

Received: 21 July 2017 Accepted: 24 October 2017

Published online: 08 November 2017

OPEN In-situ synthesis of amorphous silver silicate/carbonate composites for selective visible-light photocatalytic decomposition

Ruya Cao, Hongcen Yang, Xiaolong Deng , Shouwei Zhang & Xijin Xu

Coupling two different semiconductors to form composite photocatalysts is an extremely significant technique for environmental remediation. Here, a one-step in-situ precipitation method has been developed to prepare amorphous silver silicate/carbonate (AgSiO/Ag2CO3) nanoparticles (NPs) composites, which are well dispersed sphere-like particles with the sizes of around ~50–100 nm. The high-efficiency photocatalytic activities under visible light (VL) have been carefully evaluated, and the AgSiO/Ag₂CO₃ NPs composites exhibit selective photocatalytic degradations on Methylene Blue (MB) and Rhodamine B (RhB). The maximum degradation rate for MB can reach ~99.1% within ~40 min under VL irradiation, much higher than that of RhB (~12%) in the same condition, which can be ascribed to (I) the smaller molecule size of MB than that of RhB, (II) the fast charge separation between AgSiO NPs and Ag₂CO₃ NPs, abundant heterojunction interfaces as well as fully exposed reactive sites. These composites are proposed to be an example for the preparation of other silicate composite photocatalysts for practical applications in environmental remediation.

Photocatalytic technology has become one of the most promising green technology as it can degrade organic pollutants in water to produce non-toxic substances such as CO₂, H₂O and so on with no secondary pollution, mild reaction conditions, and low energy consumption¹⁻³. Especially, semiconductor photocatalysts have attracted wide attention in the field of environmental purification and a lot of achievements have been achieved^{4,5}. Among them, silver carbonate (Ag₂CO₃) has received great research interests, but is restricted by its photocorrosion and lower photocatalytic degradation efficiency². Therefore, it is significantly worthy to make great efforts to solve the problem for the real industrial application. Recently, it has been reported that introducing an electron acceptor in the photocatalytic reaction system can efficiently restrain the photocorrosion³. The silicates have been found to be the effective one^{6,7}, which can not only enhance the photogenerated charge transfer but also broaden the spectral response range⁶⁻⁸. Furthermore, the excited electron-hole pairs can readily transfer between the particles due to the internal polar electric field in the silicate NPs. Among them, silver silicate (AgSiO) has been one of the most famous silicates due to its good stability, high efficiency, nontoxicity, low cost, and it has row band gap which can extend the large of light absorption8. Therefore, visible-light-driven photocatalysts can be exploited by coupling AgSiO with Ag₂CO₃ NPs. Furthermore, the heterojunctions by coupling them favor the separation of photogenerated electron-hole pairs resulting in the improvement of the photocatalytic activity^{9,10}.

In this paper, AgSiO/Ag2CO3 composites with different ratios have been successfully synthesized by an in-situ method. The final samples with different molar ratios of SiO_3^{2-} and CO_3^{2-} exhibit the optimal photocatalytic activities. Besides, the selective photodegradation of two cationic dyes Methylene Blue (MB), Rhodamine B (RhB), and two another anionic dyes Methyl Orange (MO) and Congo Red (Cr) have been carefully investigated¹¹. Finally, the photocatalytic mechanisms of these AgSiO/Ag₂CO₃ composites are carefully discussed.

Experimental Sections

Preparation of the amorphous silver silicates (AgSiO). The AgSiO was synthesized via an in-situ method. For a typical synthesis, 0.2 M AgNO₃ (40 mL) was added into 0.1 M Na₂SiO₃·9H₂O (40 mL) under

School of Physics and Technology, University of Jinan, Shandong, 250022, P.R. China. Correspondence and requests for materials should be addressed to S.Z. (email: zhangsw-1122@163.com) or X.X. (email: sps_xuxj@ujn.edu.cn)

Figure 1. Schematic illustration of the synthesis of AgSiO/Ag₂CO₃ composites.

continuously stirring for 1.0 h. The precipitates were collected and washed with distilled water and ethanol, and finally dried at room temperature.

Preparation of the silver carbonate (Ag₂CO₃). 0.2 M AgNO₃ (40 mL) was slowly drop by drop added into 0.1 M NaHCO₃ (20 mL) under continuously stirring for 1.0 h. The precipitates were collected and washed with distilled water and ethanol, and finally dried at room temperature.

Preparation of the amorphous silver silicate/carbonate heterostructure (AgSiO/Ag₂CO₃). The AgSiO/Ag₂CO₃ composites were synthesized via an *in-situ* precipitation method. In a typical synthetic procedure, 0.1 M Na₂SiO₃·9H₂O (40 mL) were added to 0.1 M NaHCO₃ (20 mL) under stirring for 5 min. Then, 0.2 M AgNO₃ (40 mL) was slowly added to the mixture under stirring for 1.0 h. The precipitates were collected and washed with distilled water and ethanol, and dried at room temperature. The AgSiO/Ag₂CO₃ composites prepared with different molar ratios of Na₂SiO₃·9H₂O and NaHCO₃ in 40, 60, 80, 100 and 120 ml are denominated as AgSiO/Ag₂CO₃-2:1, AgSiO/Ag₂CO₃-3:1, AgSiO/Ag₂CO₃-4:1, AgSiO/Ag₂CO₃-5:1, and AgSiO/Ag₂CO₃-6:1, respectively.

Characterization. Powder X-ray diffraction (XRD) patterns were collected using a D/MAX2500 V diffractometer equipped with Cu K_{α} radiation (λ = 1.5418 Å). The morphologies of the materials were observed using a FEI QUANTA FEG 250 field emission scanning electron microscope (SEM). The structural information of the samples was measured with the standard KBr disk method by a Fourier transform spectrophotometer (FT-IR, Avatar 370, thermo Nicolet). X-ray photoelectron spectroscopy (XPS) was carried out on ESCALAB250 with Mg K_{α} as the source and the C_{1s} peak at 284.6 eV as an internal standard. UV-vis diffuse reflection spectroscopy (DRS) was recorded with a Shimadzu UV-2500 spectrophotometer using BaSO₄ as the reference. The Brunauer–Emmett–Teller (BET) specific surface areas were explored by nitrogen adsorption in a Micromeritics Tristar II 3020 nitrogen adsorption—desorption apparatus in accordance with the Barret–Joyner–Halenda (BJH) technique from the N₂ adsorption isotherms.

