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Abstract 

Accumulating evidence suggests that the malignant phenotypes of cancers are determined not only by the 
intrinsic properties of cancer cells but also by components in the tumor microenvironment (TME). In this study, 
we comprehensively characterized the TME of cutaneous melanoma (CM). As a result, tumor stage, tissue site, 
ulceration, thickness as well as patient age, sex were associated with immune infiltration. Patients of higher 
immune infiltration exhibited better survival outcomes, and antitumor effector cells, such as CD8 T cells and 
M1 macrophages, were found in significantly higher numbers in those tissues. Differential expression of mRNAs 
and long non-coding RNAs (lncRNAs) was analyzed and utilized to construct an immune-related competing 
endogenous RNA network, in which a lncRNA-associated subnetwork that could positively regulate the 
expression of IFN-γ was highlighted. Functional analysis confirmed that this network was remarkably enriched 
in functional terms related to both immune response and tumor-intrinsic pathways. Finally, a total of 109 
high-confidence prognostic genes were identified, and a gene module that contained several key immune 
checkpoint molecules or modulators (PD-1, PD-L1, PD-L2, and LCK) was screened, which confers survival 
benefit for CM patients as supported by both overall and relapse-free survival rates from different datasets. 

Key words: cutaneous melanoma, tumor microenvironment, immune infiltration, competing endogenous RNA, 
prognosis 

Introduction 
Cutaneous melanoma (CM) is the most common 

type of malignancy arising from melanocytes. It is 
also the most aggressive skin cancer that causes 
approximately 60,700 deaths worldwide annually, 
accounting for more than 80% of skin cancer-related 
deaths [1]. For most limited-stage melanomas, 
surgical resection of the primary tumor is a standard 
and successful treatment, while for extensive-stage 
cases, treatment modalities are more complicated 
because most single or even combination therapies are 
effective in only a subset of patients [2]. Despite the 
encouraging clinical results of novel therapies, the 
prognosis of advanced cases remains unsatisfactory 

with the 5-year survival rate slightly above 20% [3].  
Over the past decade, there has been increasing 

interest in understanding the roles of the immune 
system in the initiation and progression of cancer. 
Tumor microenvironment (TME) has become the 
focus of attention because it consists of both cancer 
cells and nonmalignant stromal cells, including 
various types of immune cells. The activation state 
and components of tumor-infiltrating immune cells 
are important parameters that influence tumor 
biology and predict tumor prognosis. For example, 
cytotoxic CD8 T cells and CD4 helper T cells target 
antigenic tumor cells to prevent tumor growth [4]. A 
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high level of activated CD8 T cells is associated with 
prolonged patient survival time in many cancers, 
including CM [5]. Conversely, tumor-associated 
macrophages, mast cells and neutrophil granulocytes 
exert effects on promoting tumor progression, and the 
intense infiltration of these cells generally indicates 
poor prognosis [5].  

In addition, tumor-infiltrating immune cells 
serve as potential drug targets. Recently, a new 
therapeutic strategy, known as immune checkpoint 
blockade, has been developed, aiming at restraining 
the molecular interplay between tumor cells and 
immune cells. Immunotherapy with several 
checkpoint blockers targeting programmed cell death 
protein 1 (PD-1), PD-1 ligand (PD-L1), or cytotoxic T 
lymphocyte antigen-4 (CTLA-4) has resulted in 
significant improvements in the clinical outcomes of 
patients with various types of cancers including 
melanoma [6]. However, not all CM patients benefit 
from these drugs. A subset of patients who initially 
respond to immunotherapy later develop disease 
progression, suggesting the existence of intrinsic 
immune resistance [2]. In previous studies, PD-L1 
expression, tumor mutation burden, neoantigen load 
and deficient DNA mismatch repair have been 
associated with the immunotherapeutic 
responsiveness of cancer [7-10]. However, none of 
these features alone have been validated as sufficient 
predictors [11]. More importantly, TME and 
infiltrating immune cells are unique to each cancer 
type; thus, studying changes of immune infiltration 
with the associated molecular expression and 
interactive features based on an individual basis is 
crucial in elucidating the mechanisms underlying 
immune evasion by melanoma and immune 
checkpoint blockades.  

