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Nowadays, healthcare systems are challenged by a major worldwide drug resistance
crisis caused by the massive and rapid dissemination of antibiotic resistance genes and
associated emergence of multidrug resistant pathogenic bacteria, in both clinical and
environmental settings. Conjugation is the main driving force of gene transfer among
microorganisms. This mechanism of horizontal gene transfer mediates the translocation
of large DNA fragments between two bacterial cells in direct contact. Integrative and
conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative
plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic
resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The
biology, diversity, prevalence and distribution of these two families of conjugative
elements have been the subject of extensive studies for the past 15 years. Recently,
the transcriptional regulators that govern their dissemination through the expression of
ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors
control the activation of conjugation by preventing the expression of two related master
activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD
in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these
master activators have been shown to specifically activate phylogenetically unrelated
mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes
and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and
Salmonella enterica.

Keywords: SXT/R391, IncA/C, SGI1, regulation, integrative and conjugative elements, conjugative plasmids,
genomic islands, pVCR94

Mobile Genetic Elements in the Modern World of Multiresistance

The discovery of penicillin by Alexander Fleming over 80 years ago marked the end of the
pre-antibiotic era and revolutionized the prevention and treatment of many bacterial infections
responsible for high morbidity and mortality. However, Sir Fleming himself warned the scientific
community about antibiotic resistance and foresaw that inadequate usage of antibiotics could lead
to “educated microbes.” Since then, the use and misuse of antibiotics have led to the rapid and
widespread emergence and selection of microorganisms resistant to a wide range of antimicrobial
compounds. Today, multidrug resistance (MDR) has become one of the most alarming healthcare
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issue on a global scale, so much so that in 2014 the World
Health Organization (WHO) predicted a bleak short-term future:
“A post-antibiotic era—in which common infections and minor
injuries can kill—far from being an apocalyptic fantasy, is instead
a very real possibility for the 21st Century” (World Health
Organization, 2014).

Point mutations and/or gene amplification can allow bacteria
to withstand hostile environments, such as the exposure to
antimicrobial compounds (Gorgani et al., 2009; Davies and
Davies, 2010; Toprak et al., 2012). Most often, MDR results from
the acquisition by horizontal gene transfer of mobile genetic
elements carrying multiple antibiotic resistance genes (Burrus
et al., 2006; Mulvey et al., 2006; Welch et al., 2007; Escudero et al.,
2014). Conjugation, which mediates DNA transfer between two
bacterial cells in direct contact, is the most effective mechanism
of horizontal gene transfer in terms of host range and quantity of
genes translocated to a recipient cell per transfer event (Llosa et al.,
2002; de la Cruz et al., 2010). Integrative and conjugative elements
(ICEs) and conjugative plasmids of various incompatibility groups
were shown to have a major impact on the global emergence
of multidrug resistant pathogenic bacteria, in both clinical and
environmental settings (Burrus et al., 2006; Fricke et al., 2009;
Smillie et al., 2010; Wozniak and Waldor, 2010; Guglielmini
et al., 2011; Walsh et al., 2011; Carattoli, 2013). Although both
types of elements transfer from cell to cell by conjugation, their
mechanism of persistence in the bacterial host cell genome
is different. On the one hand, ICEs maintain themselves by
integration into the chromosome of their host and excise prior
to transfer as circular molecules (Burrus et al., 2002; Burrus and
Waldor, 2004; Wozniak and Waldor, 2010). On the other hand,
conjugative plasmids are maintained by replication as episomes,
i.e., DNA molecules that are distinct from the chromosome.

This review focuses on the regulatory networks that govern the
conjugative transfer of ICEs belonging to the SXT/R391 family
(SRIs) and conjugative plasmids of the A/C incompatibility group
(ACPs). Both classes of elements bear highly similar and nearly
syntenic core sets of conserved genes and code for comparable
transfer activator complexes (Wozniak et al., 2009; Carraro et al.,
2014a; Poulin-Laprade et al., 2015). Recent investigations of the
regulatory circuitries that activate SRIs and ACPs transfer have
also contributed to the discovery of three classes of genomic
islands (GIs) specifically mobilized by either SRIs or ACPs
(Doublet et al., 2005; Daccord et al., 2010, 2012; Carraro et al.,
2014a; Poulin-Laprade et al., 2015).

Diversity and Prevalence of SRIs and ACPs

SRIs and ACPs are major contributors to worldwide
dissemination of adaptative traits such as antibiotic resistance
among several species of Enterobacteriaceae and Vibrionaceae of
clinical origin or isolated from the aquatic environment.

The SXT/R391 family is one of the largest, diverse and well-
studied set of ICEs among Gram-negative bacteria. Extensive
experimental and bioinformatic studies have led to a deeper
understanding of their prevalence, diversity, and evolution
(Boltner et al., 2002; Wozniak et al., 2009; Garriss and Burrus,
2013; Carraro and Burrus, 2014; Spagnoletti et al., 2014). SRIs

are large conjugative elements (79 to 110 kb) found integrated
into the 5′ end of prfC in the chromosome of several species
of Vibrio, Photobacterium, Providencia, Proteus, Alteromonas,
Marinomonas, and Shewanella, and are easily transferred to E.
coli in the laboratory (Coetzee et al., 1972; Waldor et al., 1996;
Hochhut and Waldor, 1999; Beaber et al., 2002a; Pembroke
and Piterina, 2006; Osorio et al., 2008; Harada et al., 2010;
Rodriguez-Blanco et al., 2012; Badhai et al., 2013; Lopez-Perez
et al., 2013; Spagnoletti et al., 2014). Notably, SRIs played
a key role in the dissemination of MDR in the seventh-
pandemic lineage of V. cholerae, the etiological agent of the
diarrhoeal disease cholera (Spagnoletti et al., 2014). V. cholerae
is endemic in Asia, Africa, and Central America and epidemics
of cholera are usually blooming in locations where the sanitation
infrastructures and access to clean water are compromised.
Indeed, cholera is considered by the WHO as an indicator
of sanitation mismanagement and humanitarian crisis (e.g.,
refugee camps). Currently, most clinical isolates of V. cholerae
carry an SRI and are multidrug resistant worldwide. Most SRIs
found in epidemic strains of V. cholerae contain the genes floR,
strBA, sul2, and dfrA1 or dfr18, respectively conferring resistance
to florfenicol/chloramphenicol, streptomycin, sulfamethoxazole
and trimethoprim (Waldor et al., 1996; Hochhut et al., 2001;
Wozniak et al., 2009). Sulfamethoxazole and trimethoprim
have synergistic antibacterial activities and are often used in
combination for the treatment of cholera (Kaper et al., 1995).
Other SRIs from the aquatic environment and from diverse
pathogens confer resistance to kanamycin (aph) or tetracycline
(tetAR) (Coetzee et al., 1972; Osorio et al., 2008; Wozniak et al.,
2009; Bi et al., 2012). In the countries where the sanitation
infrastructures are appropriate, the domestic cases of cholera and
other vibriosis caused by hosts of SRIs are widely associated with
the consumption of raw or undercooked seafood (Morris, 2003;
Song et al., 2013; Hara-Kudo and Kumagai, 2014; Robert-Pillot
et al., 2014). For instance, a few cases of cholera acquired in
the US are declared each year. These sporadic cholera cases are
generally attributed to consumption of seafood gathered from
the US Gulf coast (Loharikar et al., 2015). Antibiotic resistance
genes carried by SRIs are also troublesome for aquaculture as
resistance genes can hinder the treatment of diseased fish and
enter the food chain (Osorio et al., 2008; Rodriguez-Blanco et al.,
2012; Nonaka et al., 2014). Indeed, consumption of raw fish
and shellfish contaminated by live bacteria bearing SRIs could
facilitate the dissemination ofMDR amongGammaproteobacteria
of the human host microbiome.

ACPs are large (>110 kb) circular plasmids grouped as a
family based on the high percentage of sequence conservation
of their repA gene, which codes for their replication intiator
protein (Llanes et al., 1994, 1996; Carattoli et al., 2005; Fricke
et al., 2009). Multidrug resistant ACPs are found worldwide in
pathogens associated with human infections such as Citrobacter
freundii, V. cholerae, Salmonella enterica, Proteus mirabilis, E.
coli, Yersinia pestis and ruckeri, Klebsiella pneumoniae, and
Providencia stuartii (Bauernfeind et al., 1996; Galimand et al.,
1997; Giles et al., 2004; Welch et al., 2007; Ding et al., 2008;
Fricke et al., 2009; Call et al., 2010; Fernandez-Alarcon et al.,
2011; Lindsey et al., 2011; Walsh et al., 2011; Carattoli, 2013;
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Carraro et al., 2014b; Rahman et al., 2014). ACPs carrying MDR
are also increasingly encountered in enteropathogenic bacteria
recovered from food-producing animals and food products,
mainly S. enterica and E. coli (Glenn et al., 2011; Lindsey et al.,
2011; Randall et al., 2011; Folster et al., 2012; Del Castillo
et al., 2013; Guo et al., 2014). Disturbingly, recent studies
identified multiple extended-spectrum β-lactamases (ESBLs)-
encoding ACPs conferring resistance to a wide range of β-lactam
antimicrobials (Fernandez-Alarcon et al., 2011; Folster et al., 2011,
2012; Walsh et al., 2011; Harmer and Hall, 2015). Carbapenems
were the last effective β-lactams for the treatment of infectious
bacteria carrying ESBLs. Unfortunately, several recently isolated
ACPs propagate the infamous New Delhi metallo-β-lactamase
blaNDM−1 gene and its variants, which code for zinc metallo-
β-lactamases that hydrolyze all penicillins, cephalosporins and
carbapenems (Walsh et al., 2005, 2011; Yong et al., 2009;
Nordmann et al., 2011; Tijet et al., 2015).

ACPs and SRIs are a threat to antibiotic therapies due to
the large variety of antibiotic resistance genes that they bear on
dynamic genetic structures such as integrons and transposons,
further promoting the exchange and capture of resistance genes
from other mobile genetic elements (Hochhut et al., 2001; Mazel,
2006; Welch et al., 2007; Fricke et al., 2009; Wozniak et al.,
2009; Lindsey et al., 2011; Carraro et al., 2014b). Acquisition and
exchange of antibiotic resistance genes are strongly enhanced by
the broad host range of these elements, which can easily spread
across several genera and species of Gammaproteobacteria. This
phenomenon is likely further exacerbated by their mechanism of
transfer as single-stranded DNA molecules have been shown to
stimulate the SOS response in recipient cells, thereby promoting
the intra- and inter-integrons movement of resistance cassettes
(Guerin et al., 2009; Baharoglu et al., 2010, 2012; Cambray et al.,
2011; Escudero et al., 2014).

Modular Organization of SRIs and ACPs

All SRIs share 47 kb of DNA corresponding to a highly conserved
core set of 52 genes with over 95% identity at the nucleotide level
(Wozniak et al., 2009). About half of these genes have been shown
to be essential to ensure the basic maintenance, transfer and
regulatory functions of SRIs. These essential genes are clustered
in four main modules (Figure 1), i.e., the int module which
codes for the integrase and excisionase and ensures intracellular
mobility, the mob and mpf modules which code for a type IV
secretion system (T4SS) and is responsible of the intercellular
mobility (DNA processing and mating pore formation), and the
reg module coding for the regulatory network governing the
expression of the other modules. Each module can contain one
to several transcriptional unit(s) (Figure 1; Poulin-Laprade et al.,
2015). The reg module of SRIs is the most highly conserved locus
amongst members of this family of ICEs (Wozniak et al., 2009).

ACPs are characterized by ∼110 kb of conserved core genes
with over 98% nucleotide sequence identity (Fricke et al., 2009;
Fernandez-Alarcon et al., 2011; Del Castillo et al., 2013; Carraro
et al., 2014b; Harmer and Hall, 2014, 2015). Although ACP
conserved core is larger than the one shared by SRIs, their
organization is highly similar and syntenic (Welch et al., 2007;

Wozniak et al., 2009). In particular, the tra genes of the mob
and mpf modules of ACPs and SRIs are reminiscent of the
IncFI F and IncHI1 R27 plasmids suggesting a common ancestry
(Lawley et al., 2003). One of the most striking differences between
SRIs and ACPs reflects their respective biology. The int module,
which ensures chromosomal integration and excision of SRIs, is
replaced by the repmodule driving the replication of the episomal
ACPs. The conserved core of ACPs also contains several genes of
unknown functions beyond those also found in SRIs.