Photocatalytic tests. Photocatalytic degradation experiments were conducted in a photocatalytic reactor equipped with a 420 nm cut-off filter and a 500 W Xe lamp as the light source. For the photocatalytic reaction, the photocatalysts (20 mg) were mixed into a MB and RhB solution (50 mL, 10 mg/L). To guarantee the adsorption-desorption counterpoise, the mixed solution was stirred for 60 min in the darkness. Then, the solution was illuminated by VL and a small portion of the suspension (~3.0 mL) was sampled at 10 min illumination spacing. The catalytic efficiency was tested by using a UV-vis spectrophotometer (UV-2500, Shimadzu) for the degradation of RhB and MB.

Results and Discussion

A facile in-situ precipitation method was designed to synthesize $AgSiO/Ag_2CO_3$ nanoparticles as illustrated in Fig. 1. The chemical reaction process can be described as follows:

$$Ag^{+} + SiO_{3}^{2-} + CO_{3}^{2-} + OH^{-} \rightarrow AgSiO/Ag_{2}CO_{3} + H_{2}O$$
 (1)

By adding AgNO $_3$ to the NaHCO $_3$ solution, the CO $_3$ ²⁻ present in the solution will react with the added Ag⁺ by electrostatic interaction to produce Ag $_2$ CO $_3$. Then, the fixed Ag⁺ cations will further react with SiO $_3$ ²⁻ to generate AgSiO with the addition of Na $_2$ SiO $_3$ solution, resulting in the formation of AgSiO/Ag $_2$ CO $_3$ ⁵⁻⁷.

The XRD patterns of pure AgSiO, Ag_2CO_3 and $AgSiO/Ag_2CO_3$ composites are shown in Fig. 2. The broad peak at about 34° could be indexed to the (-124) and (-115) planes for pure AgSiO in Fig. 2A, suggesting its amorphous structure⁶. For the pure Ag_2CO_3 NPs (Fig. 2B), the positions and intensities of the diffraction peaks are well matched with the standard JCPDS card^{2,3,11}. The XRD pattern of $AgSiO/Ag_2CO_3$ composites is shown in Fig. 2A. Obviously, the diffraction peaks of AgSiO and Ag_2CO_3 NPs can be clearly found in curve and without any other

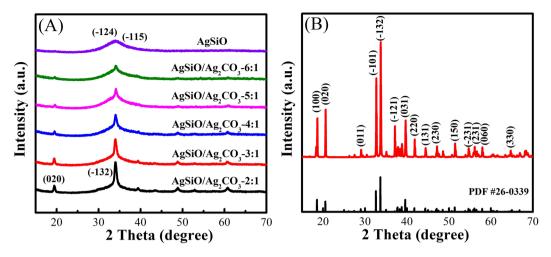
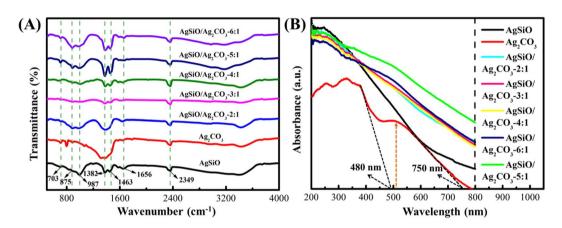



Figure 2. XRD patterns of (A) pure AgSiO and AgSiO/Ag₂CO₃ composites, (B) pure Ag₂CO₃.

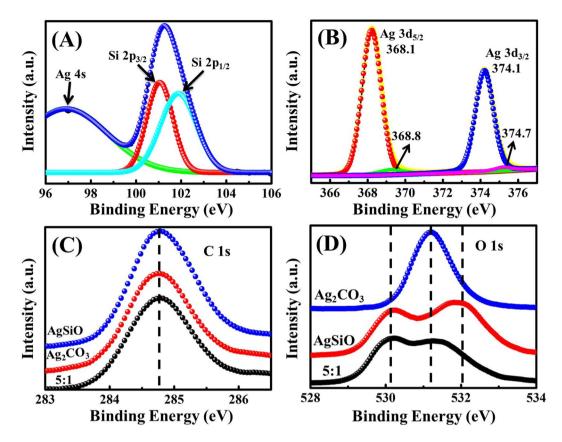
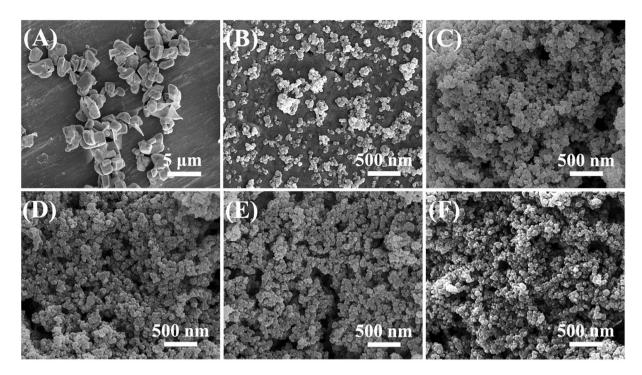


Figure 3. (A) FT-IR spectras of pure Ag₂CO₃, AgSiO and AgSiO/Ag₂CO₃ composites; (B) UV-vis diffuses reflectance spectra of Ag₂CO₃, AgSiO and AgSiO/Ag₂CO₃ composites.

peaks. The peaks of Ag_2CO_3 decreased with increasing AgSiO contents, and the characteristic peak intensity of AgSiO increases with the increase of the AgSiO contents, indicating that $AgSiO/Ag_2CO_3$ composites with high purity have been successfully synthesized by an *in-situ* precipitation^{1,8}.