In this study, based on a large-scale 
computational analysis of expression profiles of 879 
CM tissues from The Cancer Genome Atlas (TCGA), 
Gene Expression Omnibus (GEO) and ArrayExpress, 
we comprehensively characterized the tumor immune 
microenvironment of CM from three different levels: 
the tissue level, cellular level and molecular level. The 
relationship between immune infiltration and 
clinicopathological characteristics as well as immune 
cell composition was explored. Both protein-coding 
genes and long noncoding RNAs (lncRNAs) that were 
associated with immune functions were identified 
and incorporated for network analysis. By performing 
Kaplan-Meier survival analysis with the TCGA cohort 
and in an independent dataset, we eventually 
discovered an immune-related gene module that 
conferred prognostic benefit for CM patients. The 
results are expected to generate novel insights into the 
tumor immune microenvironment of CM and provide 

potential biomarkers for clinical use.  

Materials and Methods 
Data collection  

The level 3 sequencing data of mRNA, lncRNA 
and miRNA of the CM tissues were obtained from the 
TCGA database via the TCGAbiolinks package [12]. 
For long RNAs, both raw counts and fragments per 
kilobase million (FPKM) data were collected. The 
datasets contained 468 samples, one for each patient. 
For miRNAs, only raw count data were obtained, and 
the dataset contained 448 samples. The associated 
clinical information of the patients and genomic 
subtypes was retrieved from the UCSC Xena database 
[13]. For validation, the processed expression 
meta-dataset of 194 CM samples was downloaded 
from ArrayExpress with E-MTAB-6697. Another 
dataset that contained 214 CM samples was 
downloaded from GEO with GSE65904 [14], in which 
the outcome and relapse-free survival (RFS) time of 
the patients were incorporated. A log2 transformation 
was applied to the processed expression data before 
further analysis.  

ESTIMATE  
The infiltration of noncancerous cells in tumor 

tissues was assessed by ESTIMATE based on 
expression profile of 141 immune-related genes [15]. 
The stromal, immune and ESTIMATE scores of the 
tumor tissues from 25 cancer types used in this study 
were computed using the RNA-seq V2 data from 
TCGA [15]. The immune scores of the CM samples 
from the E-MTAB-6697 and GSE65904 datasets were 
calculated from the normalized expression data using 
the R package ESTIMATE [15].  

CIBERSORT estimation 
Normalized gene expression data were used to 

infer the relative proportions of 22 immune cell types 
using CIBERSORT [16]. The FPKM data of 466 tumor 
samples (2 samples with no available immune scores 
were excluded from this analysis) from the TCGA, or 
the processed expression data from E-MTAB-6697 and 
GSE65904 were used as input and the LM22, which 
contained 547 genes that accurately differentiate 22 
individual human hematopoietic cell types, was used 
as a reference gene signature. Permutations were set 
to 1,000. Only samples with a CIBERSORT P<0.05 
were considered eligible for further analysis.  

Differential gene expression analysis  
The differentially expressed mRNAs 

(DEmRNAs) and lncRNAs (DElncRNAs) were 
identified using edgeR [17], with |log2 fold changes| 
> 1 and FDR < 0.05 considered significant. Molecules 
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with average read counts greater than 1 were 
included for this analysis.  

Construction of the competing endogenous 
RNA (ceRNA) network 

The ceRNA network was constructed using the 
“gdcCEAnalysis” function of the GDCRNATools 
package [18]: (1) the lncRNA and mRNA must share a 
significant number of miRNAs (hypergeometric test, 
P<0.05); (2) the expression of the lncRNA and mRNA 
must be positively correlated (Pearson correlation, 
P<0.05); and (3) those common miRNAs should play 
similar roles in regulating the expression of the 
lncRNA and mRNA (regulation similarity>0). The 
raw count data of both miRNA and long RNA 
molecules were normalized by the 
“gdcVoomNormalization” function. All DEmRNAs 
and DElncRNAs were kept for this analysis, together 
with 523 miRNAs whose average read counts were 
greater than 10. The interactions between miRNAs 
and mRNAs that are supported by strong 
experimental evidence were obtained from 
miRTarBase [19], we obtained 8,377 unique 
miRNA-mRNA interactions. For miRNA-lncRNA 
regulations, a total of 73,087 nonredundant 
miRNA-lncRNA interactions supported by 
experimental evidence were downloaded from 
LncBase [20]. 