Distinctive features of the individual members of SRI and
ACP families are provided by insertions of variable cargo DNA
in hotposts dispersed in their respective conserved core. These
insertions vary in size (from ∼60 to 20,000 bp) and encode
adaptative traits that may provide a selective advantage to
the bacterial host in specific conditions, such as resistance to
antibiotics, heavy metals or phage infection, or synthesis of the
second messenger c-di-GMP (Welch et al., 2007; Fricke et al.,
2009; Wozniak et al., 2009; Bordeleau et al., 2010; Carraro et al.,
2014a).

Control of the Conjugative Functions of
SRIs and ACPs

Control of SRI and ACP conjugative transfer is a key attribute for
their propagation and stability. Excessive repression would impair
their dissemination, while overactivation would be a burden for
the bacterial host causing reduced fitness, and ultimately their
instability in the cell population (Lundquist and Levin, 1986;
Scott et al., 1988; Beaber et al., 2002b; Ramsay et al., 2006;
Bellanger et al., 2009; Haft et al., 2009). Moreover, SRIs and
ACPs not only drive their self-transfer, but also the transfer of
phylogenetically unrelated mobilizable genomic islands (MGIs).
Additionally, SRIs in association with MGIs can mobilize up to
1.5 Mb of chromosomal DNA each in Hfr-like conjugal events
initiated prior to their excision (Hochhut et al., 2000; Daccord
et al., 2010). Hence, these elements can potentially mobilize more
than 60% of V. cholerae chromosome I in a single conjugal event.

Transcriptional repressors encoded by SRIs and ACPs repress
the expression of master activator genes, maintaining these
elements in a quiescent state in most cells of the bacterial
population. Both SRIs and ACPs thrive in a large array of
Enterobacteriaceae and Vibrionaceae, which implies that their
regulatory networks are likely autonomous and orthogonal, i.e.,
they allow the activation/repression of the element while avoiding
crosstalks with regulatory networks of the host cell.

The Regulation Module of SRIs and ACPs
SRIs and ACPs bear distinct regulatory modules that govern
their self-transmissibility (Figure 2). These regulatory modules
code for unrelated repressors: SetR for SRIs and Acr1 and
Acr2 for ACPs (Beaber et al., 2004; Carraro et al., 2014a). In
contrast, the regulatory module of SRIs and ACPs code for
related transcriptional activator complexes, respectively SetCD
and AcaCD, that drive the expression of the conjugative genes and
other functions (Beaber et al., 2002b; Carraro et al., 2014a; Poulin-
Laprade et al., 2015). SetCD and AcaCD are distant relatives of
FlhCD, the master activator of flagellum biosynthesis in many
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FIGURE 1 | Schematic representation of the genetic organization and
transcriptional units of the conserved core of SXT/R391 ICEs
(integrated in prfC) and pVCR94∆X (circular map linearized at the start
position of gene mobI) adapted from Poulin-Laprade et al. (2015) and
Carraro et al. (2014a, 2015a). Genes are represented by arrows and color
coded according to their function as indicated in the legend. For clarity, ORF
names vcrxXXX were shortened as XXX for pVCR94∆X. SetCD- and
AcaCD-binding motifs located on positive and negative DNA strands are
represented by light green and red narrow boxes, respectively. Operons are
indicated by arrows positioned above represented genes. SetCD- and

AcaCD-regulated promoters and operons are colored in green. Open circles
mark operons interruptions generated by the map format. mob1-2, DNA
processing; rep, replication; unk1-11, unknown; mpf1-3, mating pore
formation; rec, recombination; reg1-2, regulation. P021−as and P140−as:
vcrx021 and vcrx140 antisens promoters, respectively. P027−in: vcrx027
internal promoter. Black triangles show the position of variable cargo DNA in
SRIs, while variable DNA regions inserted in the conserved core of ACPs are
indicated below genes (VR1 to VR8). The origin of replication (oriV ) and the
origin of transfer (oriT ) are indicated. The position of the FRT site resulting from
the deletion of the antibiotic resistance gene cluster in pVCR94 is also shown.

Gram-negative bacteria (Chevance and Hughes, 2008; Fitzgerald
et al., 2014). Recent studies established the AcaCD and SetCD
regulons and refined the models of transcriptional organization
of the functional core of both types of elements (Figure 1; Carraro
et al., 2014a; Poulin-Laprade et al., 2015).

Repression of SRIs Dissemination
The SetR Repressor
The dominant regulatory state of SRIs is the quiescent state
in which the element is integrated into the chromosome and
the genes associated with recombination and transfer are silent

(Beaber et al., 2004; Poulin-Laprade et al., 2015). In this
dormant state, very few genes are transcribed, including genes
independently regulated belonging to cargo DNA (e.g., antibiotic
resistance genes) and setR. The setR gene is located at the
rightmost end of the integrated ICE (Figure 1). SetR is an acronym
for SXT excision and transfer repressor. setR mRNA transcript
is leaderless, expressed from the PR promoter, and codes for
a 215-amino acid residue protein with a DNA binding helix-
turn-helix motif (HTH_3, PF01381) in its N-terminal moiety
and a C-terminal LexA-like autoproteolysis motif (Peptidase_S24,
PF00717). SetR shares homology with λ CI-like repressors
encoded by lambdoid bacteriophages (Beaber et al., 2002b).
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FIGURE 2 | Comparison of the regulatory modules of SXT/R391 ICEs
(SRI) and IncA/C plasmids (ACP). The genes are color-coded as indicated
in Figure 1 legend. Numbers between the elements represent the percentage
of identity between orthologous proteins. The regulation exerted by SetR,
Acr1, and Acr2 is indicated (minus sign for repression, plus sign for
activation). For clarity, ORF names s0XX were shortened as XX for SRI and
vcrxXXX as XXX for ACP.

The pivotal role of SetR in SRIs regulation is reflected by the
inability to generate a setR mutant of SXT without simultaneous
setR trans-complementation or a preexisting setCD inactivation
(Beaber et al., 2002b, 2004).

SetR Regulation of the PL and PR Early Promoters
SetR maintains the quiescent integrated state of SRIs by binding
to four operator sites (OL, O1, O2, and O3) distributed in the
intergenic region between s086 and setR (Figure 2; Beaber and
Waldor, 2004). Footprint assays revealed that the relative affinity
of SetR for its operators is O1 > O2≈O3 > OL (Beaber and
Waldor, 2004). SetR operator sites bear partial dyad symmetry
and are separated by AT-rich spacers. An additional site located
800 bp downstream of the PL promoter was suggested but never
assessed (Beaber and Waldor, 2004). It has been proposed that
binding of SetR to the four operators between s086 and setR leads
to SetR’s autoregulation of the PR promoter (Beaber et al., 2004).
Binding of SetR to O1 is thought to lead to activation of the PR
promoter. When the cellular pool of SetR exceeds a threshold,
SetR is thought to repress its own expression by further binding
to the low affinity O3 operator, concealing the -10 element of
the PR promoter (Beaber and Waldor, 2004). Beaber and Waldor
(2004) observed the repressive effect of SetR on PR by monitoring
the β-galactosidase activity of a PR-lacZ transcriptional fusion
in strains containing or lacking SXT, or its ∆setCD or ∆setCD
∆setR mutants. Quantification of the β-galactosidase activity in
these strains showed that the presence of SXT lowered the activity
of PR by 30% (SXT− versus SXT+) (Beaber and Waldor, 2004).
Deletion of setCD did not significantly alter PR activity compared
to the SXT+ background,whereas in cells containing SXT∆setCD
∆setR, PR activity was comparable to cells lacking SXT, thereby
confirming that SetR represses PR (Beaber and Waldor, 2004).
SetR binding to O1 and OL obstructs the PL promoter which
drives setCD expression and subsequent activation of conjugative
functions.

The mRNA transcript starting at PL codes for seven proteins
including a predicted λCro-like repressor, the two subunits of the

activator complex SetCD, and the entry exclusiondeterminant Eex
(Figure 2; Beaber et al., 2002b; Beaber and Waldor, 2004; Marrero
and Waldor, 2005; Poulin-Laprade et al., 2015).

Alleviation of SetR Repression
In donor cells, the inductive cue triggering SRI propagation
is linked to the SOS response (Waldor et al., 1996; Beaber
et al., 2004). Using the energy of ATP, RecA polymerizes onto
single-strandedDNA, generating RecA-ssDNA filaments (RecA*)
that are competent for homologous recombination and are also
allosteric effectors unleashing the latent proteolytic activity of
LexA and λ CI-like repressors (Little, 1984; Chen et al., 2008).
Thus, RecA is the central factor linkingDNAdamages (sometimes
caused by antibiotics) to the cellular SOS stress response (DNA
mutagenesis and repair), and to the induction of conjugative
transfer of SRIs that aremajor vectors ofMDR (Beaber et al., 2004;
Baharoglu et al., 2010). Inspired by the extensive work done on the
λ CI repressor, the link between RecA* and SetR was drawn with
the mutant setRG49E in which the Ala-Gly cleavage site activated
by RecA is disrupted (Gimble and Sauer, 1985; Beaber et al.,
2004). As expected, the setRG49E mutant of SXT is unresponsive
to mitomycin C, a DNA damaging agent known to trigger the
bacterial SOS response.

Upon DNA damage, SetR becomes a substrate for RecA*-
mediated self-cleavage, thereby alleviating SetR’s repression on
PL and allowing setCD expression. The -10 and -35 promoter
elements of PL are more similar to the recognition motif of σ70-
bound RNA polymerase (RNAP) than those of PR, likely leading
to a quicker isomerization into an open complex competent for
transcription initiation. Alleviation of SetR repression would then
be sufficient for recognition of PL by RNAP, without the need
of a transcriptional activator. This model is reminiscent of the
regulation of λ PR and PRM early promoters (Strainic et al., 2000;
Ptashne, 2004).

SetR acts as a sentinel “sensing” DNA damages and
triggering the “escape” of SRIs to recipient cells. For an optimal
responsiveness and avoidance of cellular resources misallocation,
SetR expression is tightly regulated and maintained at low
levels (Beaber and Waldor, 2004). The setR transcript is a
leaderless mRNA; the absence of a Shine-Dalgarno sequence is a
post-transcriptional mechanism that likely contributes to a low
intracellular level of SetR protein (Van Etten and Janssen, 1998;
Beaber and Waldor, 2004). Spontaneous induction of the SOS
response in a subpopulation of cells is thought to account for the
low basal transfer of SRIs, which varies between individual SRIs
for reasons that remain unknown (Beaber and Waldor, 2004;
McCool et al., 2004; McGrath et al., 2005; Poulin-Laprade et al.,
2015).

Repression of ACPs
While no SetR homolog has been found in ACPs, their regulatory
module codes for two repressors named Acr1 and Acr2 (IncA/C
repressor 1 and 2; Carraro et al., 2014a). acr1 codes for a 90-amino
acid Ner-like protein that is mainly composed of a helix-turn-
helix DNA binding domain (HTH_35, PF13693). Acr1 directly
represses its own expression from the constitutive promoter
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Pacr1 (Figure 2). This promoter drives the expression of acr1
and also the expression of acaC and acaD, which code for the
activator complex AcaCD. Acr2 is a 139-amino acid H-NS-like
repressor (Histone_HNS, PF00816) that also directly represses
Pacr1 (Carraro et al., 2014a,b).H-NSproteins are known to globally
repress expression of horizontally acquired DNA by binding
AT-rich sequences (Dorman, 2004, 2014; Navarre et al., 2006).
Besides Pacr1, Acr2 might also repress other plasmid- or host-
borne promoters, potentially having awider impact on the biology
of ACPs and their interaction with host cells.

The frequency of transfer of ACPs varies widely from non
detectable to very high (1 in 10 cells for pVCR94; Welch et al.,
2007; Fricke et al., 2009; Carraro et al., 2014b). Inducing factors
triggering the conjugative transfer of ACPs have yet to be
identified (Carraro et al., 2014a,b). Consistent with the absence
of SOS-dependent repressors such as λ CI or ImmR, conjugative
transfer of ACPs is independent of recA and the SOS response
(Auchtung et al., 2005; Carraro et al., 2014b).

