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Radiotherapy (RT) is a crucial treatment modality in managing cancer patients.

However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable,

generating treatment toxicities, such as radiation-associated cardiovascular dysfunction

(RACVD), particularly for those patients with combined therapies or pre-existing adverse

features/comorbidities. Radiation oncologists implement several efforts to decrease heart

dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold

(DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides,

available clinical methods are limited for early detecting and managing RACVD.

The present study reviewed emerging challenges of RACVD in modern radiation

oncology, in terms of clinical practice, bench investigation, and multidisciplinary care.

Several molecules are potential for serving as biomarkers and therapeutic targets.

Of these, miRNAs, endogenous small non-coding RNAs that function in regulating

gene expression, are of particular interest because low-dose irradiation, i.e., 200

mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD

miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the

development of RACVD, further demonstrating the potential bio-application in RACVD.

Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and

progressively worse. Thus, multidisciplinary care from oncologists and cardiologists

is crucial. Combined managements with commodities control (such as hypertension,

hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are

recommended. Some agents show abilities for preventing and managing RACVD, such

as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles

should be confirmed by further prospective trials.
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INTRODUCTION

Radiotherapy (RT) is an essential treatment modality in
managing cancer patients (1, 2). Biologically, RT delivers ionizing
radiation (IR) to eradicate cancer cells mainly through reacting
with H2O to generate reactive oxygen species (ROS) to target
multiple intra-cellular organelles, such as nucleus (mainly DNA),
mitochondria, and cell membrane (3–5). Many IR-associated
normal tissue damages are acute toxicities, characterizing
potentially reversible and self-limited; however, some types of
damages develop late sequelae, which are highly irreversible and
progressively worse (4–6). For example, though the incidence
is rare, irradiated cancer patients who had IR dose sprinkling
to the cardiovascular system may encounter radiation-associated
cardiovascular dysfunctions (RACVDs) (7–9), including blood
pressure reduction (10), carotid stenosis (11), pericardial disease
(12), myocardial infarction (13), pericardial/myocardial fibrosis
(14, 15), valvular heart disease (16), arrhythmia (17), and
subsequent heart failure (18–20). On clinical presentation, many
RACVDs are late RT sequelae, developing a few years later after
RT (21). Notably, as time elapsed, the risk of RACVD is larger
in the third decade than that of the first two decades after IR
exposure (22).

RACVD is a well-known treatment-related toxicity in the
field of cardio-oncology (23–25). Other anti-cancer therapies,
such as chemotherapy (26–29), targeted therapy (30–33),
and immunotherapy (34–36), may also induce cardiovascular
dysfunctions (37–39). As a result, when these therapies are
prescribed concurrently or sequentially with RT, the risk of
RACVD is increased substantially, especially in vulnerable
pediatric (40, 41) or elderly cancer patients (42, 43). Besides,
other RT-associated adverse events may occur with RACVD, such
as ischemic stroke (44, 45) and lung fibrosis (46, 47), which may
further impair patients’ survival and life quality.

Several cardiovascular pathophysiological dysfunctions are
associated with RT, such as late fibrosis/stenosis in the irradiated
cardiovascular structures, mainly the endothelium (including
endothelial cells and its stroma) and smooth muscle cells (2, 4, 5,
48). Epigenetic dysregulation, e.g., DNA methylation regulating
gene expression without changes of sequence, demonstrates
profound effects on the development of RACVD. For instance,
differentially methylated enhancer of diacylglycerol kinase alpha
(DGKA) reduces pro-fibrotic fibroblast activation, involving in
radiation-associated tissue fibrosis and vascular stenosis (49).
Similarly, microRNAs (miRNAs) also have been found to regulate
the innate endothelium response to IR (50).