Enrichment analysis 
The first 300 upregulated or downregulated 

genes identified from the differential expression 
analysis were used in the functional enrichment 
analysis with the plug-in software for Cytoscape [21], 
ClueGO v_2.5.4 [22]. The terms from Gene Ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), WikiPathways and Reactome were analyzed. 
The GO term fusion option was selected. The 
significance value was set as P-value < 0.05, and the 
Bonferroni (two-sided hypergeometric test) was used 
as the multiple test correction. The threshold of the κ 
score that reflects the association between two terms 
was set at 0.4, and similar terms were given the same 
color. GO analysis of the ceRNA network and 
protein-protein interaction (PPI) module was 
performed using the web-based Enrichr tool [23], with 
the criterion of adjusted P-value<0.05.  

Statistical analysis 
In this study, unpaired two-sided t-test or the 

Wilcoxon signed rank test was used to make statistical 
comparisons between two patient groups. For a 
comparison of more than two groups, one-way 
ANOVA was utilized. All tests were carried out using 
Prism 8.0 (GraphPad, San Diego, USA) or R (version 
3.6.0, Auckland, NZ). A P-value less than 0.05 was 

considered statistically significant for all statistical 
analyses if not otherwise specified.  

Survival analysis 
Kaplan-Meier survival analysis was performed 

using the R package “survival” [24]. Patients with 
survival times less than 30 days were filtered out 
beforehand, and the remaining patients were 
classified into high and low groups based on the 
median statistics. Survival curves were plotted using 
the “survfit” function in the survival package, and the 
differences in survival curves for the two groups were 
analyzed with the log-rank method using the function 
“survdiff”.  

PPI network analysis 
The PPI network was constructed using the 

web-based Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database [25]. The PPI 
pairs with an interaction score>0.4 were considered as 
significant and used for construction of the network. 
The MCODE plug-in from Cytoscape was then used 
to extract modules from the PPI network with default 
parameters [26]. 

Results 
Tissue-level immune infiltration in CM and its 
clinical relevance 

In this study, the microenvironment of tumor 
tissues was assessed by the ESTIMATE algorithm 
based on two major types of the nontumor 
components, immune cells and stromal cells [15]. 
Compared with other tumor types, the infiltration of 
noncancerous cells in CM was relatively prominent, 
particularly the immune cells, with average 
enrichment scores that ranked the 6th of all 25 
evaluated cancers (Fig. S1). We next explored the 
correlation between the scores and clinicopathological 
characteristics. Briefly, younger patients generally 
had higher immune and stromal scores than older 
patients (Fig. 1A; P=0.0477 vs. P=0.0034). Female 
patients had higher immune and stromal scores than 
male patients, although the latter case was not 
statistically significant (Fig. 1B; P=0.0372 vs. 
P=0.5827). Extensive-stage cases exhibited 
significantly higher immune and stromal scores than 
early stage cases (Fig. 1C; P=0.0275 vs. P=0.0072), as 
did the tumors of metastatic sites compared with 
those of primary sites (Fig. 1D; P<0.0001). Tissues 
with ulceration or higher Clark levels had both lower 
immune and stromal scores (Figs. 1E-1F). As for 
genomic subtypes [27], the BRAF mutant cases had 
the highest stromal scores, followed by triple-wild 
type, NF1 mutant and RAS mutant cases (Fig. 1G; 
P=0.019). The immune scores of the BRAF subtype 
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also ranked the highest of all four subtypes, although 
not statistically significant (P=0.2497). The association 
of immune infiltration with patient survival was 
analyzed. Kaplan-Meier survival curves showed that 
the cases with higher immune infiltration 
(immune_H) conferred prognostic benefit in both 
overall survival (OS) and RFS compared to those with 
lower immune infiltration (immune_L) (Figs. 1H-1I; 
P<0.0001), while no survival difference was observed 
between the samples with variable stromal infiltration 
(stromal_H and stromal_L). Collectively, these 
findings suggested that the TME, particularly 
immune cell infiltration, could have important effects 

on the pathogenesis of CM and clinical outcomes of 
patients. 