The Heteromeric Complexes SetCD and AcaCD
It was previously established that individual deletion of either setC
or setD abolished the excision and transfer of the prototypical SRI
SXT (Beaber et al., 2002b). These deletions were complemented
in trans with plasmids expressing the individual genes, thereby
confirming the central role of SetC and SetD in the biology of
SRIs. Transcriptional lacZ fusions with promoters driving the
expression of int, traL and traG demonstrated that SetCD is a
transcriptional activator of the site-specific recombination and
conjugative transfer genes (Beaber et al., 2002b; Poulin-Laprade
et al., 2015).

A similar characterization was recently carried out for
acaC and acaD, which code for the master activator of ACP
conjugative transfer (Carraro et al., 2014a). For both sets of
transcriptional activators, genetic assays strongly suggest that the
products of the setD-setC and acaD-acaC genes assemble into
higher order protein complexes designated SetCD and AcaCD,
respectively. While no direct experimental evidence support
the oligomerization of SetCD, AcaD was shown to copurify
with 6xHis-tagged AcaC subunit, supporting the formation of
heteromeric complexes as observed for the flagellar gene activator
complex FlhCD (Wang et al., 2006; Carraro et al., 2014a).

Conflicting evidence suggest a possible autoregulation of
SetCD expression. On the one hand, overexpression of SetCD
was reported to result in a 40-fold activation of expression of
a chromosomal setD::lacZ fusion in SXT (Beaber et al., 2002b).
On the other hand, expression from PL, which drives setCD
expression, remained unaffected by deletion of setCD regardless of
the presence of mitomycin C (Beaber et al., 2004). An exhaustive
list of the promoters targeted by SetCD was recently established
for three representative members of the SRI family (SXT, R391
and ICEVflInd1) using chromatin immunoprecipitation coupled
with exonuclease digestion (ChIP-exo) and RNA sequencing
(RNA-seq; Poulin-Laprade et al., 2015). No SetCD binding site
was found upstream of PL or elsewhere in the regulatory module.

A similar experimental approach also allowed to establish
the list of the promoters targeted by AcaCD in pVCR94∆X, a
prototypical ACP lacking most of its resistance genes (Carraro

et al., 2014a,b). TheDNAmotifs recognized by SetCD andAcaCD
were deduced from the multiple targets that were experimentally
determined. Operator sites for SetCD and AcaCD fixation greatly
differ from each other, and from the DNA motif recognized
by E. coli FlhCD (Figure 3A; Carraro et al., 2014a; Fitzgerald
et al., 2014; Poulin-Laprade et al., 2015). Despite their functional
homology, SetCD, AcaCD, and FlhCD exhibit a high degree of
divergence, which is reflected in their respective DNA target
preference and specificity (Liu and Matsumura, 1994; Carraro
et al., 2014a; Fitzgerald et al., 2014; Poulin-Laprade et al., 2015).

SetCD and AcaCD are Pleiotropic Transcriptional
Activators
In many mobile genetic elements, genes involved in a given
biological function are often arranged in an operon structure
within a single module expressed from a single promoter (Celli
and Trieu-Cuot, 1998; Toussaint and Merlin, 2002; Auchtung
et al., 2005; Carraro et al., 2011). The genes coding for the
conjugative machinery of the E. coli IncF1 F plasmid or the
Enterococcus faecalis ICE Tn916 are good examples of such an
organization (Celli and Trieu-Cuot, 1998; Lawley et al., 2003).
In contrast, the conjugation modules of SRIs and ACPs are
fragmented inmultiple and distinct operons (Figures 1 and 3B,C).
This fragmentation of functional modules is most often attributed
to insertions of variable cargo DNA, insertion sequences (IS) and
transposons (Fricke et al., 2009; Wozniak et al., 2009; Fernandez-
Alarcon et al., 2011; Meinersmann et al., 2013). These insertions
occur in sites most likely selected because of their minimal impact
on genes essential for transfer and subsequent maintenance of
SRIs and ACPs in bacterial populations. Discontinuity of the
functional modules complexifies the genetic regulation in terms
of timing and gene dosage for coordinated expression of their
functions allowing the dissemination of SRIs and ACPs. The
efficient activation of the machinery for DNA processing and
mating pore assembly relies on the flexibility and accuracy of
DNA binding by the activator complexes SetCD and AcaCD.
For instance, SetCD can be tolerant to insertion of cargo DNA
in the promoter driving expression of traI in SXT, an essential
component of conjugal transfer (Poulin-Laprade et al., 2015).

Mechanism of Activation by SetCD and AcaCD
ChIP-exo experiments have revealed 11 SetCD-dependent
promoters in SRIs and 19 AcaCD-dependant promoters in ACPs
(Carraro et al., 2014a; Poulin-Laprade et al., 2015). SetCD-
and AcaCD-dependent promoters have poorly conserved -10
and non-conserved -35 boxes, compared to the canonical
σ70 promoter elements (Hawley and McClure, 1983; Kumar
et al., 1993). In each promoter, the DNA motif recognized
by the activator complex partially overlaps the -35 element,
which is usually bound by the σ70 subunit of RNAP (Carraro
et al., 2014a; Poulin-Laprade et al., 2015). This suggests that,
as observed for FlhCD, SetCD and AcaCD compensate for
the lack of a recognizable -35 elements by binding in the -35
region, facilitating the recruitment of σ70-bound RNAP to the
promoters. As such, FlhCD, SetCD and AcaCD act as typical class
II transcriptional activators (Browning and Busby, 2004). FlhCD
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FIGURE 3 | Activation by heteromeric complexes SetCD and AcaCD.
(A) Experimentally determined recognition motifs of SetCD and AcaCD (Carraro
et al., 2014a; Poulin-Laprade et al., 2015). (B) Representation of SetCD targets
in SRIs and in MGIs they mobilize. The arrows indicate transcriptional repression
by SetR (minus sign) and transcriptional activation by SetCD (plus signs).

(C) Representation of AcaCD targets in ACPs and in MGIs from MGIVmi1 and
SGI1 families. The arrows indicate transcriptional repression by Acr1 and Acr2
(minus sign) and transcriptional activation by AcaCD (plus signs). In both B and
C panels, the modules of DNA processing (mob) and mating pair formation
(mpf ) are indicated and color-coded as described in Figure 1 legend.

was shown to interact with the C-terminal domain of RNAP (Liu
et al., 1995). Biochemical characterizations are needed to establish
whether AcaCD and SetCD directly interact with RNAP.

Activation of Integration, Excision, and Stability
Functions
As SRIs maintain by integration in the host cell chromosome,
the major contributor to their maintenance in a bacterial lineage
is the integration/excision module (Hochhut and Waldor, 1999;
Burrus and Waldor, 2003). This module contains the int gene
coding for the integrase, a site-specific tyrosine recombinase, the
xis gene coding for a recombination directionality factor, as well
as their cognate attachment sites, i.e., attP on the circular form,
or attL and attR at both ends of the chromosomally integrated
SRI. Expression of both int and xis is SetCD-dependent, yet
driven from two separate promoters (Burrus and Waldor, 2003;
Poulin-Laprade et al., 2015). Stability of SRIs is also provided
by toxin-antitoxin systems (TA) and a type II active partition
system named srpRMC (SXT/R391 partition; Dziewit et al., 2007;
Wozniak and Waldor, 2009; Carraro et al., 2015b). The srpRM
genes code for the proteins driving the active partition of the
excised element in daughter cells, while srpC is a centromere-like
sequence bound by SrpR (Baxter and Funnell, 2014; Carraro et al.,
2015b). Regulation of integration, excision and active partition
of SRIs are interconnected as srpRM and int are cotranscribed

from the same SetCD-dependent promoter (Poulin-Laprade et al.,
2015).

As plasmids, ACPs maintain in bacterial lineages by
autonomous replication, which is mediated by the repA/oriV
locus in an AcaCD-independent fashion (Llanes et al., 1996;
Carraro et al., 2014a). Orthologs of the SRI’s srpRM genes are also
found in ACPs (vcrx151/vcrx152 in pVCR94). Reminiscent of
SRIs, expression of these srpRM orthologs is AcaCD-dependent
(Carraro et al., 2014a). Interestingly, ACPs also carry genes
coding for a type I ParABC-like partitioning system (Walker-type
ATPase; vcrx031/vcrx032 in pVCR94), whose regulation is likely
independent of AcaCD (Baxter and Funnell, 2014; Carraro et al.,
2014a, 2015b).

Activation of the Conjugative Machinery
SRIs and ACPs code for very similar conjugative machineries,
as reflected by the syntenic organization of their transfer genes
and the closely related proteins they encode (Fricke et al., 2009;
Wozniak et al., 2009). The mobilization modules (mob) code
for key factors involved in DNA molecule preparation (DNA
processing functions) that will be translocated to the recipient
cell through the type IV secretion system encoded by the tra
modules. The relaxase TraI, with the help of the auxiliary protein
MobI, is thought to recognize the origin of transfer (oriT) located
immediately upstream of mobI in both SRIs and ACPs (Figures 1
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and 3B,C; Ceccarelli et al., 2008; Carraro et al., 2014b). By
analogy with other better characterized conjugative systems such
as F, the resulting nucleoprotein complex, aka relaxosome, is
thought to nick one DNA strand within oriT (Llosa et al., 2002).
This DNA strand is delivered to the mating pore linking the
donor and recipient cells. Based on the mechanism of single-
stranded conjugative transfer of the F plasmid, it is assumed
that SRIs and ACPs replicate using the rolling-circle mechanism
during translocation of the transferred DNA strand. Several
studies on ICEs from both Gram-negative and Gram-positive
bacteria showed that ICEs are capable of intracellular rolling-
circle plasmid-like replication (Kiewitz et al., 2000; Pembroke
and Murphy, 2000; Dimopoulou et al., 2002; Grohmann, 2010;
Lee et al., 2010; Carraro et al., 2011, 2015b; Sitkiewicz et al.,
2011). This replication only occurs in a subpopulation of cells
as it is conditional on element activation. Mechanistically, it
does not strikingly differ from rolling-circle replication used
for the stable maintenance of plasmids, uses oriT as an origin
of replication and the relaxase TraI as a replication initiator
protein. In fact, the replication module is part of the mobilization
module (Grohmann, 2010; Lee et al., 2010; Carraro and Burrus,
2014). Although the exact mechanism remains to be elucidated,
SRIs have been shown to replicate in an oriT, TraI and SetCD-
dependent manner (Pembroke and Murphy, 2000; Carraro et al.,
2015b).

Genome-wide footprinting of SetCD andAcaCDDNAbinding
coupled with transcriptomic analyses revealed that the syntenic
mob modules of SRIs and ACPs are divided into different
transcriptional units (Carraro et al., 2014a; Poulin-Laprade et al.,
2015). In SRIs, SetCD binds upstream of mobI (mob1), traI
(mob2a), and traDJ (mob2b). Interestingly, the canonic promoter
driving the expression of traI is disrupted by an insertion into
hotspot 5 (Poulin-Laprade et al., 2015). The -10 element of PtraI is
part of the conserved core and retained, while the -35 element is
variable and provided by inserted cargo DNA. Alteration of PtraI is
associatedwith a poorer affinity for SetCDas determined byChIP-
exo, which could contribute to the lower transfer and replication
of SXT compared with R391 (Carraro et al., 2015b; Poulin-
Laprade et al., 2015). In ACPs, AcaCD activates the expression
of traIDJ (mob2) from a unique promoter (Figure 1; Carraro
et al., 2014a, 2015a). No ACPs available to date in the Genbank
database harbor a PtraI promoter altered by insertion of cargo
DNA (Carraro et al., 2014a). Surprisingly, no AcaCD binding-site
was detected upstream of mobIA/C (formerly known as vcrx001,
Carraro et al., 2014a,b). As for MobI of SRIs, MobIA/C is essential
for conjugative transfer of ACPs (Carraro et al., 2014b). The
impact of such subtle differences on the regulation of conjugative
transfer of SRIs and ACPs need to be experimentally addressed.
Altered regulation of the mob functions can have drastic effects
on the dynamics of these elements since initiation of transfer
(oriT recognition and nicking by the relaxosome) was shown to
be the rate limiting step of SRIs dissemination (Carraro et al.,
2015b).