Clinically, moderate- to high-dose IR to the cardiovascular
system increases the risk of RACVD (2, 4, 5). More notably, low-
dose IR with a single 200 mGy (i.e., one-tenth of conventional RT
daily dose of 200 cGy) has been observed to induce early damage
of RACVD, demonstrating expression changes of miRNAs, e.g.,
miR-21 and miR-146b, and their regulated proteins in primary
human coronary artery endothelial cells (51). This finding
suggests that miRNAs as potential biomarkers for early detecting

RACVD. Furthermore, some miRNAs have been reported as

potential targets in managing RACVD, e.g., miR-15b (52), miR-

21 (51–54), and miR-126-5p (55).

Hence, the present study aimed to review clinical challenges,
potential biomarkers, and therapeutic targets of RACVD, with
a focus on the role of miRNA. Emerging challenges of
multidisciplinary care and example agents for prevention are
also reviewed.

CLINICAL CHALLENGES AND EMERGING
ISSUES FOR DETECTING, MANAGING,
AND PREVENTING RACVD

Clinical Challenges in Improving Detection,
Management, and Prevention of RACVD
Several factors affect the risk of RACVD (Table 1). As a result,
current treatment guidelines recommend several methods to
reduce the risk of RACVD (1, 2, 56). For example, in patients
at high risk, radiation oncologists always consider alternative
treatment choice of deferred RT, adopt rigorous dose constraints
on the cardiovascular system, or implement advanced irradiation
techniques. However, even implementing advanced techniques,
the occurrence of RACVD cannot be avoided totally. Several
issues are still challenging in clinical practice.

Clinical Challenges of Decreasing the Risk of RACVD

in Modern Radiation Oncology
Clinically, the overall incidence of RACVDs is rare but
substantially encountered in irradiated patients with
mediastinum lymphoma (8, 44, 66), head and neck (10, 45),
esophagus (63), lung (13, 61, 62), and breast (12, 21, 56, 64)
cancers. High-risk features of RACVD development are as
follows: left-side breast irradiation (21, 65), combination with
anthracycline-based chemotherapy (65), and vulnerable patient
populations [e.g., pre-existing cardiac risk factors/heart disease
(21, 57) and BRCA1/2 mutation carriers (60)]. For example,
for a typical 50-year-old woman with pre-existing cardiac risk
factors, an estimated 20-year risk of death from ischemic heart
disease after breast RT is up to 1.6%, which is higher than that
of those patients with no RT (i.e., 0.9%) (21, 56, 75). Moreover,
in irradiated left breast cancer patients, each additional Gray
(Gy) of the mean heart dose (MHD) increases the relative risk of
major cardiac events by 7.4% (21).

Radiation oncologists implement several methods to decrease
IR dose to the heart for minimizing the risk of RACVD (76),
such as prone positioning (77), heart block with electronic
compensation (57), heart-sparing three-dimensional printing
technique (78), continuous positive airway pressure (CPAP)
(79), real-time position management (RPM) inspiration gating
(80, 81), proton-beam irradiation (82–85), and deep-inspiration
breath-hold technique (DIBH) (86–90). However, even with the
highly recommended visual-guided DIBH technique, residual
variations of the heart position are still noticeable (91). As a
result, the actual heart dose may be underestimated, burdening
a higher risk of cardiac toxicities than that of estimation from the
RT treatment planning.

For reducing the risk of cardiac toxicities, modern irradiation
techniques aim to decrease irradiation dose to the heart.
Diminishing the mean heart dose (MHD) is the main goal
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TABLE 1 | Factors affect the risk of RACVD.

Factors Description References

PATIENT FACTOR

Pre-existing cardiovascular

risk factors

Patients with pre-existing cardiovascular risk factors, such as prior

cardiovascular disease, diabetes, COPD, smoking history, and high BMI

(obesity), increase the risk of RACVD.

(21, 56–59)

BRCA1/2 mutation carriers Patients with BRCA1/2 mutation demonstrate a higher risk of CVD than that

of control patients.

