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Draft Genome Sequences for Three Mercury-Methylating,

Sulfate-Reducing Bacteria
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The genetic basis for bacterial mercury methylation has been described recently. For insights into the physiology of mercury-
methylating bacteria, we present genome sequences for Desulfococcus multivorans strain DSM 2059, Desulfovibrio alkalitolerans

strain DSM 16529, and Desulfovibrio species strain X2.
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elect members of the sulfate-reducing bacteria (SRB) and

Fe(IIT)-reducing bacteria (IRB) can methylate inorganic mer-
cury [Hg(II)] to methylmercury (MeHg), a more toxic form that
bioaccumulates (1). For the first time, recent genetic studies have
linked a specific gene cluster (hgcAB) to mercury methylation in
the model SRB Desulfovibrio desulfuricans strain ND132 and IRB
Geobacter sulfureducens strain PCA (2). The hgcAB gene cluster
encodes a putative corrinoid-containing CO dehydrogenase/
acetyl-coenzyme A (CoA) synthase, HgcA, and a 2[4Fe-4S] ferre-
doxin, HgcB, and these are predicted to have roles as a methyl
carrier and an electron donor, respectively.

The potential involvement of the acetyl-CoA pathway in bac-
terial Hg methylation was recognized more than 20 years ago (3),
although the physiology and MeHg formation in incomplete-
oxidizing SRB (conversion of carbon substrates to acetate) and
complete-oxidizing SRB (conversion of carbon to CO,) remain to
be fully elucidated (4, 5). The majority of known Hg-methylating
Deltaproteobacteria are incomplete oxidizers (6). This means that
when they reduce sulfate, these organisms incompletely oxidize
short-chain fatty acids to acetate and do not utilize C-1 substrates,
and thus they do not use the acetyl-CoA pathway as part of their
primary substrate utilization machinery during heterotrophic
growth (7). Detailed assessments and comparisons of mercury
methylation rates for several Desulfovibrio species that are incom-
plete oxidizers, including those investigated in this study, have
been reported (6, 8). Genome sequences for several SRBs known
or predicted to be mercury methylators have been reported (2,
9-12).

Desulfovibrio multivorans is an example of a complete oxidizer
with an acetyl-CoA pathway, and mercury methylation rates have
been reported for several strains (4, 5). D. alkalitolerans strain
DSM 16529 is an example of a complete oxidizer that can generate
MeHg (8). Desulfovibrio species strain X2 was isolated from soft
black mid-Chesapeake Bay bottom sediments sampled in May
1985 (13), and it methylates both Sn(IV) (14) and Hg(II) (6), but
its detailed physiology has not been fully assessed.

In this study, we generated draft genomes for D. multivorans
DSM 2059, D. alkalitolerans DSM 16529, and Desulfovibrio species
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strain X2. Sequence data for each genome were generated using an
Ilumina MiSeq instrument (15) and a paired-end approach with
an approximate insert library size of 500 bp and read lengths of
250 bp, according to the manufacturer’s instructions. The CLC
Genomics Workbench (version 6.0.2) was used to trim and filter
reads for quality sequence data and subsequent assemblies. The
resulting assemblies generated 149, 32, and 66 DNA contigs that
represented the draft genome sequences for strains DSM 2059,
DSM 16529, and X2, respectively. The estimated genome sizes
were ~4.4, 3.2, and 3.9 Mb and G+C DNA contents were 56.8%,
64.4%, and 67.9%, and there were 3,838, 2,924, and 3,445 putative
coding sequences (CDS) for DSM 2059, DSM 16529, and X2, re-
spectively. Sequence depth coverage across the genomes was ~205
to 309 times the genome sizes. Draft genome sequences were an-
notated as previously described (16).

The draft genome sequences presented here will facilitate com-
parative studies and assist with investigations into HgcAB native
functions, related pathways, and assessments of MeHg potential
in different ecological niches.

Nucleotide sequence accession numbers. This whole-
genome shotgun project has been deposited at DDBJ/EMBL/
GenBank under the accession numbers ATHJ00000000,
ATHI00000000, and ATHV00000000 for D. multivorans DSM
2059, D. alkalitolerans DSM 16529, and Desulfovibrio species
strain X2, respectively. The versions described in this paper are the
first versions.
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