FTIR spectra of AgSiO, Ag_2CO_3 and $AgSiO/Ag_2CO_3$ composites were recorded as shown in Fig. 3. In comparison to pure AgSiO, the absorption bands of $AgSiO/Ag_2CO_3$ composites obtained at around ~705 cm⁻¹, ~893 cm⁻¹, ~1382 cm⁻¹, and ~1451 cm⁻¹ are attributed to CO_3^{2-} in $Ag_2CO_3^{1,10}$. Compared with pure Ag_2CO_3 , strong absorption band at around ~1382 cm⁻¹ is found for $AgSiO/Ag_2CO_3$ composites, which belongs to the Si-O-Si stretching vibrations⁸. Moreover, there is also another shoulder peak indexed to the Si-O-Si bonds at ~1630 cm⁻¹, which confirms the successful introduction of AgSiO in the composites. Nevertheless, the characteristic peak located at ~1382 cm⁻¹ shifts to higher wavenumbers (Fig. 3). The observed blue shift in the composites after introducing AgSiO (Fig. 3) indicates the weakened bond strengths of Si-O-Si owing to the conjugation between Ag_2CO_3 and $AgSiO^{8,12}$. This result demonstrates the strong interfacial coupling effect in the $AgSiO/Ag_2CO_3$ composites. Compared with the aggregated or large-size nanoparticles, the nature of AgSiO nanoparticles on Ag_2CO_3 acted as nano-islands can facilitate the formation of the heterojunction interfaces and guarantee the higher contact areas^{13,14}. Both characters are essentials to promote photocatalytic activity and to enhance the separation efficiency of photogenerated charges.

The UV-vis diffuse reflectance spectra of $AgSiO/Ag_2CO_3$ composites together with pure AgSiO and Ag_2CO_3 are shown in Fig. 3. The light absorption edge of Ag_2CO_3 is measured to be ~480 nm, and mainly absorptions are ultraviolet light¹⁴. In addition, the peak at 520 nm can be indexed to the Ag nanocrystals. Therefore, we can see that a broad absorption ranging from ~480 to ~750 nm is detected, which is due to the generation of Ag nanocrystals^{15,16}. The $AgSiO/Ag_2CO_3$ composites exhibit the stronger absorption than that of the Ag_2CO_3 NPs in both the visible and ultraviolet light region¹⁷. Obviously, the introduction of AgSiO can significantly enhance the absorption in the visible-light region and can even extend to near-infrared region, which is attributed to the SPR of Ag nanoparticles. It is inferred that the heterojunction of $AgSiO/Ag_2CO_3$ composites results in significantly


Figure 4. (A,B) main peaks of Si $2p_{3/2}$, Si $2p_{1/2}$ and Ag 3d for the AgSiO/Ag₂CO₃-5:1 composite; (C,D) high-resolution XPS spectra of C 1 s and O 1 s of the pure AgSiO, Ag₂CO₃ and AgSiO/Ag₂CO₃-5:1 composite.

decreased interfacial contact barrier and strengthened electronic coupling of the semiconductors to generate more photogenerated electrons/holes with improved photocatalytic performance^{18,19}.

The surface chemical compositions of AgSiO, Ag2CO3 and AgSiO/Ag2CO3-5:1 composite were investigated by XPS (Fig. 4). The full-scan XPS spectra of pure AgSiO, Ag2CO3 and AgSiO/Ag2CO3-5:1 composite (Figure S1) indicate the presence of Ag, Si, O in AgSiO, Ag, C, O in Ag2CO3 and Ag, Si, O, C in AgSiO/Ag2CO3-5:1 composite, respectively 15 . Figure 4A depictes the Si 2p peak of AgSiO/Ag2CO3-5:1 composite. The divided peaks located at $\sim 96.9, \sim 102.8$ and $\sim 101\,\text{eV}$ can be indexed into Ag 4 s, Si 2p1/2 and Si 2p3/2, respectively 6 . Figure 4B shows two XPS peaks located at $\sim 368.1\,\text{eV}$ and ~ 374.1 , which can be indexed to Ag 3d5/2 and Ag 3d3/2 of pure AgSiO, Ag2CO3 and the AgSiO/Ag2CO3-5:1 composite $^{16.17}$. These two peaks can be further divided into four peaks, $\sim 368.1\,\text{and}$ and $\sim 374.1\,\text{eV}$ for Ag+ 3d5/2 and 3d3/2, and $\sim 368.8\,\text{and}$ and $\sim 374.7\,\text{eV}$ for Ag0 3d5/2 and 3d3/2, respectively. The peaks at $\sim 368.8\,\text{and}$ and $\sim 374.7\,\text{eV}$ confirm the existence of metallic Ag0 in our AgSiO/Ag2CO3-5:1 composite. The carbon element in AgSiO is mostly ascribed to the adventitious hydrocarbon from XPS itself. Therefore the strength of C 1 s obeys the decreasing order of Ag2CO3 > AgSiO/Ag2CO3 > AgSiO/Ag2CO3. Figure 4D demonstrates that O 1 s peak in AgSiO/Ag2CO3 contains two distinguishable shoulders in the spectrum, demonstrating that two chemical states of oxygen are present on the surface 21 . The O 1 s peak at $\sim 530.18\,\text{eV}$ can be ascribed to O in AgSiO. Another peak at $\sim 531.93\,\text{eV}$ is attributed to O in AgSiO and Ag2CO3 19 .