(60)

Vulnerable populations Pediatric and elderly cancer patients are vulnerable to RTCVD. (40–43)

CANCER FACTOR

Lung cancer RT to lung cancers increases the risk of RTCVD. (13, 61, 62)

Esophagus cancer RT to esophagus cancers, especially the middle/lower third tumors, has a

high risk of RTCVD.

(63)

Breast cancer RT to breast cancers, especially the left side breast, burdens a substantial

risk of RTCVD that may develop in decades.

(12, 21, 64, 65)

Head and neck cancers RT to head and neck cancers increases the risk of RTCVD, mainly carotid

stenosis and subsequent ischemic stroke.

(10, 45)

Lymphoma RT to lymphomas that involved the thorax or head and neck regions

demonstrates a high risk of RTCVD.

(8, 44, 66)

RT HEART DOSE CONSTRAINS

*Lung SABR 1. 50Gy in 4 fractions:

V40 ≤ 1c.c.; V20 ≤ 5c.c.; Dmax ≤ 45Gy.

2. 70Gy in 10 fractions:

V45 ≤ 1c.c.; Dmax ≤ 60Gy.

(67–69)

*Lung RT V30 ≤ 45%; MHD < 26Gy. (67, 70)

*Breast RT V5 < 10%; V25 < 5%; MHD < 4Gy. (67)

*Esophagus RT Dmax (0.03 cc) ≤ 52Gy; V40 < 50%;

MHD < 26Gy.

(67)

*Lymphoma RT MHD < 5Gy ideal, no higher than 15Gy. (67)

COMBINED THERAPY

**Chemotherapy Some regimens demonstrate cardiotoxicities, e.g., anthracycline agents. (26–29, 65)

**Targeted therapy Some targeted therapy has cardiotoxicities, e.g., anti-Her2 and anti-VEGF

agents.

(30–33)

**Immunotherapy Some immunotherapeutic drugs have cardiotoxicities, e.g., anti-PD1/PDL1

agents.

(34–36)

OTHER FACTORS

***Statins Statins use may decrease the risk of RACVD in irradiated cancer patients. (71)

****ACEI and angiotensin II

receptor antagonist

These agents may decrease the risk of RACVD in irradiated cancer patients. (72, 73)

*The dose to OARs is different according to the irradiated sites and cancer disease extension. Radiation oncologists always judge the pros and cons of RT to achieve better tumor

control and fewer toxicities, i.e., judging for maximum tolerated dose (MTD) or as low as reasonably achievable (ALARA) (67, 74).
**Multimodality treatment is the cornerstone in managing cancer patients. However, combined treatments irreversibly enhance the risk of RTCVD.
***Statin used in irradiated cancer patients with hypercholesterolemia may demonstrate double benefits of decreasing the blood level of cholesterol and the risk of RACVD.
****ACEIs and angiotensin II receptor antagonists used in irradiated patients with hypertension may have double benefits of controlling blood pressure and decreasing the risk of RACVD.

“V5” represents the percent volume of organ at risk (i.e., the heart) that is irradiated with an IR dose of ≥5Gy. V25, V30, V40, and V45 are similar representations.

ACEI, angiotensin-converting enzyme inhibitor; ALARA, as low as reasonably achievable; BMI, body mass index; COPD, chronic obstructive pulmonary disease; Dmax, maximal dose;

Gy, gray; MHD, mean heart dose; MTD, maximum tolerated dose; OAR, organ at risk; RACVD, radiation-associated cardiovascular dysfunction; RT, radiotherapy; SABR, stereotactic

ablative body radiotherapy; VEGF, vascular endothelial growth factor.

based on data estimated from conventional tangential technique
(21, 92–94). Nevertheless, attenuating IR doses to coronary
artery (95–97) and other cardiac substructures, such as left
anterior descending artery (LAD) and left ventricle (LV), are
more reasonable and suitable in modern precise RT departments
(2, 66, 95, 98). However, long-term results investigated dose
effects on these cardiac substructures are pending.