Other essential components for conjugative transfer of SRIs and
ACPs are the pilus, which stabilizes the initial contact between
cells, and the type IV secretion system (mating pore) through
which DNA is translocated to recipient cells. This conjugative

machinery is encoded by three mating pair formation modules
(mpf ) which are, as the mob modules, syntenic between SRIs,
ACPs and the F plasmid (Figure 1; Lawley et al., 2003; Fricke
et al., 2009; Wozniak et al., 2009). In both SRIs and ACPs,
the mpf1a module contains the traLEKB genes, while traAV
are found in mpf1b (Figure 1; Armshaw and Pembroke, 2013;
Carraro et al., 2014a, 2015a; Poulin-Laprade et al., 2015). The
mpf2 modules are organized differently in SRIs (mpf2: dsbC-
traC-s093-trhF-traWUN) and ACPs (mpf2a: dsbC-traC-vcrx079-
trhF-traW-vcrx082-traU and mpf2b: traN in pVCR94∆X), the
latters expressing traN from its own AcaCD-dependent promoter
(Figures 3B,C). Finally, the mpf3 module (traFHG) has the same
operon structure in both types of elements.

SetCD targets were exclusively found in the conserved
backbone of SRIs (Poulin-Laprade et al., 2015). In contrast,
AcaCD binding sites were also detected upstream of operons
containing genes of unknown functions, as well as in regions that
are not conserved (Carraro et al., 2014a, 2015a). The relevance of
these AcaCD-regulated genes for the biology of ACPs remains to
be determined.

Activation of RecA-independent Homologous
Recombination Functions
In addition to conjugative transfer functions, SRIs and ACPs
code for diverse mutagenic and recombination functions. Both
types of elements include the well-conserved bet and exo genes,
which code for a λ Red-like RecA-independent homologous
recombination system (Garriss et al., 2009). This system
contributes to the formation of hybrid ICEs by recombineering
elements inserted in tandem in the chromosome, generating new
patterns of antibiotic resistance genes. In both SRIs and in ACPs,
the expression of bet and exo is under the control of the SetCD-
and AcaCD-dependent Ps089 and Pvcrx087 promoters, respectively
(Garriss et al., 2013; Carraro et al., 2014a; Poulin-Laprade et al.,
2015). In both cases, the promoter driving their expression
exhibits the highest ChIP-exo enrichment peaks. Although bet
and exo are highly transcribed, their expression is hindered by
a strong translational attenuator located upstream of bet in SXT
(Garriss et al., 2013). This translational attenuator is also present
in ACPs, but its functionality remains to be investigated.

SetCD and AcaCD Trigger the Expression
of Genomic Island-bound Genes

Several autonomous conjugative elements were shown tomobilize
non-autonomous GIs using various mechanisms (Bellanger et al.,
2014). For instance, the conjugative transposon Tn916 trans-
mobilizes the 1.7 kb-GI mTnSAG1 from Streptococcus agalactiae
by recognition of a cryptic oriT located within the lnu(C) gene,
which confers resistance to lincomycin (Achard and Leclercq,
2007). ICEs from Streptococcus thermophilus were shown to
cis-mobilize elements called CIMEs (cis-mobilizable elements)
by a mechanism designated as accretion-mobilization (Pavlovic
et al., 2004; Bellanger et al., 2011). SRIs and ACPs can also
trans-mobilize diverse GIs using distinct strategies for their
dissemination. Interestingly, these strategies are all coupled to the
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regulatory network of their cognate helper element (Daccord et al.,
2010, 2012, 2013; Douard et al., 2010; Carraro et al., 2014a, 2015a;
Poulin-Laprade et al., 2015).

SRIs-dependent Mobilization of Genomic Islands
Characterization of the oriT sequence of SRIs allowed
identification of chromosomal oriT-like sequences that were
more than 63% identical (Ceccarelli et al., 2008; Daccord et al.,
2010). Further investigations revealed that these cryptic oriT
sequences belong to MGIs integrated at the 3′ end of yicC in
the chromosome of Vibrio, Alteromonas, Pseudoalteromonas,
and Methylophaga species (Daccord et al., 2010, 2013). The size
of these MGIs ranges from 18 to 33 kb with a conserved core
sequence of ∼5.5 kb encompassing four genes (intMGI, cds4, cds8,
rdfM) and their cognate regulatory sequences. intMGI and rdfM
code for the integrase and recombination directionality factor
that allow MGIs to excise from and integrate into the host cell
chromosome. Function of cds4 and cds8 remains unknown. The
conserved backbone of MGIs is disrupted by DNA fragments
that vary in size and gene content. Most of these genes code
for adaptive functions such as type I and type III restriction-
modification system that may confer resistance to bacteriophage
infection (Daccord et al., 2013).

The initial step of an MGI mobilization by SRIs is its excision
from the chromosome. Excision requires the transcriptional
activation of intMGI and rdfM by the SRIs-encoded master
activator SetCD (Figure 3B), and the subsequent recombination
between the attLMGI and attRMGI attachment sites flanking the
MGI (Daccord et al., 2012; Poulin-Laprade et al., 2015). The
resulting circular extrachromosomal MGI carries oriTMGI, which
acts as a cis-acting sequence that mimics the oriT of SRIs and
hijacks the relaxosome encoded by SRIs. Ultimately, the MGI is
translocated to the recipient cell throught the mating apparatus
encoded by SRIs. Once in the recipient cell, the MGI becomes
completely independent of the helper SRI and its transcriptional
activator SetCD to establish itself in the new host. The MGI
constitutively expresses intMGI at a low level, thereby allowing its
own integration into the 3′ end of yicC (Daccord et al., 2012).
MGIVflInd1, initially isolated from Vibrio vulnificus, was used
as a prototype to study MGIs and was reported to be mobilized
at high frequency between E. coli strains by both ICEVflInd1
and SXT (10-3 transconjugants per donor cell). This frequency
rose to 10−1 transconjugants per donor cell upon overexpression
of setCD or induction with mitomycin C treatment (Daccord
et al., 2010, 2012). MGIVflInd1 is also able to cis-mobilize over
1 Mb of chromosomal DNA located 5′ of yicC in an Hfr-like
manner (Daccord et al., 2010). Chromosomal DNA mobilization
by MGIVflInd1 involves initiation of transfer at oriTMGI by the
relaxosome of a SRI prior to excision of the MGI from the
chromosome.

ACP-dependent Mobilization of Genomic Islands
Discovery of the sequences targeted by AcaCD in ACPs was
the cornerstone for the identification of potential chromosomal
targets in genomes of several Enterobacteriaceae and Vibrionaceae
(Carraro et al., 2014a, 2015a). Notably, multiple AcaCD binding
sites were detected in the Salmonella genomic island 1 (SGI1),

which confers MDR to pathogenic S. enterica and was reported
to be mobilized in trans by ACPs by an unknown mechanism
(Doublet et al., 2005; Douard et al., 2010; Carraro et al., 2014a).
AcaCD sites were also detected in other GIs that are or could be
mobilized by ACPs (Carraro et al., 2014a, 2015a).

SGI1-like Elements
SGI1 is a 43-kb chromosomal mobile element carrying a class 1
integron that confers resistance to ampicillin, chloramphenicol,
streptomycin, sulfonamides and tetracycline (ACSSuT
phenotype; Mulvey et al., 2006). SGI1 and related MDR-
conferring GIs have been found integrated at the 3′ end of thdF
(trmE) in a large variety of multidrug resistant S. enterica serovars
and in P. mirabilis (Boyd et al., 2008; Wiesner et al., 2009; Hall,
2010; Girlich et al., 2015). All SGI1-like elements share a highly
conserved ∼27 kb core region, which mostly contain genes of
unknown function (Mulvey et al., 2006; Boyd et al., 2008). The
conserved genes int and xis mediate SGI1’s excision from and
integration into the chromosome (Doublet et al., 2005). Three
conserved tra genes code for putative mating pore components
sharing 40, 60, and 78% identity with ACP’s TraN, TraG and
TraH, respectively. In most SGI1-like elements, the core region
is disrupted between the resolvase-encoding gene res and s044
by complex integrons conferring MDR (Boyd et al., 2008).
Interestingly, a similar variable region is inserted in s023 in the
SGI1-variant SGI2 (formerly SGI1-J; Levings et al., 2008).

Currently, the genetic determinants and the nature of the
interactions allowing the specific mobilization of SGI1 by
ACPs remain largely unknown. Recent work revealed that
the transcriptional activator AcaCD encoded by ACPs triggers
the excision of SGI1 (Carraro et al., 2014a). Indeed, AcaCD-
binding motifs were identified in the promoter region of the
recombination directionality factor-encoding gene xis as well
as upstream of putative regulatory and conjugation proteins
(Figure 3C). SGI1 was reported to be highly stable, even after
350 generations without selective pressure (Kiss et al., 2012).
Nevertheless, these assays were carried out in cells lacking anACP.
This is a major bias since SGI1 cannot excise in the absence of
AcaCD (Carraro et al., 2014a). Interspecies mobilization of SGI1
between S. enterica and E. coli was reported to be highly variable
(10−5 to 10−2 transconjugants per donor cell after overnight
matings), depending on the Salmonella strain, the SGI1 variant
and the IncA/C helper plasmid (Doublet et al., 2005; Kiss et al.,
2012). In contrast, the frequency of transfer of SGI1 mobilized
by pVCR94∆X between E. coli strains was so high that virtually
all recipient cells harbored SGI1 after mating (Carraro et al.,
2014a).

MGIVmi1-like Elements
ACPs also trans-mobilize MGIVmi1, a 16.5 kb element that
belongs to a family of MGIs unrelated to SGI1 and to the MGIs
mobilized by SRIs (Carraro et al., 2014a, 2015a). AcaCD binding
sites were detected upstream of 490 and xis (formally 420), which
code respectively for a 195-amino acids MobI-like protein and
a 94-amino acid residue putative recombination directionality
factor (Figure 3C). Similar characteristics are found in several
GIs inserted in Vibrio mimicus, Vibrio parahaemolyticus, and
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A B

FIGURE 4 | Phylogenetic trees based on alignments of amino acid
sequences of SetC/AcaC (A) and SetD/AcaD (B) orthologs. The flagellar
transcriptional activator proteins FlhC and FlhD of E. coli (Ec) and Serratia

marcescens (Sm) were used as outgroups in phylogenetic analyses. Bootstrap
values are indicated when over 80%. The individual scale bars represent genetic
distances.

Shewanella putrefaciens genomes (Carraro et al., 2015a). Although
these GIs are highly variable in size and content, their conserved
key features strongly suggest that they are mobilizable by ACPs.
Excision of MGIVmi1 was found to be AcaCD-dependent and
its transfer requires the conjugative machinery encoded by ACPs.
Here again, the exact mechanism remains unknown and further
investigation is needed. However, based on the homology with the
structure of the mob1 mobilization module of SRIs and ACPs, we
hypothesized that the oriT locus of these GIs lies within the large
intergenic region located upstream of the AcaCD-dependent gene
coding for a MobI homolog (Carraro et al., 2015a).