Characterization of the immune cell 
composition in CM 

The CIBERSORT method was applied to 
characterize the cellular composition of the 
tumor-infiltrating immune cells in CM tissues [16]. A 
total of 305 samples from the TCGA dataset were 
successfully deconvolved. Figure 2A shows that, on 
average, the M0 macrophages (19.22%) were the most 
abundant immune infiltrates, followed by CD8 T cells 
(18.29%), plasma cells (12.58%), M2 macrophages 

 

 
Figure 1. Associations between TME and clinicopathological features in CM. (A-G) Correlation of the immune and stromal scores with age, sex, TNM stage, tissue sites, 
ulceration status, Clark’s level stage and genomic subtypes. (H-I) Correlation of the immune and stromal scores of CM tissues with the OS or RFS of the patients as illustrated 
by Kaplan-Meier survival curves. Patients were divided into two groups based on their median scores. P-values and the number of cases in each subgroup of the above analyses 
(A-I) are displayed. OS, overall survival; RFS, relapse-free survival; TW, triple-wild type. 
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(11.95%) and M1 macrophages (6.58%). The same 
analysis was performed on two additional datasets, 
namely, GSE65904 and E-MTAB-6697, we found that 
the fractions of M0/M1/M2 macrophages and CD8 T 
cells were relatively stable across those datasets while 
some other cell fractions exhibited more variable, such 
as plasma cells, activated mast cells and neutrophils 
(Fig. S2), suggesting the heterogeneity of the immune 

infiltration of the TME. Correlation analysis based on 
the TCGA data suggested that the number of M0 
macrophage cells was inversely related to that of CD8 
T cells (r2=-0.56), plasma cells (r2=-0.38), follicular 
helper T cells (r2=-0.35), CD4 memory activated T cells 
(r2=-0.34) and M1 macrophage cells (r2=-0.29), 
indicating that functional antagonism might exist 
between M0 macrophages and those cells.  

 

 
Figure 2. Distribution of immune cell fractions in CM tissues based on TCGA data. (A) The percentage of 22 types of immune cell subsets. (B) Correlation of 22 types of immune 
cell subsets. (C) Comparison of the immune cell fractions between tumor tissues of the immune_H and immune_L groups.  
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In contrast, a highly positive correlation between 
activated mast cells and neutrophils or activated 
dendritic cells (r2=0.67 or 0.41) suggested that these 
cells might function synergistically in tumor stroma 
(Fig. 2B). Comparison of the immune cell subsets 
between different immune infiltration levels revealed 
that CD8 T cells, activated memory CD4 T cells, 
plasma cells and M1 macrophages were present in 
significantly higher numbers in immune_H than in 
immune_L (P≤0.001, Wilcoxon signed rank test), 
while M0 and M2 macrophages were more abundant 
in the immune_L group (P<0.001; Fig. 2C). These 
results were largely confirmed in the ArrayExpress 
and GEO datasets (Figs. S3-S4). Kaplan-Meier analysis 
showed that naïve B cells were associated with shorter 
OS time, while M1 macrophages were associated with 
an improved outcome; Based on RFS, CD8 T cells, 
activated memory CD4 T cells and follicular helper T 
cells were correlated with longer survival time, 
whereas resting memory CD4 T cells indicated the 
opposite (P<0.05; Fig. S5). In summary, despite the 
variance of the immune cell composition from 
different studies, the antitumor immune activity of 
the immune_H group was enhanced.  

Association between molecular expression 
and immune infiltration 

To identify the molecular traits that were 
associated with immune infiltration, we performed 
differential expression analysis by comparing tumor 
samples of the immune_H and immune_L groups 
from the TCGA cohort. As shown by the volcano 
maps (Fig. 3A), 1,553 mRNAs and 530 lncRNAs were 
found to be upregulated in the tissues from the 
immune_H group, while 801 mRNAs and 279 
lncRNAs were downregulated. The top 100 
dysregulated RNAs are provided in Table S1-S2. To 
gain mechanistic insights into the dysregulation 
between the two groups, we performed a functional 
analysis of the top upregulated or downregulated 
genes using ClueGO [22]. As a result, 104 functional 
terms were significantly enriched for the upregulated 
genes (Table S3). These terms were clustered into 14 
groups, the majority of which were closely related to 
the activation of immune responses (Fig. 3B), such as 
human immune response (adjusted P=3.78E-70), 
regulation of T cell activation (adjusted P=2.62E-5), 
immunoregulatory interactions between a lymphoid 
and a non-lymphoid cell (adjusted P=1.18E-07) and 
lymphocyte activation (adjusted P=2.86E-43). In 
contrast, terms enriched in the downregulated genes 
were mainly related to skin development and 
structures (Fig. S6 & Table S4). The results were 
consistent with the observation that the immune cells 
were largely infiltrated in those immune_H tumor 

samples. 