Another emerging challenge in clinical radiation oncology
is the concept-shifting on treatment consideration. Previously,

radiation oncologists always apply IR dose to organs at risk
(OARs) according to the principle of “as low as reasonably
achievable (ALARA) (99).” However, in some patient
populations that required very aggressive managements,
the treatment concept frequently shifts to maximum
tolerated dose (MTD) for gaining the ultimate tumor control
(67, 74). Undoubtedly, adopting MTD increases the heart
dose and then burdens a higher risk of RTCVD than that
of ALARA.
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Challenges of Clinical Detection for RACVD
Early detection of RACVD is challenging. Some clinical
predictors have been reported for stratifying patients at risk,
such as dosimetric parameters of RT (61), cardiac risk index
(100), and coronary calcium score (101). Moreover, biomarkers
are clinically helpful for detecting RACVD (102), such as
cardiac troponins (e.g., troponin I or T) and natriuretic peptides
(e.g., B-type natriuretic peptide (BNP) or pro-BNP) (103). On
imaging, echocardiography is the pivotal method to detect
cardiac anatomic and functional changes of RACVD (104–106).
Profound RACVDmay show a reduction of LV ejection fraction,
and subclinical disease may reveal early signs of decreased global
longitudinal strain (107–109). Recently, other advanced imaging
modalities are attractive for detecting RACVD (110), such as
cardiac computed tomography (111–113) and cardiovascular
magnetic resonance (CMR) (114–116).

In recent precision cardio-oncology, it is a promise direction
that applies combined omic-data andmetabolic-function nuclear
images (117), such as single-photon emission computed
tomography (SPECT) (118) and positron emission tomography
(PET) (119–122). Of these, PET that demonstrated metabolic
changes of the heart is the most expecting image marker for
detecting RACVD. However, identifying suitable isotopes of PET
for early detecting RACVD is still challenging.

Challenge of Clinical Managements for RACVD
Unfortunately, there is still no effective method to restore
RT-associated late sequelae, including RACVD, because their
disease courses are generally irreversible (2, 4, 6, 56). However,
several pre-clinic studies have suggested potential targets for
therapeutic interventions, such as HMGB1 (123) and miR-212
(124). Moreover, selective irradiation to the heart induces early
overexpression of pro-hypertrophic miR-212, leading the miR-
212 intervention as a reasonable approach for RACVD (124).

Clinical Prevention for RACVD and Future Challenges
Some clinical agents may be used to prevent the occurrence of
RACVD. For instance, statins, HMG-CoA reductase inhibitors
prescribed for managing hypercholesterolemia, significantly
reduces the risk of stroke [hazard ratio (HR) = 0.68;
95% confidence interval (CI), 0.48–0.98; P = 0.0368] and
demonstrates a trend to decrease the risk of RACVD (HR= 0.85;
95% CI, 0.69–1.04; P= 0.0811) in irradiated cancer patients (71).

The detailed mechanism of statin in protecting the
cardiovascular system is unclear. Some potential mechanisms
are proposed. Firstly, statin inhibits RhoA GTPase (125), which
is essential to mediate the irradiation inhibition of endothelial
cell migration (126–128). Secondly, statin decreases cardiac
endothelial cell permeability via activating ERK5 (129). Thirdly,
statin enhances the release of Nitric Oxide (NO), which is crucial
for improving endothelial function via regulating miR-221/222
(130). Fourthly, statin diminishes IR-induced responses of
cardiac Connexin-43 and miR-21 (53) that involves in the
process of cardiac fibrosis (52).

