or 
48 h (a, d). a Δψm loss was determined by flow-cytometric analysis of 
 DiOC6(3) staining. b Caspase 3/7 activity was determined using the 
fluorogenic substrate Ac-DEVD-AMC; relative caspase 3/7 activities 
are the ratio of treated cells to untreated cells. c PARP1 cleavage was 

determined by immunoblotting. d Cell death was determined by flow-
cytometric analysis of PI uptake; z-VAD-fmk was applied 1 h before 
treatment with PLK4i. a, b, d Means ± SEM of each three separate 
measurements are shown (*P < 0.05, **P < 0.01, ***P < 0.001). c 
The figure is representative of three independent determinations
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by staining the DNA of ethanol-fixed cells with PI, followed 
by determining the DNA content by flow cytometry. After a 
48-h treatment, both inhibitors elicited an increase of cells 
with fragmented DNA < 2n in a concentration-dependent 
fashion (Fig. 3; the full data set is shown in Tables S1 to 
S6), further substantiating the apoptosis-inducing action of 
CFI-400945 and centrinone. However, the PLK4i differed in 
their effects on cell cycle progression in the three cell lines. 
Treatment with centrinone resulted in the accumulation of 
cells in the G2/M phase, i.e., in a G2/M arrest, while treat-
ment with CFI-400945 predominantly promoted the emer-
gence of polyploid cells (8n). Both these effects were even 
more evident when apoptosis was blocked by z-VAD-fmk.

To gain a more in-depth understanding of the cell cycle 
responses to PLK4i treatment, we conducted time course 
analyses over 72 h with fixed concentrations of CFI-400945 
(30 nM) and centrinone (2 µM) in WE-68 cells. These analy-
ses most notably revealed a more detailed picture of CFI-
400945′s cell cycle effects: a CFI-400945-induced G2/M 
cell cycle arrest became visible after shorter treatment peri-
ods. The G2/M arrest unfolded after 12 h, peaked after 24 h 

and returned to baseline after 48 h (Fig. 4; the full data set 
is shown in Tables S7 and S8). Hence, the cell cycle arrest 
preceded the induction of apoptosis and the appearance of 
polyploid cells which set in after 36 h. Also in these analy-
ses, G2/M arrest and polyploidy became especially manifest 
when caspase activities were repressed by z-VAD-fmk.

To complement these data, we assessed WE-68 cells by 
immunofluorescence microscopy using an α-tubulin anti-
body. In keeping with the results from the cell cycle analy-
ses, CFI-400945 treatment led to the appearance of multinu-
cleated cells and the formation of multipolar spindles (Fig. 
S3a). These effects became more noticeable upon coincuba-
tion with z-VAD-fmk (Fig. S3b).

Effects of CFI‑400945 and centrinone on DNA 
damage

As the standard chemotherapy of ES rests on DNA-damag-
ing drugs, such as ifosfamide, doxorubicin and etoposide 
(Anderton et al. 2020), which entail a considerable risk of 
causing secondary malignancies (Marina et al. 2017), the 
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Fig. 3  PLK4i induce cell cycle effects in ES cells. Cells were exposed 
to CFI-400945 or centrinone for 48  h; z-VAD-fmk was applied 1  h 
before treatment with PLK4i. Cell cycle profiles were determined by 

flow-cytometric analysis of PI-stained ethanol-fixed cells. The figure 
is representative of each three independent measurements
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application of less genotoxic agents is desirable. We there-
fore examined whether the PLK4i caused DNA damage by 
determining the phosphorylation of histone H2AX (γH2AX) 
by immunoblotting. Figure 5a shows that CFI-400945 and 
centrinone induced H2AX phosphorylation in WE-68 cells. 
In line with the occurrence of γH2AX, we also observed an 
increase in the abundance of p53, another typical feature of 
the DNA damage response (Williams and Schumacher 2016) 
(Fig. 5b). PLK4i thus do not spare DNA damage.

Discussion

ES is one of the most malignant childhood cancers and 
its prognosis has not improved over the past two decades 
(Casey et al. 2019; Vornicova and Bar-Sela 2016). There 
thus is an urgent need for the development of new ther-
apeutic approaches (Bailey et al. 2019). Recent studies 
point to PLK4 as a promising antineoplastic target (Man-
iswami et al. 2018; Zhao and Wang 2019). The PLK4i 
CFI-400945 and centrinone have shown anticancer activity 
in several tumours including a few paediatric malignancies 
(Sredni et al. 2017a, b; Suri et al. 2019; Tian et al. 2018), 

but they have not yet been investigated in ES. Our study 
demonstrates that CFI-400945 and centrinone were effec-
tive against ES cells.

Although cell death can proceed via several pathways, 
the mitochondrial pathway of apoptosis is viewed as most 
relevant to cancer treatment, for it is typically harnessed by 
anticancer agents (Bhola and Letai 2016). Likewise, the 
PLK4i have been reported to trigger cell death by induc-
ing apoptosis (Denu et al. 2018; Kawakami et al. 2018a). 
Several lines of evidence emerging from our study indicate 
that they invoked cell death through mitochondrial apoptosis 
also in ES cells. We found that exposure to CFI-400945 or 
centrinone led to Δψm dissipation, caspase 3/7 activation 
and DNA fragmentation, three common characteristics of 
apoptosis. Induction of apoptosis was additionally confirmed 
by detection of PLK4i-mediated PARP1 cleavage. Most 
importantly, experiments using the pan-caspase inhibitor 
z-VAD-fmk revealed that active caspases were essential for 
PLK4i-elicited cell death. z-VAD-fmk impinged slightly 
more effectively on CFI-400945-induced than on centrinone-
induced cell death, pointing to a somewhat greater role of 
caspases in CFI-400945-elicited cell killing.
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Fig. 4  Time course of PLK4i-induced cell cycle effects in WE-68 
cells. Cells were exposed to 30 nM CFI-400945 or 2 µM centrinone 
for the indicated times; z-VAD-fmk was applied 1 h before treatment 