Diversity of FlhCD-like Transcriptional
Activators Amongst Conjugative Elements

A search for additional FlhCD-like regulators amongst other
mobile genetic elements was carried out. Because homologies
between SetCD and AcaCD, and the master flagellar activator
FlhCD, are very weak, the Pfam HMM profiles for FlhC
(PF05280) and FlhD (PF05247) domains are unsuitable to
find functional orthologs of SetC/AcaC-like and SetD/AcaD-like

activators in bacterial genomes. To solve this problem, we
generated new HMM profiles based on alignments of the primary
sequence of SetC/AcaC and SetD/AcaD protein orthologs.
Screening of the Genbank non-redundant protein sequence
database using these new profiles revealed a large number of
homologous proteins encoded by diverse types of mobile genetic
elements in Enterobacteriaceae and Vibrionaceae. Phylogenetic
reconstructions using a representative subset of SetC/AcaC
and SetD/AcaD orthologs revealed identical clustering in three
distinct families distantly related to FlhC and FlhD: (i) SetC
and SetD encoded by SRIs, (ii) AcaC and AcaD encoded by
ACPs, (iii) putative proteins encoded by SGI1-like elements,
S006 and S007, here renamed SgaC and SgaD (SGI1 activator
subunits C and D), (iv) putative proteins encoded by pAQU1-
like conjugative plasmids, 208 and 209 that we named AqaD and
AqaC (pAQU1 activator subunits C and D), (v) putative proteins
encoded by pAsa4, G057 and G056, here renamed AsaC and
AsaD (pAsa4 activator subunits C and D; Figure 4). Interestingly,
the genes coding for these putative transcriptional regulators
are found in a similar genetic context in all cases (Figure 5).
They are found in close proximity to a gene coding for a TraG
homolog, a component of the conjugative apparatus, a gene
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FIGURE 5 | Comparison of the genetic context of genes coding for
SetCD/AcaCD orthologs in diverse mobile genetic elements.
Schematic representation of demonstrated or putative regulatory regions of
SXT from V. cholerae O139 (AY055428.1), pVCR94 from V. cholerae O1 El Tor
(NC_023291), pAQU1 from P. damselae subsp. damselae (NC_016983.1),
pAsa4 from Aeromonas salmonicida (CP000645.1) and Salmonella genomic
island 1 (SGI1) from S. enterica subsp. enterica serovar Typhimurium DT104
(AF261825.2). Arrows of similar color represent genes predicted to have
similar functions and are color-coded as in Figure 1 legend. Circles indicate
the position of origins of transfer (pale blue, oriT ), of the origin of replication
(black, oriV ) of pVCR94 based on identity with pRA1, and the position of the
attP site for chromosomal integration of SXT by site-specific recombination
(orange).

coding for putative lysozyme-like protein. and genes coding for
homologs of the SrpRM partition system and MobI protein.
Further investigation are needed to confirm the functionality of
these putative activator complexes regarding the activation of
their cognate mobile GIs, and their potential impact on other
genetic elements.

Concluding Remarks and Perspectives

In the current context of rapid emergence and spread of MDR, it
has become essential to get a better understanding of the dynamics
and the mechanisms of transfer and regulation of mobile GIs that
promote such resistance. A plethora of studies have been aimed
at characterizing the determinants of transfer of various model
conjugative genetic elements such as ICEBs1, Tn916, CTnDOT,
R388, pESBL, pSL20, R27 (Celli and Trieu-Cuot, 1998; Marra and
Scott, 1999; Auchtung et al., 2005; Gibert et al., 2013; Waters
and Salyers, 2013; Fernandez-Lopez et al., 2014; Yamaichi et al.,
2015). Extensive research on SRIs and recent work on ACPs
have refined our grasp of the biology and regulation of these
major players ofMDRpropagation. Classical genetics andmodern
molecular methods have facilitated the complete characterization
of the regulons of SetCD and AcaCD, which greatly improved
our understanding of SRIs, ACPs, and the elements they
mobilize.

Mobilization of GIs requires the SetCD- or AcaCD-dependent
activation of their excision, and involves three distinct
mechanisms of oriT recognition and DNA processing. First,
the MGI-SRI model is based on the recognition of a MGI-borne
sequence mimicking the oriT of the self-transmissible SRI. This

oriT counterfeit is likely recognized as a genuine oriT by the
relaxosome of SRIs, thereby leading to MGI transfer through the
SRI-encoded mating pore. Second, the MGIVmi1-ACP model
likely relies on oriT recognition of MGI by its cognate MobI-like
protein (MobIMGI), whose expression depends on AcaCD. The
subsequent DNA processing at oriT of theMGI likely results from
the interaction of MobIMGI with the MobIA/C-less relaxosome
encoded by ACPs. Finally, the SGI1-ACP model remains the most
elusive mechanism of mobilization as no oriTIncA/C sequence
or MobI-like encoding gene has been identified so far in the
sequence of SGI1-like elements. Further experiments are ongoing
to precisely determine the mechanisms leading to the mobiliation
of such GIs, and potentially of newly identified GIs.

Exploitation of experimentally determined SetCD and AcaCD
recognition motifs to use them as specific tags for in silico
analyses of bacterial genomes is a powerful approach to identify
new mobile GIs mobilized by either SRIs or ACPs (Carraro
et al., 2014a, 2015a). Moreover, additional FlhCD-like regulators
were identified, which given their degree of divergence with
AcaCD and SetCD, likely recognized unrelated DNA motifs. We
anticipate that characterization of these motifs will facilitate the
discovery of additional families of MGIs in sequenced bacterial
genomes.

Mobile genetic elements and their bacterial host are inherently
connected. Horizontally acquired DNA is often silenced by
bacterial host factors such as H-NS-like proteins, most likely to
limit the impact of exogenous DNA on endogenous regulatory
networks and metabolic pathways (Dorman, 2004, 2014; Navarre
et al., 2006; Singh et al., 2014). In the case of SRIs, IHF was shown
to be mandatory for V. cholerae to act as a donor of SXT, but
dispensable in E. coli donors (McLeod et al., 2006). The host factor
Fis does not influence SXT transfer to or fromV. cholerae. Further
studies will be required to evaluate the influence of host factors
on the dynamics of ACPs. Reciprocally, SRIs and ACPs, could
interfere with the regulation of the host cell cellular processes.
Besides the targets identified in MGIs, no clear interactions of
SetCD and AcaCD with chromosomal loci in E. coliwere detected
(Carraro et al., 2014a; Poulin-Laprade et al., 2015). Nevertheless,
considering the limitations of experimental settings and the broad
host range of SRIs and ACPs, interactions with host metabolic
pathways or other bacterial responses cannot be excluded. SetCD
and AcaCD could also target plasmids of other incompatibility
groups or other mobile GIs. Finally, other conjugative elements
that code for FlhCD-like regulators could have a significant impact
on their host biology.

Further investigations on the regulation of self-transmissible
and mobilizable genetic elements will ultimately unravel the
interconnections and the mechanism by which MDR and other
adaptive traits spread among bacterial populations. In the
war against the rampant emergence of untreatable pathogenic
bacteria, fundamental knowledge regarding the key determinants
at play for the dissemination of MDR will be an undeniable asset.
To prevent a possible and imminent post-antibiotic era, mankind
could find its salvation in the development of a new generation of
molecules targeting key regulators aimed at confining or halting
the exchange of MDR-conferring mobile genetic elements in
patients, or even cure them from bacterial populations.
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Authors’ Note

After acceptance of this review, our results demonstrating
the involvement of AcaCD in the excision of SGI1 (Carraro
et al., 2014a) were confirmed by Kiss et al. (2015). This paper
also explores the role of SgaCD (Figures 4 and 5 of this
review) and strongly suggests that similarly to its IncA/C-
encoded counterpart AcaCD, SgaCD of SGI1 activates the
promoter of xis and the subsequent excision of this genomic
island.

Acknowledgments

We are thankful to A. Lavigueur for critical reading of the
manuscript. We are thankful to D. Matteau for its contribution
to Figure 1. This work was supported by a Discovery Grant and
Discovery Acceleration Supplement from the Natural Sciences
and Engineering Council of Canada (326810 and 412288 to VB).
VBholds aCanadaResearchChair inmolecular bacterial genetics.
DPL was supported by a scholarship from the Fonds de Recherche
du Québec–Nature et Technologies (FRQNT).

References

Achard, A., and Leclercq, R. (2007). Characterization of a small mobilizable
transposon, MTnSag1, in Streptococcus agalactiae. J. Bacteriol. 189, 4328–4331.
doi: 10.1128/JB.00213-07

Armshaw, P., and Pembroke, J. T. (2013). Control of expression of the ICE R391
encoded UV-inducible cell-sensitising function. BMC Microbiol. 13:195. doi:
10.1186/1471-2180-13-195

Auchtung, J. M., Lee, C. A., Monson, R. E., Lehman, A. P., and Grossman, A. D.
(2005). Regulation of a Bacillus subtilis mobile genetic element by intercellular
signaling and the global DNAdamage response. Proc. Natl. Acad. Sci. U.S.A. 102,
12554–12559. doi: 10.1073/pnas.0505835102

Badhai, J., Kumari, P., Krishnan, P., Ramamurthy, T., and Das, S. K. (2013).
Presence of SXT integrating conjugative element in marine bacteria isolated
from the mucus of the coral Fungia echinata from Andaman Sea. FEMS
Microbiol. Lett. 338, 118–123. doi: 10.1111/1574-6968.12033

Baharoglu, Z., Bikard, D., and Mazel, D. (2010). Conjugative DNA transfer
induces the bacterial SOS response and promotes antibiotic resistance
development through integron activation. PLoS Genet. 6:e1001165. doi:
10.1371/journal.pgen.1001165

Baharoglu, Z., Krin, E., andMazel, D. (2012). Connecting environment and genome
plasticity in the characterization of transformation-induced SOS regulation and
carbon catabolite control of the Vibrio cholerae integron integrase. J. Bacteriol.
194, 1659–1667. doi: 10.1128/JB.05982-11

Bauernfeind, A., Stemplinger, I., Jungwirth, R., and Giamarellou, H. (1996).
Characterization of the plasmidic beta-lactamase CMY-2, which is responsible
for cephamycin resistance. Antimicrob. Agents Chemother. 40, 221–224.

Baxter, J. C., and Funnell, B. E. (2014). Plasmid partition mechanisms. Microbiol.
Spectr. 2, 1–20. doi: 10.1128/microbiolspec.PLAS-0023-2014

Beaber, J. W., Burrus, V., Hochhut, B., and Waldor, M. K. (2002a). Comparison
of SXT and R391, two conjugative integrating elements: definition of a genetic
backbone for the mobilization of resistance determinants. Cell. Mol. Life Sci. 59,
2065–2070. doi: 10.1007/s000180200006

Beaber, J. W., Hochhut, B., and Waldor, M. K. (2002b). Genomic and
functional analyses of SXT, an integrating antibiotic resistance gene transfer
element derived from Vibrio cholerae. J. Bacteriol. 184, 4259–4269. doi:
10.1128/JB.184.15.4259-4269.2002

Beaber, J. W., Hochhut, B., and Waldor, M. K. (2004). SOS response promotes
horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74. doi:
10.1038/nature02241

Beaber, J. W., and Waldor, M. K. (2004). Identification of operators and promoters
that control SXT conjugative transfer. J. Bacteriol. 186, 5945–5949. doi:
10.1128/JB.186.17.5945-5949.2004

Bellanger, X., Morel, C., Gonot, F., Puymege, A., Decaris, B., andGuedon, G. (2011).
Site-specific accretion of an integrative conjugative element together with a
related genomic island leads to cismobilization and gene capture.Mol.Microbiol.
81, 912–925. doi: 10.1111/j.1365-2958.2011.07737.x

Bellanger, X., Payot, S., Leblond-Bourget, N., and Guedon, G. (2014). Conjugative
and mobilizable genomic islands in bacteria: evolution and diversity. FEMS
Microbiol. Rev. 38, 720–760. doi: 10.1111/1574-6976.12058

Bellanger, X., Roberts, A. P., Morel, C., Choulet, F., Pavlovic, G., Mullany, P.,
et al. (2009). Conjugative transfer of the integrative conjugative elements ICESt1
and ICESt3 from Streptococcus thermophilus. J. Bacteriol. 191, 2764–2775. doi:
10.1128/JB.01412-08

Bi, D., Xu, Z., Harrison, E. M., Tai, C., Wei, Y., He, X., et al. (2012).
ICEberg: a web-based resource for integrative and conjugative elements

found in Bacteria. Nucleic Acids Res. 40, D621–D626. doi: 10.1093/nar/
gkr846

Boltner, D., Macmahon, C., Pembroke, J. T., Strike, P., and Osborn, A. M. (2002).
R391: a conjugative integrating mosaic comprised of phage, plasmid, and
transposon elements. J. Bacteriol. 184, 5158–5169. doi: 10.1128/JB.184.18.5158-
5169.2002

Bordeleau, E., Brouillette, E., Robichaud, N., and Burrus, V. (2010). Beyond
antibiotic resistance: integrating conjugative elements of the SXT/R391 family
that encode novel diguanylate cyclases participate to c-di-GMP signalling
in Vibrio cholerae. Environ. Microbiol. 12, 510–523. doi: 10.1111/j.1462-
2920.2009.02094.x