Clinical strategies, such as close monitoring, smoking
cessation (58, 131), prescribing angiotensin-converting enzyme
inhibitors (ACEIs), and β-blockers, are useful to prevent

anthracycline-associated cardiac toxicities (132, 133). In the
literature, ACEIs also showed a potential for preventing
RACVD. For example, Captopril, one of ACEIs prescribed
for hypertension or heart failure, has been found to decrease
pulmonary endothelial dysfunction in irradiated rats (72).
Similarly, Candesartan, an Angiotensin II Receptor Antagonist,
has been reported to reduce the risk of RACVD in left breast
irradiated patients (73). Thus, a potential mechanism of ACEI
for cardioprotection may be demarcated reasonably by inhibiting
angiotensin II to decrease the expression of TGF-β, a well-known
pro-fibrogenic factor of post-IR late fibrosis (134, 135). However,
these methods required further data support to demarcate their
real roles in preventing the development of RACVD.

Future Challenge: Mixed-Agent-Associated

Cardiotoxicity in Combined Treatments
The major clinical problem is that many cancer patients
were managed with multimodality treatments. As a result,
the incidence of multi-treatment-associated CVDs, such as
combined anthracycline-based chemotherapy and RT (136), is
much higher than that of isolated RACVD. This phenomenon
increases the difficulty of prevention and management,
mostly requiring combined care from multidisciplinary team
members, including radiation oncologists, medical oncologists,
and cardiologists.

Emerging Challenge of Bench Studies to
Improve Early Detection, Management,
and Prevention of RACVD, Focusing on the
Role of miRNA in Acting as a Biomarker
and Therapeutic Target
As mentioned above, in addition to currently clinical use
biomarkers, such as cardiac troponins (e.g., troponin I) and
natriuretic peptides (e.g., BNP) (103), several pre-clinical studies
have been investigated to explore underlying mechanisms of
RACVD, such as TGF-β and PPAR-α signaling pathways (137,
138), damage-associated molecular patterns (DAMPs) (139), and
miRNA modulations (138). Of these, endogenous small non-
coding miRNAs that function in regulating gene expression
(140) grasp more interest in terms of biomarkers (141–143) and
therapeutic targets (144–146) (Table 2).

Emerging Challenges for Investigating Biological

Mechanisms of RACVD
Detail mechanisms of RACVD are not well-recognized. Some
potential mechanisms and pathways have been proposed.
For example, IR may impair corin function and inhibit
natriuretic peptides to accelerate senescence of cardiac and
endothelial cells, contributing to the development of RACVD
(151). Besides, several pathways have been identified with
involvement into the process of RACVD, such as the 5-
lipoxygenase (5-LO)/leukotriene pathway (152), the miRNA-
34a/sirtuin-1 signaling pathway (149), the Reactive Oxygen
Species (ROS)-mediated p16 pathway (153), and the TGF-β-
associated signaling (154).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 February 2020 | Volume 7 | Article 16

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Lee et al. Challenges of Radiation-Associated Cardiovascular Dysfunctions

TABLE 2 | Examples of miRNAs involved in the process of RACVD that are potential for severing as biomarkers or therapeutic targets.

miRNA Description References

miR-1 1. miR-1 involved in cardiac hypertrophy.

2. IR decreased miR-1 in the rat myocardium.

3. HRW attenuated post-IR miR-1 decrease.

(52)

miR-15b 1. miR-15b showed anti-fibrotic, anti-hypertrophic, and anti-oxidative profiles.

2. IR decreased miR-15b value.

3. HRW restored miR-15b value.

(52)

miR-21 1. IR increases miR-21 expression in the irradiated rat hearts.

2. miR-21 involves in the process of cardiac fibrosis.

3. HRW diminishes post-IR myocardial miR-21 levels.

(52)

4. Statins decrease IR-induced cardiac miR-21 response. (53)

5. A single low-dose 200 mGy induces expression changes of miR-21 and its modulated proteins in primary

human coronary artery endothelial cells.

(51)

6. On the contrast, miR-21 may play a cardioprotective role through Per2-dependent mechanisms. (54)

miR-29b miR-29b is one of pro-RACVD miRNAs. (147)

miR-30 miR-30, miR-155, and miR-210 involve in the process of vascular calcification, which is one of the end events of

RACVD that induces coronary artery stenosis and ischemic heart disease, via exosome delivery to vascular

smooth muscle cells.