Construction of an immune infiltration-related 
ceRNA network in CM 

To investigate the role of lncRNAs and their 
interactions with protein-coding genes in the 
infiltration of immune cells in CM, we constructed a 
ceRNA network based on the DEmRNAs and 
DElncRNAs identified above using GDCRNATools 
[18]. The network consisted of 47 lncRNAs, 86 
miRNAs and 138 mRNAs with a total of 375 
interactions (Table S5). GO analysis confirmed that 
both immune responses and tumor-intrinsic 
pathways were significantly enriched in the network 
(Fig. 4A), such as cellular response to cytokine 
stimulus, positive regulation of MAPK cascade and 
protein tyrosine kinase activity. With Cytoscape, the 
network was arranged into three layers, in which the 
lncRNAs of the inner layer could modulate the 
expression of the mRNAs of the outer layer through 
interactions with the miRNAs of the intermediate 
layer (Fig. 4B). Notably, 95.3% (82/86) of the miRNAs 
were denoted to be associated with melanoma by 
Mammal NcRNA-Disease Repository (MNDR) v2.0 
(confidence score>0.4) [28]. An examination of the 
degree distribution of these RNAs revealed a 
power-law with a slope of -0.747 and 𝑅𝑅2 = 0.932 , 
suggesting a typical scale-free structure of biological 
network. Indeed, the top 10 lncRNAs with highest 
degrees (hub lncRNAs) controlled more than 78% 
(108/138) of the genes in this network through 
competitive binding of 63 miRNAs (Table 1).  

 

Table 1.  

lncRNAs miRNAs 
RP11-588K22.2 hsa-miR-361-5p, hsa-miR-195-5p, hsa-let-7e-5p, hsa-miR-21-5p, 

hsa-let-7i-5p, hsa-miR-19a-3p, hsa-miR-19b-3p, hsa-miR-9-5p, 
hsa-miR-34a-5p, hsa-let-7a-5p, hsa-let-7b-5p, hsa-let-7f-5p, 
hsa-miR-15a-5p, hsa-miR-126-5p, hsa-miR-454-3p, hsa-miR-16-5p, 
hsa-miR-182-5p, hsa-miR-98-5p, hsa-miR-135a-5p, hsa-let-7c-5p, 
hsa-miR-301b-3p 

RP11-284N8.3 hsa-miR-24-3p, hsa-miR-361-5p, hsa-miR-126-5p, hsa-miR-19a-3p, 
hsa-miR-19b-3p, hsa-miR-27a-3p, hsa-miR-23b-3p, hsa-miR-101-3p, 
hsa-miR-23a-3p, hsa-miR-26a-5p, hsa-miR-27b-3p, hsa-miR-485-3p, 
hsa-miR-338-3p, hsa-miR-9-3p 

RP6-24A23.7 hsa-miR-24-3p, hsa-miR-34a-5p, hsa-miR-34b-5p, hsa-miR-34c-5p, 
hsa-miR-449a, hsa-miR-629-5p, hsa-miR-15a-5p, hsa-miR-16-5p, 
hsa-miR-491-5p, hsa-miR-144-3p, hsa-miR-29a-3p, hsa-miR-29b-3p, 
hsa-miR-29c-3p 

RP1-60O19.1 hsa-miR-195-5p, hsa-miR-199a-5p, hsa-miR-150-5p, 
hsa-miR-218-5p, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, 
hsa-miR-29b-1-5p, hsa-miR-145-5p, hsa-miR-214-3p, 
hsa-miR-338-3p 

RP11-79H23.3 hsa-miR-361-5p, hsa-miR-181a-5p, hsa-miR-140-3p, 
hsa-miR-27a-3p, hsa-miR-23b-3p, hsa-miR-181b-5p, 
hsa-miR-181c-5p 

HCP5 hsa-miR-92a-3p, hsa-miR-205-5p, hsa-miR-141-3p, hsa-miR-145-5p, 
hsa-miR-101-3p, hsa-miR-125a-3p 

CTD-2369P2.8 hsa-miR-92a-3p, hsa-miR-25-3p, hsa-miR-32-5p, hsa-miR-363-3p, 
hsa-miR-194-5p, hsa-miR-107 

RP11-54O7.1 hsa-miR-16-5p, hsa-miR-24-3p, hsa-miR-9-5p, hsa-miR-107, 
hsa-miR-424-5p 