Boyd, D. A., Shi, X., Hu, Q. H., Ng, L. K., Doublet, B., Cloeckaert, A., et al. (2008).
Salmonella genomic island 1 (SGI1), variant SGI1-I, and new variant SGI1-O
in Proteus mirabilis clinical and food isolates from China. Antimicrob. Agents
Chemother. 52, 340–344. doi: 10.1128/AAC.00902-07

Browning, D. F., and Busby, S. J. (2004). The regulation of bacterial transcription
initiation. Nat. Rev. Microbiol. 2, 57–65. doi: 10.1038/nrmicro787

Burrus, V., Marrero, J., and Waldor, M. K. (2006). The current ICE age: biology and
evolution of SXT-related integrating conjugative elements. Plasmid 55, 173–183.
doi: 10.1016/j.plasmid.2006.01.001

Burrus, V., Pavlovic, G., Decaris, B., and Guedon, G. (2002). Conjugative
transposons: the tip of the iceberg. Mol. Microbiol. 46, 601–610. doi:
10.1046/j.1365-2958.2002.03191.x

Burrus, V., and Waldor, M. K. (2003). Control of SXT integration and excision.
J. Bacteriol. 185, 5045–5054. doi: 10.1128/JB.185.17.5045-5054.2003

Burrus, V., and Waldor, M. K. (2004). Shaping bacterial genomes with
integrative and conjugative elements. Res. Microbiol. 155, 376–386. doi:
10.1016/j.resmic.2004.01.012

Call, D. R., Singer, R. S., Meng, D., Broschat, S. L., Orfe, L. H., Anderson,
J. M., et al. (2010). blaCMY-2-positive IncA/C plasmids from Escherichia
coli and Salmonella enterica are a distinct component of a larger lineage
of plasmids. Antimicrob. Agents Chemother. 54, 590–596. doi: 10.1128/AAC.
00055-09

Cambray, G., Sanchez-Alberola, N., Campoy, S., Guerin, E., Da Re,
S., Gonzalez-Zorn, B., et al. (2011). Prevalence of SOS-mediated
control of integron integrase expression as an adaptive trait of
chromosomal and mobile integrons. Mob. DNA 2, 6. doi: 10.1186/
1759-8753-2-6

Carattoli, A. (2013). Plasmids and the spread of resistance. Int. J. Med. Microbiol.
303, 298–304. doi: 10.1016/j.ijmm.2013.02.001

Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L., and Threlfall, E. J.
(2005). Identification of plasmids by PCR-based replicon typing. J. Microbiol.
Methods 63, 219–228. doi: 10.1016/j.mimet.2005.03.018

Carraro, N., and Burrus, V. (2014). Biology of Three ICE Families:
SXT/R391, ICEBs1, and ICESt1/ICESt3. Microbiol. Spectr. 2, 1–20. doi:
10.1128/microbiolspec.MDNA3-0008-2014

Carraro, N., Libante, V., Morel, C., Decaris, B., Charron-Bourgoin, F., Leblond,
P., et al. (2011). Differential regulation of two closely related integrative and
conjugative elements from Streptococcus thermophilus. BMC Microbiol. 11:238.
doi: 10.1186/1471-2180-11-238

Carraro, N., Matteau, D., Burrus, V., and Rodrigue, S. (2015a). Unraveling
the regulatory network of IncA/C plasmid mobilization: when genomic
islands hijack conjugative elements. Mob. Genet. Elements 5, 1–5. doi:
10.1080/2159256x.2015.1045116

Carraro, N., Poulin, D., and Burrus, V. (2015b). Replication and active partition
of integrative and conjugative elements (ICEs) of the SXT/R391 family: the

Frontiers in Microbiology | www.frontiersin.org August 2015 | Volume 6 | Article 83712

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Poulin-Laprade et al. SXT/R391 and IncA/C conjugation regulation

line between ICEs and conjugative plasmids is getting thinner. PLoS Genet.
11:e1005298. doi: 10.1371/journal.pgen.1005298

Carraro, N., Matteau, D., Luo, P., Rodrigue, S., and Burrus, V. (2014a).
The master activator of IncA/C conjugative plasmids stimulates genomic
islands and multidrug resistance dissemination. PLoS Genet. 10:e1004714. doi:
10.1371/journal.pgen.1004714

Carraro, N., Sauve, M., Matteau, D., Lauzon, G., Rodrigue, S., and Burrus, V.
(2014b). Development of pVCR94∆X from Vibrio cholerae, a prototype for
studying multidrug resistant IncA/C conjugative plasmids. Front. Microbiol.
5:44. doi: 10.3389/fmicb.2014.00044

Ceccarelli, D., Daccord, A., Rene, M., and Burrus, V. (2008). Identification of
the origin of transfer (oriT) and a new gene required for mobilization of
the SXT/R391 family of integrating conjugative elements. J. Bacteriol. 190,
5328–5338. doi: 10.1128/JB.00150-08

Celli, J., and Trieu-Cuot, P. (1998). Circularization of Tn916 is required for
expression of the transposon-encoded transfer functions: characterization of
long tetracycline-inducible transcripts reading through the attachment site.Mol.
Microbiol. 28, 103–117.

Chen, Z., Yang, H., and Pavletich, N. P. (2008). Mechanism of homologous
recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489–484.
doi: 10.1038/nature06971

Chevance, F. F., and Hughes, K. T. (2008). Coordinating assembly of a
bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465. doi:
10.1038/nrmicro1887

Coetzee, J. N., Datta, N., and Hedges, R. W. (1972). R factors from Proteus rettgeri.
J. Gen. Microbiol. 72, 543–552.

Daccord, A., Ceccarelli, D., and Burrus, V. (2010). Integrating conjugative elements
of the SXT/R391 family trigger the excision and drive the mobilization of a new
class ofVibrio genomic islands.Mol.Microbiol. 78, 576–588. doi: 10.1111/j.1365-
2958.2010.07364.x

Daccord, A., Ceccarelli, D., Rodrigue, S., and Burrus, V. (2013). Comparative
analysis of mobilizable genomic islands. J. Bacteriol. 195, 606–614. doi:
10.1128/JB.01985-12

Daccord, A., Mursell, M., Poulin-Laprade, D., and Burrus, V. (2012). Dynamics
of the SetCD-regulated integration and excision of genomic islands mobilized
by integrating conjugative elements of the SXT/R391 family. J. Bacteriol. 194,
5794–5802. doi: 10.1128/JB.01093-12

Davies, J., and Davies, D. (2010). Origins and evolution of antibiotic resistance.
Microbiol. Mol. Biol. Rev. 74, 417–433. doi: 10.1128/MMBR.00016-10

de la Cruz, F., Frost, L. S., Meyer, R. J., and Zechner, E. L. (2010). Conjugative DNA
metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34, 18–40. doi:
10.1111/j.1574-6976.2009.00195.x

Del Castillo, C. S., Hikima, J., Jang, H. B., Nho, S. W., Jung, T. S., Wongtavatchai,
J., et al. (2013). Comparative sequence analysis of a multidrug-resistant plasmid
from Aeromonas hydrophila. Antimicrob. Agents Chemother. 57, 120–129. doi:
10.1128/AAC.01239-12

Dimopoulou, I. D., Russell, J. E., Mohd-Zain, Z., Herbert, R., and Crook, D. W.
(2002). Site-specific recombination with the chromosomal tRNA(Leu) gene
by the large conjugative Haemophilus resistance plasmid. Antimicrob. Agents
Chemother. 46, 1602–1603. doi: 10.1128/AAC.46.5.1602-1603.2002

Ding, H., Yang, Y., Lu, Q., Wang, Y., Chen, Y., Deng, L., et al. (2008). The
prevalence of plasmid-mediated AmpC beta-lactamases among clinical isolates
of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in
China. Eur. J. Clin. Microbiol. Infect. Dis. 27, 915–921. doi: 10.1007/s10096-008-
0532-4

Dorman, C. J. (2004). H-NS: a universal regulator for a dynamic genome. Nat. Rev.
Microbiol. 2, 391–400. doi: 10.1038/nrmicro883

Dorman, C. J. (2014). H-NS-like nucleoid-associated proteins, mobile genetic
elements and horizontal gene transfer in bacteria. Plasmid 75, 1–11. doi:
10.1016/j.plasmid.2014.06.004

Douard, G., Praud, K., Cloeckaert, A., and Doublet, B. (2010). The
Salmonella genomic island 1 is specifically mobilized in trans by the
IncA/C multidrug resistance plasmid family. PLoS ONE 5:e15302. doi:
10.1371/journal.pone.0015302

Doublet, B., Boyd, D., Mulvey, M. R., and Cloeckaert, A. (2005). The Salmonella
genomic island 1 is an integrative mobilizable element. Mol. Microbiol. 55,
1911–1924. doi: 10.1111/j.1365-2958.2005.04520.x

Dziewit, L., Jazurek, M., Drewniak, L., Baj, J., and Bartosik, D. (2007). The SXT
conjugative element and linear prophageN15 encode toxin-antitoxin-stabilizing

systems homologous to the tad-ata module of the Paracoccus aminophilus
plasmid pAMI2. J. Bacteriol. 189, 1983–1997. doi: 10.1128/JB.01610-06

Escudero, J., Loot, C., Nivina, A., and Mazel, D. (2014). The integron: adaptation on
demand. Microbiol. Spectr. 3, 1–22. doi: 10.1128/microbiolspec.MDNA3-0019-
2014

Fernandez-Alarcon, C., Singer, R. S., and Johnson, T. J. (2011). Comparative
genomics of multidrug resistance-encoding IncA/C plasmids from commensal
and pathogenic Escherichia coli from multiple animal sources. PLoS ONE
6:e23415. doi: 10.1371/journal.pone.0023415

Fernandez-Lopez, R., Del Campo, I., Revilla, C., Cuevas, A., and De La
Cruz, F. (2014). Negative feedback and transcriptional overshooting in a
regulatory network for horizontal gene transfer. PLoS Genet. 10:e1004171. doi:
10.1371/journal.pgen.1004171

Fitzgerald, D. M., Bonocora, R. P., and Wade, J. T. (2014). Comprehensive mapping
of theEscherichia coli flagellar regulatory network.PLoSGenet. 10:e1004649. doi:
10.1371/journal.pgen.1004649

Folster, J. P., Pecic, G., Mccullough, A., Rickert, R., and Whichard, J. M. (2011).
Characterization of bla(CMY)-encoding plasmids among Salmonella isolated
in the United States in 2007. Foodborne Pathog. Dis. 8, 1289–1294. doi:
10.1089/fpd.2011.0944

Folster, J. P., Pecic, G., Singh, A., Duval, B., Rickert, R., Ayers, S., et al. (2012).
Characterization of extended-spectrum cephalosporin-resistant Salmonella
enterica serovar Heidelberg isolated from food animals, retail meat, and
humans in the United States 2009. Foodborne Pathog. Dis. 9, 638–645. doi:
10.1089/fpd.2012.1130

Fricke, W. F., Welch, T. J., Mcdermott, P. F., Mammel, M. K., Leclerc, J. E., White,
D. G., et al. (2009). Comparative genomics of the IncA/C multidrug resistance
plasmid family. J. Bacteriol. 191, 4750–4757. doi: 10.1128/JB.00189-09

Galimand, M., Guiyoule, A., Gerbaud, G., Rasoamanana, B., Chanteau, S., Carniel,
E., et al. (1997).Multidrug resistance inYersinia pestismediated by a transferable
plasmid. N. Engl. J. Med. 337, 677–680. doi: 10.1056/NEJM199709043371004

Garriss, G., and Burrus, V. (2013). “Integrating conjugative elements of the
SXT/R391 Family,” in Bacterial Integrative Mobile Genetic Elements, eds A. P.
Roberts and P. Mullany (Austin, TX: Landes Biosciences), 217–234.