The morphologies of Ag_2CO_3 , AgSiO and $AgSiO/Ag_2CO_3$ with different ratios are shown Fig. 5. It can be observed that Ag_2CO_3 are composed of microcubes with the length of ~1.0–5.0 μm in Fig. 5A²². Figure 5B clearly shows that the AgSiO samples are sphere-like particles with the sizes of ~50–100 nm^{22,23}. Figure 5C–F indicate that the morphologies of $AgSiO/Ag_2CO_3$ with different ratios are similar to $AgSiO^{24}$. The presence of SiO^{2-} in the sources has great effects on the final morphology of composite. The particle sizes of the composite decrease with the increase addition of SiO^{2-} . Furthermore, most particles are non-agglomerated and the sizes are mostly less than 100 nm, demonstrating that the samples are really nanosized cluster compounds²⁴. The intimate contact between AgSiO and Ag_2CO_3 will strengthen the photogenerated charge separation and transfer²⁵. Compared with traditional aggregated or large contact structures, this $AgSiO/Ag_2CO_3$ composites can not only provide more surface active sites for sequential photocatalytic reactions, but also shorten the migration distance of photogenerated charges¹⁰.

The HRTEM images in Figure S2(A,B) show that the size of AgSiO/Ag₂CO₃ NPs is of 10 to 20 nm. The lattices of AgSiO/Ag₂CO₃ NPs are clearly visible in the HRTEM images. The close interface between the AgSiO and Ag₂CO₃ nanoparticles reveals the formation of nano-heterojunction²⁶. From the figure, we can see that Ag₂CO₃ is uniformly packaged by an amorphous AgSiO, limiting the growth of Ag₂CO₃²⁷. Figure S2(B) shows the lattice spacing of uniformly dispersed Ag₂CO₃ nanoparticles. The lattice fringes of 0.275 nm is in agreement with the

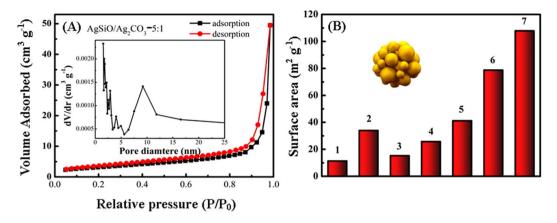


Figure 5. SEM images of **(A)** pure Ag₂CO₃, **(B)** pure AgSiO, **(C)** AgSiO/Ag₂CO₃-3:1 composite, **(D)** AgSiO/Ag₂CO₃-4:1 composite, **(E)** AgSiO/Ag₂CO₃-5:1 composite and **(F)** AgSiO/Ag₂CO₃-6:1 composite.

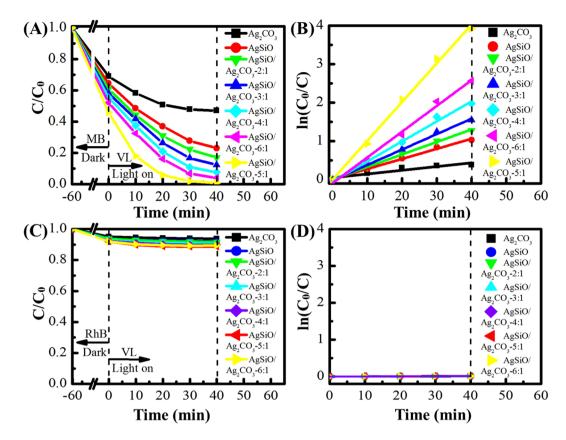
Figure 6. Elemental mapping images and EDS spectrum of the AgSiO/Ag₂CO₃-5:1 composite.

spacings of the (-101) plane of Ag_2CO_3 and consistent with JCPDS Card No. 26–0339²⁸. No lattice fringes of AgSiO can be observed. This kind of heterojunction, which is favorable for the transport of photoexcited carriers, is formed between AgSiO and $Ag_2CO_3^{29}$. Mainwhile, the composites can be further characterized by element mapping and EDS images (Fig. 6), where the Ag, Si, O and C elements are homogeneously distributed over the

Figure 7. (**A**) N_2 adsorption–desorption is otherms and pore size distribution curves calculated for AgSiO/Ag₂CO₃-5:1 composite; (**B**) surface area values of (1) Ag₂CO₃, (2) AgSiO, (3) AgSiO/Ag₂CO₃-2:1 composite, (4) AgSiO/Ag₂CO₃-3:1 composite, (5) AgSiO/Ag₂CO₃-4:1 composite, (6) AgSiO/Ag₂CO₃-5:1 composite and (7) AgSiO/Ag₂CO₃-6:1 composite.

whole profile $^{30-32}$. From the above results, we can expect that the strong interfacial coupling effect between AgSiO and Ag₂CO₃ will promote photogenerated electron-hole pairs separation and transfer, and thus further enhance the photocatalytic performance of AgSiO/Ag₂CO₃ composites 33 .

Surface area, pore size and pore volume parameters for pure AgSiO, pure Ag_2CO_3 and $AgSiO/Ag_2CO_3$ composites were also investigated. The porosity of the $AgSiO/Ag_2CO_3$ composites sample is clearly enhanced. According to Figure S3, all the materials except for Ag_2CO_3 show a narrow pore size distribution with the average diameter of d>2 nm^{13,34}. With further increase of the AgSiO content, the adsorbed volume drops obviously indicating that the enhancement in adsorption volume is not driven solely by the small particles^{6,13,35}. The surface areas of the different $AgSiO/Ag_2CO_3$ composites and pure AgSiO and Ag_2CO_3 are also calculated as shown in Fig. 7B for a better understanding of the composite nanostructure. It can be seen that the surface area of Ag_2CO_3 is $\sim 11.4 \, \text{m}^2 \cdot \text{g}^{-1}$. With further increasing of the amount of the AgSiO, the surface area values of the $AgSiO/Ag_2CO_3$ composites increase obviously. The surface area of $AgSiO/Ag_2CO_3$ -6:1 composite can be achieved $\sim 107.9 \, \text{m}^2 \cdot \text{g}^{-1}$. Although the $AgSiO/Ag_2CO_3$ -5:1 composite specific surface area isn't the largest, the degradation is best, which can be attributed to its heterogeneous structure.


Photocatalytic tests. The photocatalytic activities of pure AgSiO, Ag_2CO_3 and $AgSiO/Ag_2CO_3$ composites with different ratios under VL irradiation are shown in Fig. 8. The degradation reaches as ~99.1% under VL irradiation within ~40 min (Fig. 8A,B). The degradation of RhB is only ~12% in the same condition (Fig. 8C,D)^{36,37}.