AP001055.6 hsa-let-7a-5p, hsa-let-7e-5p, hsa-let-7i-5p, hsa-let-7b-5p 
RP11-203J24.9 hsa-let-7g-3p, hsa-miR-19a-3p, hsa-miR-19b-3p, hsa-miR-188-5p 

lncRNAs: long noncoding RNAs. miRNAs: microRNAs.  
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Of all the genes regulated by hub lncRNAs, 
IFNG, whose translational output plays a key role in 
antitumor immunity [29], was among the most 
upregulated molecules (logFC=3.74) in the 
immune_H group while its transcript was under the 
control of the most miRNA mediators, suggesting that 
the accumulation of IFNG associated with immune 

infiltration might be positively modulated by those 
highly competitive lncRNAs, such as RP11-588K22.2, 
RP11-284N8.3, RP1-60O19.1 and RP11-79H23.3 (Fig. 
5). Importantly, most of the lncRNAs remain 
uncharacterized in CM, which necessitates further 
focused studies. 

 

 
Figure 3. Differential expression analysis and functional annotation. (A) Volcano maps of the differentially expressed mRNAs and lncRNAs. Red points represent the RNAs with 
a logFC>1 and FDR<0.05. Green points represent RNAs with a logFC<-1 and FDR<0.05. (B) Grouped network of the functional terms enriched in the upregulated genes in the 
immune_H tumor samples. The nodes represent the enriched terms (adjusted P-value<0.05). The size of the nodes reversely represents the statistical significance of the terms. 
Functionally related groups partially overlap. 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

3865 

 
Figure 4. The immune-related ceRNA network. (A) Top 10 GO terms enriched in the ceRNA network. (B) The ceRNA network consisting of 47 lncRNAs, 86 miRNAs and 138 
mRNAs was constructed and arranged as a three-layer structure. The ellipses represent lncRNAs, diamonds represent miRNAs and rounded rectangles represent 
protein-coding genes. The node size is proportional to its degrees. The nodes highlighted in red indicate upregulated expression in the immune_H group, and the nodes labeled 
green indicate downregulated expression. 

 

Identification of immune-related prognostic 
module in CM 

To investigate the relationship between immune 
infiltration and CM patient prognosis at the molecular 
level, we performed Kaplan-Meier survival analysis 
of the 2,354 DEmRNAs from the TCGA dataset. As a 

result, 715 genes were identified to be associated with 
both OS and RFS (P<0.01; Fig. 6A), among which 109 
genes were further tested and validated in the 
GSE65904 dataset by Kaplan-Meier estimates of RFS 
(Table S6). All these molecules appeared to be 
protective, as patients with higher expression levels of 
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these molecules had clearly higher survival rates than 
those with lower expression levels of these RNAs. To 
interrogate the interplay among those genes, a PPI 
network was further constructed (PPI enrichment 
P-value<1.0E-16). The network comprised 84 nodes 
and 449 edges (Fig. S7). The hub nodes (the top 15% 
by degree) included PTPRC, CD86, LCK, LILRB2, 
CD40LG, TLR8, CD3E, CD274, MNDA, CTSS, 
HLA-DRA, CXCR3 and FCER1G. These molecules are 
often central to multiple signaling pathways involved 
in biological processes like cell proliferation or 
immune activation, thus influencing more critical 
functions and making especially attractive drug 
targets [30]. Indeed, ten of the 13 hub genes have 
targeted drugs in clinic or clinical trials according to 
Therapeutic target database (Table S6) [31]. 
Furthermore, four subnetwork modules were 
screened from the whole PPI network and the largest 
module, which consisted of 27 nodes and 146 edges, is 
shown in Fig. 6B. Several critical immunomodulators 
such as PD-1, PD-L1 and PD-L2 were involved in this 
module, and all the module molecules were positively 
correlated with patient survival, which indicated that 
this module played a protective role for CM patients. 
Figure 6C and 6D illustrates the RFS curves for PD-1, 
PD-L1 and PD-L2 based on the TCGA and GEO 

datasets, respectively, with the OS curves displayed in 
Fig. S8. Functional characterization of this module 
identified 109 terms from BP, 18 terms from MF and 
40 terms from CC that were significantly enriched, the 
majority of which were closely related to antigen 
presentation (Fig. 6E). Overall, we discovered a gene 
module that participates in immune infiltration of CM 
tissues and leads to favorable outcomes for the 
patients.  