Garriss, G., Poulin-Laprade, D., and Burrus, V. (2013). DNA-damaging agents
induce the RecA-independent homologous recombination functions of
integrating conjugative elements of the SXT/R391 family. J. Bacteriol. 195,
1991–2003. doi: 10.1128/JB.02090-12

Garriss, G., Waldor, M. K., and Burrus, V. (2009). Mobile antibiotic resistance
encoding elements promote their own diversity. PLoS Genet. 5:e1000775. doi:
10.1371/journal.pgen.1000775

Gibert, M., Juarez, A., Madrid, C., and Balsalobre, C. (2013). New insights in the
role of HtdA in the regulation of R27 conjugation. Plasmid 70, 61–68. doi:
10.1016/j.plasmid.2013.01.009

Giles, W. P., Benson, A. K., Olson, M. E., Hutkins, R. W., Whichard, J. M., Winokur,
P. L., et al. (2004). DNA sequence analysis of regions surrounding blaCMY-2
frommultiple Salmonella plasmid backbones.Antimicrob. Agents Chemother. 48,
2845–2852. doi: 10.1128/AAC.48.8.2845-2852.2004

Gimble, F. S., and Sauer, R. T. (1985). Mutations in bacteriophage lambda repressor
that prevent RecA-mediated cleavage. J. Bacteriol. 162, 147–154.

Girlich, D., Dortet, L., Poirel, L., and Nordmann, P. (2015). Integration of the
blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL)
in a Proteus mirabilis clinical isolate. J. Antimicrob. Chemother. 70, 98–102. doi:
10.1093/jac/dku371

Glenn, L.M., Lindsey, R. L., Frank, J. F.,Meinersmann, R. J., Englen,M.D., Fedorka-
Cray, P. J., et al. (2011). Analysis of antimicrobial resistance genes detected
in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from
food animals. Microb. Drug Resist. 17, 407–418. doi: 10.1089/mdr.2010.
0189

Gorgani, N., Ahlbrand, S., Patterson, A., and Pourmand, N. (2009).
Detection of point mutations associated with antibiotic resistance in
Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 34, 414–418. doi:
10.1016/j.ijantimicag.2009.05.013

Grohmann, E. (2010). Autonomous plasmid-like replication of Bacillus ICEBs1: a
general feature of integrative conjugative elements?Mol. Microbiol. 75, 261–263.
doi: 10.1111/j.1365-2958.2009.06978.x

Guerin, E., Cambray, G., Sanchez-Alberola, N., Campoy, S., Erill, I., Da Re, S., et al.
(2009). The SOS response controls integron recombination. Science 324, 1034.
doi: 10.1126/science.1172914

Frontiers in Microbiology | www.frontiersin.org August 2015 | Volume 6 | Article 83713

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Poulin-Laprade et al. SXT/R391 and IncA/C conjugation regulation

Guglielmini, J., Quintais, L., Garcillan-Barcia, M. P., De La Cruz, F., and
Rocha, E. P. (2011). The repertoire of ICE in prokaryotes underscores the
unity, diversity, and ubiquity of conjugation. PLoS Genet. 7:e1002222. doi:
10.1371/journal.pgen.1002222

Guo, Y. F., Zhang, W. H., Ren, S. Q., Yang, L., Lu, D. H., Zeng, Z. L., et al.
(2014). IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant
Escherichia coli from food animals in China. PLoS ONE 9:e96738. doi:
10.1371/journal.pone.0096738

Haft, R. J., Mittler, J. E., and Traxler, B. (2009). Competition favours reduced cost
of plasmids to host bacteria. ISME J. 3, 761–769. doi: 10.1038/ismej.2009.22

Hall, R. M. (2010). Salmonella genomic islands and antibiotic resistance in
Salmonella enterica. Future Microbiol. 5, 1525–1538. doi: 10.2217/fmb.10.122

Harada, S., Ishii, Y., Saga, T., Tateda, K., and Yamaguchi, K. (2010). Chromosomally
encoded blaCMY-2 located on a novel SXT/R391-related integrating conjugative
element in a Proteus mirabilis clinical isolate. Antimicrob. Agents Chemother. 54,
3545–3550. doi: 10.1128/AAC.00111-10

Hara-Kudo, Y., and Kumagai, S. (2014). Impact of seafood regulations for
Vibrio parahaemolyticus infection and verification by analyses of seafood
contamination and infection. Epidemiol. Infect. 142, 2237–2247. doi:
10.1017/S0950268814001897

Harmer, C. J., and Hall, R. M. (2014). pRMH760, a precursor of A/C(2) plasmids
carrying blaCMY and blaNDM genes. Microb. Drug Resist. 20, 416–423. doi:
10.1089/mdr.2014.0012

Harmer, C. J., and Hall, R. M. (2015). The A to Z of A/C plasmids. Plasmid doi:
10.1016/j.plasmid.2015.04.003 [Epub ahead of print].

Hawley, D. K., and McClure, W. R. (1983). Compilation and analysis of Escherichia
coli promoter DNA sequences. Nucleic Acids Res. 11, 2237–2255.

Hochhut, B., Lotfi, Y., Mazel, D., Faruque, S. M., Woodgate, R., and Waldor, M. K.
(2001).Molecular analysis of antibiotic resistance gene clusters inVibrio cholerae
O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45, 2991–3000. doi:
10.1128/AAC.45.11.2991-3000.2001

Hochhut, B., Marrero, J., and Waldor, M. K. (2000). Mobilization of plasmids
and chromosomal DNA mediated by the SXT element, a constin found in
Vibrio cholerae O139. J. Bacteriol. 182, 2043–2047. doi: 10.1128/JB.182.7.2043-
2047.2000

Hochhut, B., and Waldor, M. K. (1999). Site-specific integration of the conjugal
Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32, 99–110.

Kaper, J. B., Morris, J. G. Jr., and Levine, M. M. (1995). Cholera.Clin. Microbiol. Rev.
8, 48–86.

Kiewitz, C., Larbig, K., Klockgether, J., Weinel, C., and Tummler, B.
(2000). Monitoring genome evolution ex vivo: reversible chromosomal
integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential
Pseudomonas aeruginosa airway isolates. Microbiology 146, 2365–2373. doi:
10.1099/00221287-146-10-2365

Kiss, J., Nagy, B., and Olasz, F. (2012). Stability, entrapment and variant
formation of Salmonella genomic island 1. PLoS ONE 7:e32497. doi:
10.1371/journal.pone.0032497

Kiss, J., Papp, P. P., Szabó, M., Farkas, T., Murányi, G., Szakálla, E. et al. (2015). The
master regulator of IncA/C plasmids is recognized by the Salmonella Genomic
island SGI1 as a signal for excision and conjugal transfer. Nucleic Acids Res. doi:
10.1093/nar/gkv758 [Epub ahead of print].

Kumar, A., Malloch, R. A., Fujita, N., Smillie, D. A., Ishihama, A., and Hayward,
R. S. (1993). The minus 35-recognition region of Escherichia coli sigma 70 is
inessential for initiation of transcription at an “extended minus 10” promoter.
J. Mol. Biol. 232, 406–418. doi: 10.1006/jmbi.1993.1400

Lawley, T. D., Klimke, W. A., Gubbins, M. J., and Frost, L. S. (2003). F factor
conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224, 1–15.
doi: 10.1016/S0378-1097(03)00430-0

Lee, C. A., Babic, A., and Grossman, A. D. (2010). Autonomous plasmid-like
replication of a conjugative transposon. Mol. Microbiol. 75, 268–279. doi:
10.1111/j.1365-2958.2009.06985.x

Levings, R. S., Djordjevic, S. P., andHall, R. M. (2008). SGI2, a relative of Salmonella
genomic island SGI1with an independent origin.Antimicrob. Agents Chemother.
52, 2529–2537. doi: 10.1128/AAC.00189-08

Lindsey, R. L., Frye, J. G., Fedorka-Cray, P. J., and Meinersmann, R. J. (2011).
Microarray-based analysis of IncA/C plasmid-associated genes frommultidrug-
resistant Salmonella enterica. Appl. Environ. Microbiol. 77, 6991–6999. doi:
10.1128/AEM.00567-11

Little, J. W. (1984). Autodigestion of lexA and phage lambda repressors. Proc. Natl.
Acad. Sci. U.S.A. 81, 1375–1379.

Liu, X., Fujita, N., Ishihama, A., and Matsumura, P. (1995). The C-terminal
region of the alpha subunit of Escherichia coli RNA polymerase is required
for transcriptional activation of the flagellar level II operons by the FlhD/FlhC
complex. J. Bacteriol. 177, 5186–5188.

Liu, X., and Matsumura, P. (1994). The FlhD/FlhC complex, a transcriptional
activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176,
7345–7351.

Llanes, C., Gabant, P., Couturier, M., Bayer, L., and Plesiat, P. (1996). Molecular
analysis of the replication elements of the broad-host-range RepA/C replicon.
Plasmid 36, 26–35. doi: 10.1006/plas.1996.0028

Llanes, C., Gabant, P., Couturier, M., and Michel-Briand, Y. (1994). Cloning
and characterization of the Inc A/C plasmid RA1 replicon. J. Bacteriol. 176,
3403–3407.

Llosa, M., Gomis-Ruth, F. X., Coll, M., and De La Cruz Fd, F. (2002). Bacterial
conjugation: a two-step mechanism for DNA transport.Mol. Microbiol. 45, 1–8.
doi: 10.1046/j.1365-2958.2002.03014.x

Loharikar, A., Newton, A. E., Stroika, S., Freeman, M., Greene, K. D., Parsons,
M. B., et al. (2015). Cholera in the United States, 2001–2011: a reflection of
patterns of global epidemiology and travel. Epidemiol. Infect. 143, 695–703. doi:
10.1017/S0950268814001186

Lopez-Perez, M., Gonzaga, A., and Rodriguez-Valera, F. (2013). Genomic
diversity of “deep ecotype” Alteromonas macleodii isolates: evidence for
Pan-Mediterranean clonal frames. Genome Biol. Evol. 5, 1220–1232. doi:
10.1093/gbe/evt089

Lundquist, P. D., and Levin, B. R. (1986). Transitory derepression and the
maintenance of conjugative plasmids. Genetics 113, 483–497.

Marra, D., and Scott, J. R. (1999). Regulation of excision of the conjugative
transposon Tn916. Mol. Microbiol. 31, 609–621.

Marrero, J., and Waldor, M. K. (2005). Interactions between inner membrane
proteins in donor and recipient cells limit conjugal DNA transfer. Dev. Cell 8,
963–970. doi: 10.1016/j.devcel.2005.05.004

Mazel, D. (2006). Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4,
608–620. doi: 10.1038/nrmicro1462

McCool, J. D., Long, E., Petrosino, J. F., Sandler, H. A., Rosenberg, S. M., and
Sandler, S. J. (2004). Measurement of SOS expression in individual Escherichia
coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53, 1343–1357.
doi: 10.1111/j.1365-2958.2004.04225.x

McGrath, B. M., O’halloran, J. A., and Pembroke, J. T. (2005). Pre-exposure
to UV irradiation increases the transfer frequency of the IncJ conjugative
transposon-like elements R391, R392, R705, R706, R997, and pMERPH
and is recA+ dependent. FEMS Microbiol. Lett. 243, 461–465. doi:
10.1016/j.femsle.2005.01.013

McLeod, S. M., Burrus, V., and Waldor, M. K. (2006). Requirement for Vibrio
cholerae integration host factor in conjugative DNA transfer. J. Bacteriol. 188,
5704–5711. doi: 10.1128/JB.00564-06

Meinersmann, R. J., Lindsey, R. L., Bono, J. L., Smith, T. P., and Oakley, B.
B. (2013). Proposed model for the high rate of rearrangement and rapid
migration observed in some IncA/C plasmid lineages. Appl. Environ. Microbiol.
79, 4806–4814. doi: 10.1128/AEM.01259-13

Morris, J. G. Jr. (2003). Cholera and other types of vibriosis: a story of human
pandemics and oysters on the half shell. Clin. Infect. Dis. 37, 272–280. doi:
10.1086/375600

Mulvey, M. R., Boyd, D. A., Olson, A. B., Doublet, B., and Cloeckaert, A. (2006).
The genetics of Salmonella genomic island 1.Microbes Infect. 8, 1915–1922. doi:
10.1016/j.micinf.2005.12.028