All $AgSiO/Ag_2CO_3$ composites exhibit higher photocatalytic activities than either AgSiO or Ag_2CO_3 with the order of $AgSiO/Ag_2CO_3$ -5:1 > $AgSiO/Ag_2CO_3$ -6:1 > $AgSiO/Ag_2CO_3$ -4:1 > $AgSiO/Ag_2CO_3$ -3:1 > $AgSiO/Ag_2CO_3$ -2:1 > $AgSiO/Ag_2CO_3$ -3:1 > $AgSiO/Ag_2CO_3$ -2:1 > $AgSiO/Ag_2CO_3$ -3:1 > $AgSiO/Ag_2CO_3$ -2:1 > $AgSiO/Ag_2CO_3$ -3:1 > $AgSiO/Ag_2CO_3$ -3:1 > $AgSiO/Ag_2CO_3$ -3:1 > $AgSiO/Ag_2CO_3$ -3:1 | $AgSiO/Ag_2$

Figure 9 shows the variation of the absorption spectra of MB under VL irradiation by AgSiO/Ag₂CO₃-5:1 composite. The characteristic peak intensities of MB gradually decrease by prolonging the irradiation time, and the adsorption peaks disappear within ~40 min irradiation^{12,39}. The corresponding optical photographs of MB degradation using different photocatalysts under different irradiation times are collected and displayed in Fig. 9B. The color of MB gradually becomes lighter by prolonging the irradiation time, it can be seen that the color of AgSiO/Ag₂CO₃-5:1 composite becomes transparent while pure color for AgSiO and Ag₂CO₃ turns into azury⁴⁰. The variation of the absorption spectra of RhB under VL irradiation by AgSiO/Ag₂CO₃-5:1 composite is shown in Fig. 9C. The characteristic peak intensities of RhB gradually decreased by prolonging the irradiation time, and the adsorption peaks became constant within ~40 min irradiation indicating the very slow degradation of RhB^{12,38}. These corresponding optical photographs of RhB degradation using different photocatalysts under different irradiation times are in Fig. 9D, showing that the color of RhB almost keeps unchanged.

The selective photocatalytic phenomenon of the AgSiO/Ag₂CO₃-5:1 composite was examined by photodegradation of MB and RhB³⁸. The absorptions peaks of MB located at \sim 664 nm almost disappear after irradiation within \sim 40 min. However, the absorption peaks of RhB located at \sim 554 nm doesn't change too much (Fig. 9)³⁹. As for two cationic dyes MB and RhB, we speculate that the discrepancy in adsorption capacities among them can be ascribed to the molecule size^{29,35}. That is, because the size of MB molecules is smaller than those of RhB, MB can be intercalated into the space, while RhB are too large to intercalate into the NPs³⁷.

Similarly, we used MB&MO, MO&RhB and MO&CR mixture dyes to further research the selectivity of the material. As shown from the figure S4, When AgSiO/Ag₂CO₃ composites were added into the binary mixtures, respectively, the characteristic peaks of cationic dyes MB disappeared quickly, while the characteristic peaks of all

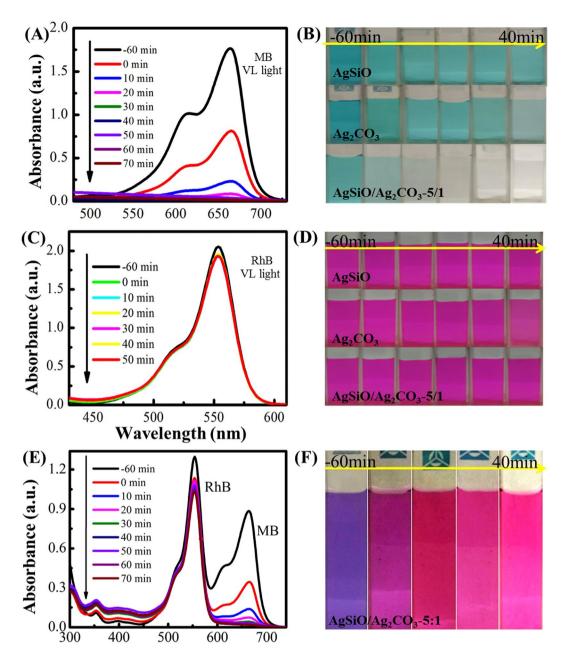
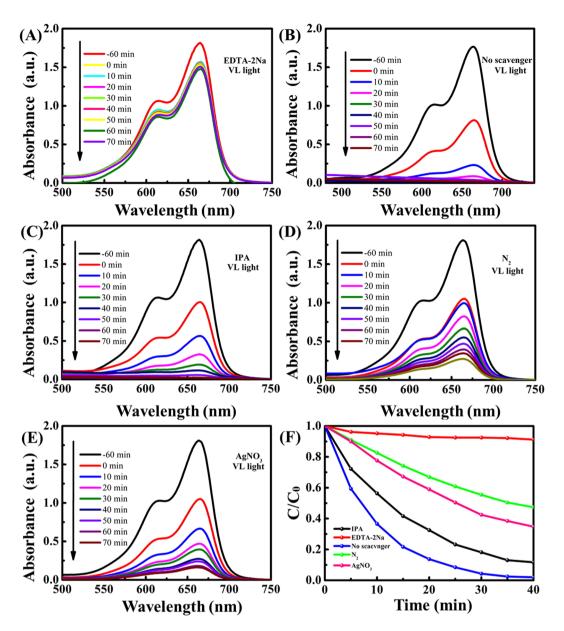
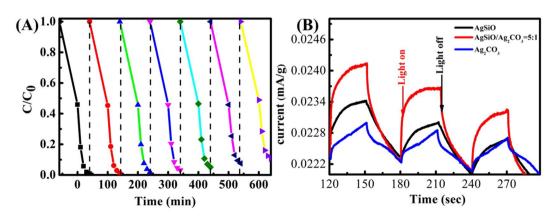


Figure 8. (**A**) The photocatalytic activities of the as-prepared photocatalysts for the degradation of MB under VL irradiation; (**B**) the rate constants of the as-prepared photocatalysts for the degradation of MB; (**C**) the photocatalytic activities of the as-prepared photocatalysts for the degradation of RhB under VL irradiation; (**D**) the rate constants of the as-prepared photocatalysts for the degradation of RhB.

anionic dyes remained unchanged 41 . These results demonstrated excellent selective removal of cationic dyes over anionic dyes due to the electrostatic effect 11,12 .