(148)

miR-34a MIF inhibits miR-34a to protect from radiation-induced cardiomyocyte senescence via targeting SIRT1. (149)

miR-126-5p Applying miR-126-5p therapy represents a potential to improve endothelial recovery and prevent post-IR vascular

re-stenosis.

(55)

miR-146a At 24 h after 2-Gy IR, miR-146a is significantly overexpressed. (150)

miR-146b Low-dose IR with a single 200 mGy induces expression changes of miR-146b and its modulated proteins in

primary human coronary artery endothelial cells.

(51)

miR-155 miR-30, miR-155, and miR-210 involve in the process of vascular calcification, which is one of the end events of

RACVD that induces coronary artery stenosis and ischemic heart disease, via exosome delivery to vascular

smooth muscle cells.

(148)

At 2 h after 2-Gy IR, the level of miR-155 is decreased.

At 24 h after 2-Gy IR, miR-155 is significantly overexpressed.

(150)

miR-210 miR-30, miR-155, and miR-210 involve in the process of vascular calcification, which is one of the end events of

RACVD that induces coronary artery stenosis and ischemic heart disease, via exosome delivery to vascular

smooth muscle cells.

(148)

miR-212 1. Selective irradiation to the heart induced overexpression of pro-hypertrophic miR-212.

As a result, miR-212 is a potential therapeutic target.

(124)

miR-221 1. Statins conduct cardiovascular protection through enhancing the release of NO that is associated mainly with

an improvement of endothelial function via regulating miR-221/222.

(130)

2. At 2 h after 2-Gy IR, the expression of miR-221 is significantly increased. (150)

miR-222 1. Statins conduct cardiovascular protection through enhancing the release of NO that is associated mainly with

an improvement of endothelial function via regulating miR-221/222.

(130)

2. At 2 h after 2-Gy IR, the expression of miR-222 is significantly increased.

At 24 h after 2-Gy IR, miR-222 is significantly down-regulated.

(150)

HRW, hydrogen-risk water (H2 water); IR, ionizing radiation; mGy, micro-Gray; MIF, macrophage migration inhibitory factor; NO, Nitric Oxide; RACVD, radiation-associated

cardiovascular dysfunction.

Moreover, some molecules may play roles in the process
of RACVD, such as peroxisome proliferator-activated receptor
gamma (PPAR-γ) (155), Growth differentiation factor 15
(GDF15) (153), and RhoA GTPase (125) that is essential to
mediate the irradiation inhibition of endothelial cell migration.
More recently, by using RNA-seq, differential gene-expression
profiles have been identified in mice models, such as Nrf2,
PDK1, and sirtuins (156). However, despite these lines of
evidence, the whole picture of RACVD development is still
not well-demarcated.

Another emerging challenge of investigating bio-mechanisms

of RACVD comes from the difference of biological effects among

different irradiation sources, e.g., proton vs. photon beams.

Although proton and photon beams activate similar canonical
radiation response pathways, distinct vascular genomic responses
have been observed in the murine aorta (157). That is, models
established according to photon radiation may not accurately
predict the risk of RACVD associated with proton radiation.

Emerging Challenge of Bench Studies for Early

Detecting and Managing RACVD, Focusing on the

Example Role of miRNA
In the literature, many clinical studies assessed circulating
miRNA levels in peripheral blood for diagnosing, predicting, and
monitoring human diseases (158–163), including cardiac and
vascular disease (CVD) (164–169). For example, the combination
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of miR-34a-5p and fibrinogen levels have been reported as a
useful tool in differentiating pre-thrombotic status in patients
with stable coronary artery disease (165). Moreover, the plasma
expression level of miR-423-5p has been reported to serve as a
promising biomarker for stratifying patients with coronary artery
disease (168).