Discussion 
In this study, we performed a comprehensive 

assessment of the tumor immune microenvironment 
of CM at three different levels. First, we analyzed the 
association between immune infiltration and 
clinicopathological characteristics by considering the 
TME as a whole (tissue level). Next, we explored the 
cellular composition of the immune infiltrates in 
individual tumor tissues to establish potential 
connections between immune cell subsets and clinical 
outcomes (cellular level). Finally, we focused on the 
molecules whose expression profiles were correlated 
with immune infiltration to discover systems-level 
regulatory mechanisms and potential prognostic 
biomarkers (molecular level). 

 

 
Figure 5. The competing endogenous subnetwork involving IFNG. The ellipses represent lncRNAs, diamonds represent miRNAs and rounded rectangles represent 
protein-coding genes. The node size is proportional to its degrees across the whole network. The nodes highlighted in red indicate upregulated expression in the immune_H 
group, and the nodes labeled green indicate downregulated expression.  
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Figure 6. Correlation of the immune-related genes with patient prognosis. (A) Venn diagrams showing the number of overlapped prognostic OS and RFS genes (P<0.01). (B) 
Selected module from the PPI network constructed using prognostic genes validated by an independent dataset. The key immunomodulators were labeled yellow. (C&D) 
Kaplan-Meier RFS curves of the immunomodulators in the (C) TCGA and (D) GEO datasets. (E) Top 10 GO terms enriched in the module. OS, overall survival; RFS, relapse-free 
survival. 

 
At the tissue level, the correlation between the 

immune infiltration and clinicopathological 
characteristics was analyzed. The results suggested 

that both immune and stromal enrichment status was 
affected by sex and age in CM. Indeed, the T cell 
repertoire is generally accepted to decline with 
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increasing age, and the cumulative incidence rate for 
immune response to melanoma vaccination in older 
patients has been recently shown to be significantly 
lower than that in younger patients [32]. In addition, 
males with melanoma generally have worse outcomes 
than females [33], which can partially be explained by 
the sex-related differences in the interaction between 
immune function and tumor biology [34]. Our 
findings that immune infiltration was significantly 
associated with multiple pathological features, 
including tumor staging, tumor site, ulceration and 
tumor thickness, are largely in line with the findings 
of previous studies [27, 35-37]. We also revealed that 
immune infiltration, not stromal infiltration, was 
positively correlated with patient survival.  

At the cellular level, we found that the five most 
common immune cells in CM tissues accounted for up 
to 70% of the immune infiltrates. A comparison study 
of immune cell fractions showed that tumors with 
higher immune cell infiltration had significantly 
higher levels of CD8 T cells, activated memory CD4 T 
cells and M1 macrophages, while lower levels of M0 
and M2 macrophages. In general, CD8 T cells are 
critical antitumor effector cells, while plasma cells 
play protective roles in the adaptive immune 
response. Macrophages exhibit distinct functions 
based on their activation status. The classically 
activated M1 macrophages are considered 
inflammatory (antitumor) while the alternatively 
activated M2 macrophages are believed to have 
anti-inflammatory (tumor-promoting) functions. Both 
types of cells are polarized from uncommitted 
macrophages (M0) depending on different stimuli. 
The correlation analysis of these cell types in CM 
confirmed their functional associations (Fig. 2B). 
Importantly, these results could largely be validated 
in independent datasets. Our findings suggested that, 
despite the heterogeneity in immune cell content 
across different studies, the immune_H tumors did 
exhibit enhanced antitumor immunity, which 
partially explained why patients from this group had 
an improved clinical outcome. In addition, 
Kaplan-Meier analysis of the immune cell subsets 
provided different findings for OS and RFS, which 
implicated that those immune cells might play a role 
in preventing the relapse of the disease (Fig. S5B). 

At the molecular level, the DEmRNAs and 
DElncRNAs between immune_H and immune_L 
groups were identified and used to construct a ceRNA 
network. As the functional mediators between 
mRNAs and lncRNAs, 95.3% of the miRNAs in this 
network were denoted to be melanoma-associated, 
validating the biological relevance of the network. 
Based on topological structure, the 10 hub lncRNAs 
were able to control up to 80% of the mRNAs in this 