Photocatalytic mechanism. The electrons and holes produced by photocatalysis have strong reduction and oxidation capacities. The main active species of different photocatalysts may vary due to their different band structure and phase compositions 10,38 . Thus, to explore the mechanism of the high photocatalytic activities and to assess the contribution of the reactive species, trapping experiments of reactive species were conducted using ethylenediaminetetraacetate (EDTA-2Na), iso-propyle alcohol (IPA) and N_2 as h^+ and OH^- and e^- scavengers, respectively 10,16 . By adding scavengers into the degradation solutions, the reactive species in the degradation process can be revealed. As shown in Fig. 10, the degradation rate decreases clearly to \sim 8.8% in the presence of EDTA-2Na (h^+ scavenger) and the degradation rate is \sim 98% in the absence of scavengers, which indicates that h^+ is the major reactive specie for MB degradation (Fig. 10A,B)8,40. Introducing IPA displays a significant effect on the K_{app} . It decrease from \sim 0.102 min $^{-1}$ to \sim 0.055 min $^{-1}$ (Fig. 10C), suggesting that the radical is also a dominant reactive species. And the degradation rate decreases obviously to \sim 53% and \sim 66% in the presence of N_2 (O^2 – scavenger) and AgNO₃ (e– scavenger), which suggests that O^2 – and e– is the partly reactive species for MB degradation (Fig. 10D,E). Through Fig. 10F, we can visually see that the O^2 –, e– and h+ are reactive species e^4 .


The recyclability of the photocatalysts is significant factors in their practical applications. Figure 11A indicates that the recyclability for AgSiO/Ag₂CO₃-5:1 composite. After six successive cycles, AgSiO/Ag₂CO₃-5:1 composite still possesses ~89% degradation rate of MB after ~40 min VL irradiation, indicating its high recyclability 30,39,43 . The results indicate that the incorporation of AgSiO with Ag₂CO₃ photocatalyst successfully improves the VL photocatalytic performance and restrains the photocorrosion in a large level 13,44 . To further comprehend the separation and recombination of electron-hole pairs in pure AgSiO, Ag₂CO₃ and AgSiO/Ag₂CO₃ composites, the photocurrent test is carried out under visible light 33 . In this study, electrochemical and photoelectrochemical measurements were performed in 1 M Na₂SO₄ electrolyte solution in a three-electrode quartz cell. Pt sheet was used as a counter electrode and Hg/Hg₂Cl₂/sat. KCl was used as a reference electrode. The pure AgSiO, Ag₂CO₃ and AgSiO/Ag₂CO₃ composites on ITO was used as the working electrode for investigation. The photoelectrochemical response was recorded with a CHI 660E electrochemical system 33 . The photocurrent-potential plots of these samples are shown in Fig. 11B. The figure shows the obvious photocurrent intensity of different samples under illumination by 250 lumens LED for 30 second intervals. The best photocurrent intensity (0.7 μ A·g $^{-1}$) of AgSiO was obtained when the applied potential is 1.3 V. And the best photocurrent intensity of Ag₂CO₃ was 1.2 μ A·g $^{-1}$. However, the photocurrent intensity was improved to 1.8 μ A·cm $^{-1}$ with the same applied potential after


Figure 9. (A) The absorption spectra of MB degraded by $AgSiO/Ag_2CO_3$ -5:1 composite under VL irradiation; (B) the corresponding digital photograph of MB degraded by $AgSiO/Ag_2CO_3$ -5:1 composite under VL irradiation; (C) the absorption spectra of RhB degraded by $AgSiO/Ag_2CO_3$ -5:1 composite under VL irradiation; (D) the corresponding digital photograph of RhB degraded by $AgSiO/Ag_2CO_3$ -5:1 composite under VL irradiation; Absorption spectra (E) and corresponding digital photograph (F) of RhB and MB degraded by $AgSiO/AgCO_3$ -5:1 composite under VL irradiation.

a heterojunction formed form AgSiO and Ag_2CO_3 , which was three times greater than pure Ag_2CO_3 . This phenomenon reveals that the $AgSiO/Ag_2CO_3$ heterostructures possess a larger carrier concentration than the pure AgSiO and Ag_2CO_3 NPs, and more electron-hole pairs are generated for the charge separation process⁴⁵. These results of the photocurrent tests are in agreement with the results of the photodegradation of MB. The obvious photocurrent demonstrates that the interfacial charge separation between AgSiO and Ag_2CO_3 NPs exists in this composite⁴⁶.

Based on experimental results, Fig. 12 depicts a diagrammatic sketch for photocatalytic mechanism. Under VL irradiation, AgSiO can absorb VL, leading to the excitation of e^- to the conduction band (CB) and whilst keeping h^+ in the valence bands (VB)^{2,7}. For AgSiO/Ag₂CO₃ heterojunctions, the photogenerated e^- on the CB of AgSiO can easily migrate to the CB of Ag₂CO₃ while the photogenerated h^+ in the VB of Ag₂CO₃ migrates to AgSiO¹⁹. That is to say, the appropriately aligned band edges of AgSiO and Ag₂CO₃ indicates that the migration of effective photogenerated charges can occur via the heterojunctions with strong interfacial coupling effect in

Figure 10. The typical visible absorption spectra (A–E) and concentration changes (F) of MB over AgSiO/Ag₂CO₃-5:1 composite in the presence of EDTA-2Na, IPA, N₂ and in the absence scavengers.