with PLK4i. Cell cycle profiles were determined by flow-cytometric 
analysis of PI-stained ethanol-fixed cells. The figure is representative 
of three independent measurements
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The results from our examination of PLK4i-mediated 
cell death in ES cells suggest that CFI-400945 and cen-
trinone act in a largely similar way. However, certain dif-
ferences between the compounds emerged from the cell 
cycle analyses. When cell cycle effects were determined 
at a fixed time point (at 48 h; see Fig. 3 and Tables S1 
to S6), CFI-400945 treatment predominantly produced 
polyploid cells, while centrinone treatment resulted in a 
G2/M cell cycle arrest. Different effects of CFI-400945 
and centrinone have already been observed in a lung can-
cer cell line, leading to the conclusion that CFI-400945′s 
effects were not solely due to PLK4 inhibition (Oegema 
et al. 2018). An alternative explanation for the dissimi-
lar effects, however, has been put forward in support of a 
PLK4-selective activity of CFI-400945 (Kawakami et al. 
2018b). Our findings do not provide a conclusive answer to 
this debate, but they indicate that differences between the 
two PLK4i could be in part due to the chosen measurement 
time: when the cell cycle was monitored at 12-h intervals, 
both agents were found to induce a G2/M cell cycle arrest, 
albeit with different kinetics (see Fig. 4). It should also be 
noted that CFI-400945 and centrinone inhibit PLK4 with 
considerably different dissociation constants (Mason et al. 
2014; Wong et al. 2015), necessitating different dosages 

of the compounds and, consequently, complicating their 
comparability. CFI-400945 has been described to exert a 
concentration-dependent bimodal effect: low concentra-
tions led to centriole overduplication, whereas high con-
centrations blocked centriole duplication (Kawakami et al. 
2018a; Mason et al. 2014). However, as a general note on 
the specificity of protein kinase inhibitors, it may be taken 
into account that these agents are rarely fully selective. A 
comprehensive study on kinase inhibitor selectivity of 243 
clinically tested kinase drugs revealed that the vast major-
ity of the inhibitors interfered with kinases in addition to 
the one intended (CFI-400945 and centrinone were not 
included in the study) (Klaeger et al. 2017).

In any case, the response of ES cells to PLK4i treat-
ment was dominated by apoptosis induction, especially 
after longer treatment periods. When cells were protected 
from apoptosis by the pan-caspase inhibitor z-VAD-fmk, 
however, CFI-400945 and centrinone treatment produced 
a pronounced cell cycle effect. This finding implies that the 
PLK4i were capable of eliciting growth arrest when their 
apoptosis-inducing activity was blocked. Disabled apopto-
sis can reduce the efficacy of chemotherapy (Holohan et al. 
2013). CFI-400945 and centrinone thus may be useful for 
the treatment of ES with curtailed apoptotic responsiveness 
due to defects in the caspase system.

Even more importantly, we found that CFI-400945 and 
centrinone exerted anticancer activity in ES cells with dif-
ferent TP53 status, indicating that their action was independ-
ent of functional p53. This finding is in contrast to results 
obtained in melanoma cells, in which centrinone-B was 
found to be less effective in cells with mutant TP53 (Denu 
et al. 2018), yet in line with p53-independent effects of 
CFI-400945 observed in lung cancer cells (Kawakami et al. 
2018a). These dissimilar results point to a context-depend-
ent role of p53 in the response to PLK4 inhibition. In any 
case, the evidently p53-independent action of CFI-400945 
and centrinone in ES cells is a welcome finding from the 
clinical perspective: TP53 mutations are relatively rare in ES 
though (Grünewald et al. 2018), the subset of patients with 
mutant TP53 has a considerably poorer outcome than aver-
age (Crompton et al. 2014; Tirode et al. 2014). It is therefore 
of clinical relevance that the PLK4i were effective against 
ES cells irrespective of their TP53 status.

Our results presented here establish the potential of CFI-
400945 and centrinone for the treatment of ES, although 
further studies are certainly required to confirm that these 
findings hold up in vivo. It should also not be overlooked 
that PLK4i exposure resulted in DNA damage, raising the 
concern that these agents may entail the long-term sequelae 
typical of genotoxic drugs. Nonetheless, the potent antican-
cer effects of CFI-400945 and centrinone—which did nei-
ther spare p53 mutant nor apoptotically impaired ES cells—
render them a promising new option for the treatment of ES.

a WE-68

γH2AX

Vinculin 124 kDa

14 kDa

b
p53

Vinculin 124 kDa
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Fig. 5  PLK4i induce DNA damage in WE-68 cells. Cells were 
exposed to CFI-400945 or centrinone for 2 h (a) or 24 h (b). a H2AX 
phosphorylation and b p53 expression levels were determined by 
immunoblotting. The figures are representative of each three inde-
pendent determinations. The loading control in b is the same as in 
Fig.  2c since PARP1, p53 and vinculin were detected on the same 
blots
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