Similarly, several miRNAs have been found to involve in the
process of RACVD (147, 170, 171). For example, via exosomes-
based delivery to vascular smooth muscle cells, miR-30, miR-
210, and miR-155 play roles in developing vascular calcification,
which is one of the end events of RACVD that induces coronary
artery stenosis and ischemic heart disease (148). Remarkably,
IR-induced miRNAs expression behaves in a dose- and time-
depended manner (150, 172). For instance, at 2 h after 2-Gy IR,
the expression of miRNA-221 and miRNA-222 are significantly
increased, but the level of miRNA-155 is decreased. On the
other hand, at 24 h after 2-Gy IR, miRNA-146a and miRNA-
155 are significantly overexpressed, but miRNA-222 is down-
regulated (150). These patterns of miRNA expression changes
require attention in further prospective studies that intend to
demarcate the role of miRNAs in association with RACVD.

Although it requires further efforts to bridge miRNAs from
bench to bedside, some miRNAs are attractive in early detecting
and managing RACVD (124). For instance, applying miR-126-5p
therapy potentially improves endothelial recovery and prevents
post-irradiation vascular re-stenosis (55). Besides, inhibiting
miR34a by macrophage migration inhibitory factor (MIF)
has been reported to reduce radiation-induced cardiomyocyte
senescence via targeting SIRT1, implicating a novel strategy for
managing RACVD (149). Moreover, molecular hydrogen, i.e.,
hydrogen-rich water (HRW; H2 water), shows protective effects
on IR-induced heart damage via regulating miRNA-1, -15b, and
-21 (52).

In conjunction with miRNAs, circular RNAs (circRNAs) have
been identified to involve in the regulatory network of the
cardiovascular system. In biological function, circular RNAs may
interact with RNA-binding proteins and act as miRNA sponges
that inhibit the function of correspondingly matched miRNAs
(173), demonstrating an ability for serving as novel biomarkers
to early detect cardiovascular disease (174).

Applying circulating miRNA levels of peripheral blood is
an immediately translatable mean for screening/monitoring
RACVD. When researchers selected their miRNA targets by
a literature review (such as targets that listed in the present
study), miRNA database search, or miRNA-specific sequencing,
they can subsequently conduct prospective clinical studies to
validate their targets of interest under the pre-defined purpose
of detecting, screening, or monitoring RACVD by using blood
samples. However, testing details of circulating miRNAs (such
as measuring methods, timing, and cut-off point values) are still
required to be validated by prospectively clinical trials.

In the ClinicalTrials.gov (175), two actively recruiting trials
integrate circulating miRNA as predicting biomarkers to detect
RACVD in irradiated breast cancer patients, entitled: (1), Pre- or
Postoperative Accelerated Radiotherapy (POP-ART; Identifier:
NCT03783364) and (2), Breast Cancer and Cardiotoxicity
Induced by Radiotherapy: the BACCARAT Study (Identifier:

NCT02605512). Of these, the BACCARAT study investigates
the role of several types of circulating biomarkers in detecting
RACVD, including B-type natriuretic peptide, TGF-β1, and
several miRNAs (e.g., miR-1, miR-34, miR-126, and miR-155).
The results of the two trials are highly anticipated.

One potential limitation of applying miRNA in clinical
practice is that the expression level of specific miRNAs would
be varied in different tissues and testing time points. Therefore,
the studies proceeding on the ClinicalTrials.gov may be very
informative. Before the information of these clinical trials is
available, in the authors’ consensus opinion, integrating miRNAs
as a component of circulating biomarkers for detecting RACVD
may be critically considered in future clinical trials and practice
that apply RT. Several measuring time points that similar to the
protocol of the BACCARAT study are suggested as follows: before
RT, the middle term of the RT course, and five time points after
RT (i.e., 1 day, 6 months, 2, 5, and 10 years).