Figure 11. (A) The photocatalytic stability of $AgSiO/Ag_2CO_3$ -5:1 composite in recycling reactions; Photocurrent response curves of pure Ag_2CO_3 , AgSiO and $AgSiO/Ag_2CO_3$ composites under visible light irradiation (B).

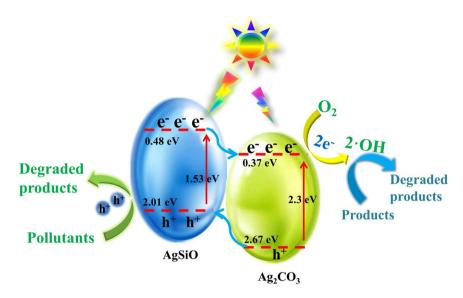


Figure 12. Proposed mechanisms of photogenerated charge transfer and pollutants degradation in the AgSiO/ Ag_2CO_3 -5:1 composite under VL irradiation.

the composite⁴⁷. The migration of photogenerated charges limit the transmission of photogenerated e^- and h^+ on different sides, which reduces the recombination rate of photogenerated electron-hole pairs and improves the abundance and stability of photogenerated charge in the composite^{6,7}. At the same time, the isolated photogenerated charges promote the production of reactive oxidative species, i.e. ${}^{\bullet}O^{2-}$ and ${}^{\bullet}OH$, which are responsible for degrading MB confirmed by Fig. $12^{26,48,49}$.

Conclusions

In summary, a facile *in-situ* precipitation method has been designed and developed to synthesize a series of $AgSiO/Ag_2CO_3$ composites with the sizes in the range of 100 nm. The as-synthesized $AgSiO/Ag_2CO_3$ -5:1 composite shows superior VL photocatalytic activities, and the degradation of MB reach as ~99.1% under VL irradiation within ~40 min, which can be ascribed to the synergetic effect between AgSiO and Ag_2CO_3 , including the maximum heterojunction interface with intimate contact, enhanced photogenerated charge separation efficiency, fully exposed reactive sites as well as excellent VL response in the composite. For the selectivity for degradation, we speculate that the discrepancy in degradation capacities among the two anionic dyes can be ascribed to the molecule size. This work will give insights into the importance of rational design of heterojunction systems, and provide a potential method for the construction of efficient heterojunction photocatalysts with controllable sizes and space distributions.

References

- Shi, L., Liang, L., Wang, F., Liu, M. & Sun, J. Enhanced visible-light photocatalytic activity and stability over g-C₃N₄/Ag₂CO₃ composites. J. Mater. Sci. 50, 1718–1727 (2015).
- Li, Y. et al. Preparation and enhanced visible light photocatalytic activity of novel g-C₃N₄ nanosheets loaded with Ag₂CO₃ nanoparticles. Nanoscale 7, 758–764 (2015).
- 3. Panthi, G. et al. Electrospun composite nanofibers of polyacrylonitrile and Ag₂CO₃ nanoparticles for visible light photocatalysis and antibacterial applications. J. Mater. Sci. **50**, 4477–4485 (2015).
- 4. Xu, X., Zhai, T., Shao, M. & Huang, J. Anodic formation of anatase TiO₂ nanotubes with rod-formed walls for photocatalysis and field emitters. *Phys. Chem. Chem. Phys.* 14, 16371–16376 (2012).
- 5. Dai, G., Yu, J. & Liu, G. A new approach for photocorrosion inhibition of Ag₂CO₃ photocatalyst with highly visible-light-responsive reactivity. *J. Phy. Chem. C* 116, 15519–15524 (2012).
- Liu, J. et al. Anchoring of Ag₆Si₂O₇ nanoparticles on α-Fe₂O₃ short nanotubes as a Z-scheme photocatalyst for improving their photocatalytic performances. Dalton T. 45, 12745–12755 (2016).
- 7. Lou, Z. et al. Ag₆Si₂O₇: a silicate photocatalyst for the visible region. Chem. Mater. **26**, 3873–3875 (2014).
- 8. Zhang, S. et al. Hybrid 0D-2D nanoheterostructures: in-situ growth of amorphous silver silicates dots on g-C₃N₄ nanosheets for full spectrum photocatalysis. ACS Appl. Mater. Inter. 8, 35138–35149 (2016).
- 9. Zheng, Y., Lin, L., Ye, X., Guo, F. & Wang, X. Helical graphitic carbon nitrides with photocatalytic and optical activities. *Angew. Chem. Int. Edit.* 53, 11926–11930 (2014).
- Mehraj, O., Mir, N. A., Pirzada, B. M., Sabir, S. & Muneer, M. In-situ anion exchange synthesis of AgBr/Ag₂CO₃ hybrids with enhanced visible light photocatalytic activity and improved stability. J. Mol. Catal. A: Chem. 395, 16–24 (2014).
- 11. Yang, H. et al. Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance. Sci. Rep. 7, 8686 (2017).
- Shu, D., Feng, F., Han, H. & Ma, Z. Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth. Chem. Eng. J. 324, 1–9 (2017).
- Chen, F. et al. Novel ternary heterojunction photocoatalyst of Ag nanoparticles and g-C₃N₄ nanosheets co-modified BiVO₄ for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B: Environ. 205, 133–147 (2017).
- 14. Zhao, Q. et al. One-pot synthesis of Zn-doped SnO₂ nanosheet-based hierarchical architectures as a glycol gas sensor and photocatalyst. CrystEngComm 17, 4394–4401 (2015).