network. Particularly, we found that IFNG, which was 
significantly overexpressed in melanoma tissues with 
high immune infiltration, was regulated by several of 
the hub lncRNAs. The controlled expression of IFNG 
is critical for effective antitumor responses. Most 
previous studies document that the production of its 
translational output, IFN-γ, is mainly regulated at the 
transcriptional level by activators or inhibitors [38], 
while the post-transcriptional regulation is typically 
inhibitory characterized by miRNA-mediated 
repression or ARE-mediated decay [39]. Our study 
showed that IFNG could also be positively modulated 
by competing lncRNAs at the post-transcriptional 
level, as suggested by the upregulation of these 
lncRNAs along with IFNG in the immune_H tumors. 
Functional analysis suggested that the network is not 
only involved in the regulation of immune-related 
pathways, but also regulates tumor-intrinsic 
pathways in the development of cancer. Recent 
evidence has shown that oncogenic pathways in 
tumor cells can be activated to regulate the 
production of several chemokines and cytokines, 
which can either decrease the recruitment of immune 
cells or enhance the recruitment of 
immunosuppressive cells to tumor sites, contributing 
to immunoresistance in cancers [40]. Indeed, the 
MAPK pathway in BRAFV600E mutant melanoma cells 
contributes to comprised function of dendritic cell 
(DC) in the TME of CM, and the inhibition of the 
pathway can reverse the suppression of DC function 
[41]. It has also been shown that resistance to 
BRAFV600E inhibitors (BRAFi) in an autochthonous 
mouse model of melanoma is associated with 
restoration of myeloid-derived suppressor cells 
(MDSC) in the TME, initially reduced by BRAFi 
treatment, and this process relies upon the 
reactivation of MAPK pathway [42]. Therefore, 
targeting these oncogenic pathways is a potential 
strategy for cancer treatment, particularly in 
combination with immunotherapies such as check 
point blockers and chimeric antigen receptor-T cell 
therapy. A deeper understanding of the regulatory 
relationships between immune response and 
tumor-intrinsic pathways would lead to new 
therapeutic strategies that might benefit more CM 
patients. 

Finally, we tested the prognostic relevance of the 
genes associated with immune infiltration. By 
Kaplan-Meier analysis and cross validation with GEO 
dataset, 109 genes were found to be significantly 
associated with survival of CM patients. The 
connections between these molecules were 
interrogated by PPI network analysis, and a highly 
compact module that conferred prognostic benefit 
was obtained, which contained several 
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immunotherapeutic targets such as PD-1, PD-L1 and 
PD-L2. We also noticed that LCK was in this module. 
This gene belongs to the Src family of protein tyrosine 
kinases and is an integral component of T cell receptor 
signaling. Previous study identified that high protein 
expression of LCK is strongly correlated with 
favorable outcomes of CM patients, and tumors from 
the immune transcriptomic subgroup that correlate 
with pathological lymphocytic infiltration also 
express elevated levels of LCK protein [27]. 
Functional analysis suggested that this module 
participates in antigen presentation.  

This study has some limitations. First, the 
analysis was based on publicly available datasets, in 
which it was not possible to obtain all relevant 
information needed for each patient, particularly, the 
immune-related comorbidities or medication history 
that might affect the immune microenvironment of 
that patient. Such patients should ideally be excluded 
from our study. Second, the results of this study all 
came from pure bioinformatics analysis. Although we 
incorporated independent datasets for validation, the 
results still need to be confirmed by both in vitro and 
in vivo experiments. Third, the main purpose of this 
study was to examine the TME from different levels to 
screen clinicopathological and molecular features that 
were associated with immune infiltration in CM and 
analyzed their potential interconnections. Although 
we identified some candidate molecules that might 
impact this process, we did not conduct in-depth 
analysis on the functions or mechanisms of specific 
pathways or molecules, which should warrant further 
focused studies.  

Conclusions 
To conclude, we described the immune 

landscape in detail, suggesting that TME, particularly 
immune cell infiltration, could have important effects 
on the pathogenesis of CM and clinical outcomes of 
the patients. Our study has identified the 
clinicopathological features, immune cell subsets, 
differentially expressed RNAs that are associated 
with immune infiltration. We also constructed an 
immune-related ceRNA network in CM, in which 
several of the hub lncRNAs were shown to potentially 
increase the production of IFN-γ. Finally, we 
discovered a functional module that contained several 
validated and potential immunomodulators. Each 
molecule of the module was illustrated to confer 
survival advantage for CM patients as supported by 
OS and RFS rates from different datasets. We believe 
that our work will advance the understanding of the 
immune response in the tumor environment and 
provide valuable resources to explore key molecules 

and relevant mechanisms related to tumor 
immunology and immunotherapy in CM. 
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