Why the time points of 2, 5, and 10 years should be considered
testing andmeasuring? Themain reason is that RACVD is a well-
known RT toxicity; it characterizes not only acute cardiovascular
damage but also late sequelae of cardiovascular dysfunction that
may be encountered a few years or decades after RT (21, 56, 75).
Thus, long-term series measuring (i.e., 2-, 5-, and 10-years after
RT) of target miRNA levels is useful for early detecting and
monitoring the occurrence and severity altering of RACVD.

Emerging Challenge: Novel Agents and

Managements for Treating RACVD
As mentioned above, TGF-β-associated signaling gains a
substantial interest in investigating the process of RACVD.
For example, reducing irradiation-induced TGF-β1 production
through blocking the NF-kB signaling pathway has been reported
to provide a new insight in inhibiting irradiation-induced
myocardial fibrosis (154). Besides, Protein Kinase C (PKC) has
been reported to play a role in the process of RACVD (48).
Remarkably, inhibiting PKC, such as applying RNA-interference
techniques (176), could be a reasonable approach for managing
IR-induced vascular dysfunction (48).

Some radioprotection agents, such as L-arginine, show
protection effects on blood vessels of urinary bladder wall
in patients treated with pelvic RT (177). Furthermore, IR-
damaged vascular dysfunction has been observed to be
restored by quercetin-filled phosphatidylcholine liposomes and
mesenchymal stem cell injection (48). However, the real clinical
roles of these agents and interventions on the cardiovascular
system require further evidence to define.

Emerging Challenge: Further
Multidisciplinary Cooperation Among
Radiation Oncologists, Cardiologists, and
Molecular Biologists
Multidisciplinary care is required for preventing, detecting,
and managing RACVD in irradiated cancer patients (178).
In conjunction with the improvement of detection methods,
increasing awareness and integrating works between oncologists
and cardiologists are essential (179). Managing comorbidities
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adequately [e.g., hypertension, hypercholesterolemia, and
diabetes control (180)], exercise therapy (181), and smoking
cessation (58, 131) are all useful to decrease the risk of anti-
cancer-treatment-related CVD (182), including RACVD. For
multidisciplinary management, standard recommendation
and structure/infra-structure requirements for patient care
are ongoing established (183–188). For example, establishing
consensus guidance to train RT staffs to delineate cardiac
substructures decreases inter-observer variation and increases
the accuracy of dose estimation, helping in implementing
further randomized clinical trials and then daily clinical
practice (189, 190).

Remarkably, several radiation-associated toxicities, including
RACVDs, are diagnosed by a ruling-out—not ruling-in—way
(2, 6). That is, diagnosing RACVD requires excluding other
heart diseases, such as infectious disease or prior-existing
subclinical cardiovascular dysfunctions. This work requires
tight cooperation and interaction among multidisciplinary team
members, such as radiation oncologists, medical oncologists,
and cardiologists. Further consensus and recommendations are
encouraged to establish in a multidisciplinary manner.

CONCLUSION

Overall, the incidence of RACVD is rare in irradiated cancer
patients. When it happened, however, RACVD may significantly
impair patients’ survival and life quality, particularly in
vulnerable patient populations. Radiation oncologists implement
many clinical efforts to reduce the risk; the incidence of RACVD
is decreased but still substantial.

Further efforts from bench studies are emergently required
to improve early detection, management, and prevention. For
example, miRNAs play active roles in serving as biomarkers
and therapeutic targets. Remarkably, integrating cooperation
among multidisciplinary team members, such as oncologists and
cardiologists, is encouraged and ongoing.

In the ClinicalTrials.gov (175), more than 20 clinical trials are
actively or not yet recruiting for investigating challenging issues
of RACVD, mainly focusing on early detection (e.g., circulating
and imaging biomarkers) and aggressively avoidance/prevention
(e.g., DIBH and proton therapy). Results from these ongoing
trials are hopeful for resolving clinical obstacles of RACVD in
the future.
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