- Yu, C. et al. Enhancing the photocatalytic performance of commercial TiO₂ crystals by coupling with trace narrow-band-gap Ag₂CO₃. Ind. Eng. Chem. Res. 53, 5759–5766 (2014).
- 16. Liu, L. *et al.* A stable Ag₃PO₄@ g-C₃N₄ hybrid core@ shell composite with enhanced visible light photocatalytic degradation. *Appl. Catal. B: Environ.* **183**, 133–141 (2016).
- 17. Han, S. W., Kim, Y. & Kim, K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. *J. Colloid Interf. SCI.* 208, 272–278 (1998).
- 18. Kaushik, V. K. XPS core level spectra and Auger parameters for some silver compounds. J. Electron Spectrosc. 56, 273-277 (1991).
- 19. Yu, C., Li, G., Kumar, S., Yang, K. & Jin, R. Phase transformation synthesis of novel Ag₂O/Ag₂CO₃ heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. *Adv. Mater.* 26, 892–898 (2014).
- 20. Epling, W. S., Hoflund, G. B. & Salaita, G. N. Surface characterization study of the thermal decomposition of Ag₂CO₃. *J. Phys. Chem.* B 102, 2263–2268 (1998).
- Dong, S. et al. Self-assembled hollow sphere shaped Bi₂WO₆/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem. Eng. J. 316, 778–789 (2017).
- 22. Jin, X., Mok, E. K., Baek, J.-W., Park, S.-H. & Hwang, S.-J. Importance of the tuning of band position in optimizing the electronic coupling and photocatalytic activity of nanocomposite. *J. Solid State Chem.* 230, 175–181 (2015).
- 23. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).
- 24. Sun, J. et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 3, 1139 (2012).
- 25. Gaumet, M., Vargas, A., Gurny, R. & Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. *Eur. J. Pharm. Biophar.* **69**, 1–9 (2008).
- 26. Fang, S. et al. Fabrication of BiOCl@ CdS/Ag₂CO₃ heterojunctions with enhanced photocatalytic activity under visible-light irradiation. J. Mater. Sci.-Mater. El. 1–9 (2017).
- Al-Keisy, A. et al. A ferroelectric photocatalyst Ag₁₀Si₄O₁₃ with visible-light photooxidation properties. J. Mater. Chem. A 4, 10992–10999 (2016).
- 28. Yang, M.-Q. et al. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 8, 14224 (2017).
- Yu, C.-L. et al. Novel AgCl/Ag₂CO₃ heterostructured photocatalysts with enhanced photocatalytic performance. Rare Metals 35, 475-480 (2016).
- Yu, B. et al. Preparation of electrospun Ag/g-C₃N₄ loaded composite carbon nanofibers for catalytic applications. Mater. Res. Express 4, 1 (2017).
- 31. Zhu, X. et al. Synthesis of novel visible light response Ag₁₀Si₄O₁₃ photocatalyst. Appl. Catal. B: Environ. 199, 315–322 (2016).
- 32. Chen, Q., Wu, S. & Xin, Y. Synthesis of Au-CuS-TiO₂ nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. *Chem. Eng. J.* **302**, 377–387 (2016).
- 33. Yang, M.-Q. et al. Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. *Mater. Horiz.* 4, 885–894 (2017).
- 34. Liu, J. et al. 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Appl. Catal. B: Environ. 181, 138–145 (2016).
- 35. Yao, Z. et al. Preparation, characterization, and antibacterial activity of shell waste loaded with silver. J. Mater. Sci. 48, 8580–8587 (2013).
- 36. Cui, W. et al. Microwave-assisted synthesis of Ag@AgBr-intercalated $K_4Nb_6O_{17}$ composite and enhanced photocatalytic degradation of Rhodamine B under visible light. Chem. Eng. J. 230, 10–18 (2013).
- Hou, R. et al. Coupling system of Ag/BiOBr photocatalysis and direct contact membrane distillation for complete purification of N-containing dye wastewater. Chem. Eng. I. 317, 386–393 (2017).
- 38. Shu, J. et al. One-pot synthesis of AgCl@ Ag hybrid photocatalyst with high photocatalytic activity and photostability under visible light and sunlight irradiation. Chem. Eng. J. 252, 374–381 (2014).
- 39. Ma, X. et al. Comparison of photocatalytic reaction-induced selective corrosion with photocorrosion: Impact on morphology and stability of Ag-ZnO. Appl. Catal. B: Environ. 201, 348–358 (2017).
- 40. Orge, C., Pereira, M. & Faria, J. Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. *Chem. Eng. J.* 318, 247–253 (2017).
- 41. Liang, H., Jia, Z., Zhang, H., Wang, X. & Wang, J. Photocatalysis oxidation activity regulation of Ag/TiO₂ composites evaluated by the selective oxidation of Rhodamine B. *Appl. Surf. Sci.* **422**, 1–10 (2017).
- 42. Suyana, P. et al. Co₃O₄-C₃N₄ p-n nano-neterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ. Sci. Nano. 4, 212–221 (2017).
- 43. Zhang, D., Li, J., Wang, Q. & Wu, Q. High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. *J. Mol. Catal. A* 1, 8622–8629 (2013).
- 44. Gou, W., Wu, P., Jiang, D. & Ma, X. Synthesis of AgBr@ Bi₂O₃ composite with enhanced photocatalytic performance under visible light. *J. Alloy. Compd.* **646**, 437–445 (2015).
- Han, C., Quan, Q., Chen, H. M., Sun, Y. & Xu, Y. J. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion. Small 13, 14 (2017).
- 46. Xu, K. et al. Ag-CuO-ZnO metal-semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation. Nanoscale 9, 11574–11583 (2017).
- Chen, F. et al. Facile preparation of ternary Ag₂CO₃/Ag/PANI composite nanorods with enhanced photoactivity and stability. J. Mater. Sci. 52, 4521–4531 (2017).
- Zhang, P. et al. Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem. Eng. J. 306, 1151–1161 (2016).
- 49. Yang, M.-Q., Zhang, N., Wang, Y. & Xu, Y.-J. Metal-free, robust, and regenerable 3D graphene–organics aerogel with high and stable photosensitization efficiency. J. Catal. 346, 21–29 (2017).

Acknowledgements

Financial supports from NSFC (Grant Nos 51672109, 21505050) and the Natural Science Foundation of Shandong Province (Grant No. ZR2016JL015, ZR2016FM30).

Author Contributions

C.R.Y. performed the experiments. D.X.L. and Y.H.C. performed the SEM observations and TEM observations. Z.S.W. and X.X.J. discussed and commented on the experiments and results, and wrote the paper.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-15405-6.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017