Navarre, W. W., Porwollik, S., Wang, Y., Mcclelland, M., Rosen, H., Libby, S.
J., et al. (2006). Selective silencing of foreign DNA with low GC content by
the H-NS protein in Salmonella. Science 313, 236–238. doi: 10.1126/science.
1128794

Nonaka, L., Maruyama, F., Onishi, Y., Kobayashi, T., Ogura, Y., Hayashi, T., et al.
(2014). Various pAQU plasmids possibly contribute to disseminate tetracycline
resistance gene tet(M) among marine bacterial community. Front. Microbiol.
5:152. doi: 10.3389/fmicb.2014.00152

Nordmann, P., Poirel, L., Walsh, T. R., and Livermore, D. M. (2011). The
emerging NDM carbapenemases. Trends Microbiol. 19, 588–595. doi:
10.1016/j.tim.2011.09.005

Frontiers in Microbiology | www.frontiersin.org August 2015 | Volume 6 | Article 83714

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Poulin-Laprade et al. SXT/R391 and IncA/C conjugation regulation

Osorio, C. R., Marrero, J., Wozniak, R. A., Lemos, M. L., Burrus, V., and
Waldor, M. K. (2008). Genomic and functional analysis of ICEPdaSpa1, a fish-
pathogen-derived SXT-related integrating conjugative element that canmobilize
a virulence plasmid. J. Bacteriol. 190, 3353–3361. doi: 10.1128/JB.00109-08

Pavlovic, G., Burrus, V., Gintz, B., Decaris, B., and Guedon, G. (2004).
Evolution of genomic islands by deletion and tandem accretion by site-specific
recombination: ICESt1-related elements from Streptococcus thermophilus.
Microbiology 150, 759–774. doi: 10.1099/mic.0.26883-0

Pembroke, J. T., and Murphy, D. B. (2000). Isolation and analysis of a circular
form of the IncJ conjugative transposon-like elements, R391 and R997:
implications for IncJ incompatibility. FEMS Microbiol. Lett. 187, 133–138. doi:
10.1111/j.1574-6968.2000.tb09149.x

Pembroke, J. T., and Piterina, A. V. (2006). A novel ICE in the genome of Shewanella
putrefaciensW3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS
Microbiol. Lett. 264, 80–88. doi: 10.1111/j.1574-6968.2006.00452.x

Poulin-Laprade, D., Matteau, D., Jacques, P. E., Rodrigue, S., and Burrus,
V. (2015). Transfer activation of SXT/R391 integrative and conjugative
elements: unraveling the SetCD regulon. Nucleic Acids Res. 43, 2045–2056. doi:
10.1093/nar/gkv071

Ptashne,M. (2004).AGenetic Switch: Phage LambdaRevisited, 3rd Edn. Cold Spring
Harbor, NY: Cold Spring Harbor Laboratory Press.

Rahman, M., Shukla, S. K., Prasad, K. N., Ovejero, C. M., Pati, B. K., Tripathi,
A., et al. (2014). Prevalence and molecular characterisation of New Delhi
metallo-beta-lactamases NDM-1, NDM-5, NDM-6, and NDM-7 in multidrug-
resistant Enterobacteriaceae from India. Int. J. Antimicrob. Agents 44, 30–37. doi:
10.1016/j.ijantimicag.2014.03.003

Ramsay, J. P., Sullivan, J. T., Stuart, G. S., Lamont, I. L., and Ronson, C. W.
(2006). Excision and transfer of the Mesorhizobium loti R7A symbiosis island
requires an integrase IntS, a novel recombination directionality factor RdfS,
and a putative relaxase RlxS. Mol. Microbiol. 62, 723–734. doi: 10.1111/j.1365-
2958.2006.05396.x

Randall, L. P., Clouting, C., Horton, R. A., Coldham, N. G., Wu, G., Clifton-Hadley,
F. A., et al. (2011). Prevalence of Escherichia coli carrying extended-spectrum
beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in
Great Britain between 2006 and 2009. J. Antimicrob. Chemother. 66, 86–95. doi:
10.1093/jac/dkq396

Robert-Pillot, A., Copin, S., Himber, C., Gay, M., and Quilici, M. L. (2014).
Occurrence of the three major Vibrio species pathogenic for human in seafood
products consumed in France using real-time PCR. Int. J. Food Microbiol. 189,
75–81. doi: 10.1016/j.ijfoodmicro.2014.07.014

Rodriguez-Blanco, A., Lemos, M. L., and Osorio, C. R. (2012). Integrating
conjugative elements as vectors of antibiotic, mercury, and quaternary
ammonium compound resistance in marine aquaculture environments.
Antimicrob. Agents Chemother. 56, 2619–2626. doi: 10.1128/AAC.05997-11

Scott, J. R., Kirchman, P. A., and Caparon, M. G. (1988). An intermediate in
transposition of the conjugative transposon Tn916. Proc. Natl. Acad. Sci. U.S.A.
85, 4809–4813.

Singh, S. S., Singh, N., Bonocora, R. P., Fitzgerald, D. M., Wade, J. T., and Grainger,
D. C. (2014). Widespread suppression of intragenic transcription initiation by
H-NS. Genes Dev. 28, 214–219. doi: 10.1101/gad.234336.113

Sitkiewicz, I., Green, N. M., Guo, N., Mereghetti, L., and Musser, J. M. (2011).
Lateral gene transfer of streptococcal ICE element RD2 (region of difference
2) encoding secreted proteins. BMC Microbiol. 11:65. doi: 10.1186/1471-
2180-11-65

Smillie, C., Garcillan-Barcia, M. P., Francia, M. V., Rocha, E. P., and De La Cruz,
F. (2010). Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452. doi:
10.1128/MMBR.00020-10

Song, Y., Yu, P., Li, B., Pan, Y., Zhang, X., Cong, J., et al. (2013). The mosaic
accessory gene structures of the SXT/R391-like integrative and conjugative
elements derived from Vibrio spp. isolated from aquatic products and
environment in the Yangtze River Estuary, China. BMC Microbiol. 13:214. doi:
10.1186/1471-2180-13-214

Spagnoletti, M., Ceccarelli, D., Rieux, A., Fondi, M., Taviani, E., Fani, R., et
al. (2014). Acquisition and evolution of SXT-R391 integrative conjugative
elements in the seventh-pandemic Vibrio cholerae lineage. MBio 5:e01356–14.
doi: 10.1128/mBio.01356-14

Strainic, M. G. Jr., Sullivan, J. J., Collado-Vides, J., and Dehaseth, P. L.
(2000). Promoter interference in a bacteriophage lambda control region:
effects of a range of interpromoter distances. J. Bacteriol. 182, 216–220. doi:
10.1128/JB.182.1.216-220.2000

Tijet, N., Richardson, D., Macmullin, G., Patel, S. N., and Melano, R. G. (2015).
Characterization of multiple NDM-1-producing enterobacteriaceae isolates
from the same patient. Antimicrob. Agents Chemother. 59, 3648–3651. doi:
10.1128/AAC.04862-14

Toprak, E., Veres, A., Michel, J. B., Chait, R., Hartl, D. L., and Kishony, R. (2012).
Evolutionary paths to antibiotic resistance under dynamically sustained drug
selection. Nat. Genet. 44, 101–105. doi: 10.1038/ng.1034

Toussaint, A., andMerlin, C. (2002).Mobile elements as a combination of functional
modules. Plasmid 47, 26–35. doi: 10.1006/plas.2001.1552

Van Etten, W. J., and Janssen, G. R. (1998). An AUG initiation codon, not codon-
anticodon complementarity, is required for the translation of unleaderedmRNA
in Escherichia coli. Mol. Microbiol. 27, 987–1001.

Waldor, M. K., Tschape, H., and Mekalanos, J. J. (1996). A new type of
conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim,
and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178, 4157–
4165.

Walsh, T. R., Toleman, M. A., Poirel, L., and Nordmann, P. (2005). Metallo-beta-
lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18, 306–325. doi:
10.1128/CMR.18.2.306-325.2005

Walsh, T. R.,Weeks, J., Livermore, D.M., and Toleman,M. A. (2011). Dissemination
of NDM-1 positive bacteria in the New Delhi environment and its implications
for human health: an environmental point prevalence study. Lancet Infect. Dis.
11, 355–362. doi: 10.1016/S1473-3099(11)70059-7

Wang, S., Fleming, R. T., Westbrook, E. M., Matsumura, P., and Mckay, D.
B. (2006). Structure of the Escherichia coli FlhDC complex, a prokaryotic
heteromeric regulator of transcription. J. Mol. Biol. 355, 798–808. doi:
10.1016/j.jmb.2005.11.020

Waters, J. L., and Salyers, A. A. (2013). Regulation of CTnDOT conjugative transfer
is a complex and highly coordinated series of events.MBio 4, e00569-00513. doi:
10.1128/mBio.00569-13

Welch, T. J., Fricke, W. F., Mcdermott, P. F., White, D. G., Rosso, M. L., Rasko, D.
A., et al. (2007). Multiple antimicrobial resistance in plague: an emerging public
health risk. PLoS ONE 2:e309. doi: 10.1371/journal.pone.0000309

Wiesner, M., Zaidi, M. B., Calva, E., Fernandez-Mora, M., Calva, J. J., and Silva, C.
(2009). Association of virulence plasmid and antibiotic resistance determinants
with chromosomalmultilocus genotypes inMexican Salmonella enterica serovar
Typhimurium strains. BMCMicrobiol. 9:131. doi: 10.1186/1471-2180-9-131

World Health Organization. (2014). Antimicrobial resistance: global report
on surveillance. Available at: http://www.who.int/drugresistance/documents/
surveillancereport/en/

Wozniak, R. A., Fouts, D. E., Spagnoletti, M., Colombo, M. M., Ceccarelli,
D., Garriss, G., et al. (2009). Comparative ICE genomics: insights into the
evolution of the SXT/R391 family of ICEs. PLoS Genet. 5:e1000786. doi:
10.1371/journal.pgen.1000786

Wozniak, R. A., and Waldor, M. K. (2009). A toxin-antitoxin system promotes the
maintenance of an integrative conjugative element. PLoS Genet. 5:e1000439. doi:
10.1371/journal.pgen.1000439

Wozniak, R. A., and Waldor, M. K. (2010). Integrative and conjugative elements:
mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev.
Microbiol. 8, 552–563. doi: 10.1038/nrmicro2382

Yamaichi, Y., Chao, M. C., Sasabe, J., Clark, L., Davis, B. M., Yamamoto, N.,
et al. (2015). High-resolution genetic analysis of the requirements for horizontal
transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids
Res. 43, 348–360. doi: 10.1093/nar/gku1262

Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., et al.
(2009). Characterization of a new metallo-beta-lactamase gene, bla(NDM-1),
and a novel erythromycin esterase gene carried on a unique genetic structure
in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents
Chemother. 53, 5046–5054. doi: 10.1128/AAC.00774-09

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Poulin-Laprade, Carraro and Burrus. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org August 2015 | Volume 6 | Article 83715

http://www.who.int/drugresistance/documents/surveillancereport/en/
http://www.who.int/drugresistance/documents/surveillancereport/en/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids
	Mobile Genetic Elements in the Modern World of Multiresistance
	Diversity and Prevalence of SRIs and ACPs
	Modular Organization of SRIs and ACPs
	Control of the Conjugative Functions of SRIs and ACPs
	The Regulation Module of SRIs and ACPs
	Repression of SRIs Dissemination
	The SetR Repressor
	SetR Regulation of the PL and PR Early Promoters
	Alleviation of SetR Repression

	Repression of ACPs
	The Heteromeric Complexes SetCD and AcaCD
	SetCD and AcaCD are Pleiotropic Transcriptional Activators
	Mechanism of Activation by SetCD and AcaCD
	Activation of Integration, Excision, and Stability Functions
	Activation of the Conjugative Machinery
	Activation of RecA-independent Homologous Recombination Functions


	SetCD and AcaCD Trigger the Expression of Genomic Island-bound Genes
	SRIs-dependent Mobilization of Genomic Islands
	ACP-dependent Mobilization of Genomic Islands
	SGI1-like Elements
	MGIVmi1-like Elements


	Diversity of FlhCD-like Transcriptional Activators Amongst Conjugative Elements
	Concluding Remarks and Perspectives
	Authors' Note
	Acknowledgments
	References


