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2 Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University,
50005 Hradec Králové, Czech Republic; holao3aa@faf.cuni.cz

* Correspondence: vokral@faf.cuni.cz

Abstract: The inhibition of P-glycoprotein (ABCB1) could lead to increased drug plasma concen-
trations and hence increase drug toxicity. The evaluation of a drug’s ability to inhibit ABCB1 is
complicated by the presence of several transport-competent sites within the ABCB1 binding pocket,
making it difficult to select appropriate substrates. Here, we investigate the capacity of antiretrovirals
and direct-acting antivirals to inhibit the ABCB1-mediated intestinal efflux of [3H]-digoxin and
compare it with our previous rhodamine123 study. At concentrations of up to 100 µM, asunaprevir,
atazanavir, daclatasvir, darunavir, elbasvir, etravirine, grazoprevir, ledipasvir, lopinavir, rilpivirine,
ritonavir, saquinavir, and velpatasvir inhibited [3H]-digoxin transport in Caco-2 cells and/or in
precision-cut intestinal slices prepared from the human jejunum (hPCIS). However, abacavir, dolute-
gravir, maraviroc, sofosbuvir, tenofovir disoproxil fumarate, and zidovudine had no inhibitory effect.
We thus found that most of the tested antivirals have a high potential to cause drug–drug interactions
on intestinal ABCB1. Comparing the Caco-2 and hPCIS experimental models, we conclude that the
Caco-2 transport assay is more sensitive, but the results obtained using hPCIS agree better with re-
ported in vivo observations. More inhibitors were identified when using digoxin as the ABCB1 probe
substrate than when using rhodamine123. However, both approaches had limitations, indicating that
inhibitory potency should be tested with at least these two ABCB1 probes.

Keywords: drug–drug interactions; ABCB1; antiretrovirals; direct-acting antivirals; human precision-
cut intestinal slices

1. Introduction

Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections are
major global health problems. Over 100 million people are currently living with HIV
or HCV [1–3], almost 30 million of whom have been prescribed a lifelong antiretroviral
combination regimen or months of medication with combinations of direct-acting antivirals
(DAA) [1,2]. Patients with HIV and/or HCV frequently have serious comorbidities that
require the administration of additional pharmacotherapy [4–10], which increases the risk
of drug–drug interactions (DDI) [11–14]. Although antivirals are highly effective and well
tolerated, they share metabolic pathways with other drugs and reveal frequent interactions
with membrane transporters. This creates the potential for pharmacokinetic DDI that could
cause a victim drug’s plasma concentration to reach toxic or subtherapeutic levels [11,15].
Therefore, knowledge of the molecular mechanisms underpinning pharmacokinetic DDI is
essential for selecting appropriate antivirals and optimal antiviral doses [11,15].

Most antivirals are thought to be substrates and/or inhibitors of P-glycoprotein
(ABCB1) [16–18]. ABCB1 is an active efflux transporter that determines the disposition of
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many chemically, structurally, and functionally unrelated substances, and is considered
to be a site of clinically relevant DDI [19]. Its polyspecificity is due to the presence of a
large and flexible binding pocket containing several distinct transport-competent sites for
rhodamine123 (RHD123), Hoechst 33342, digoxin, and prazosin [20–22]. ABCB1 localized
in the apical membrane of enterocytes reduces the net intestinal absorption of orally ad-
ministered drugs [19,20], mainly of compounds with low permeability that are minimally
metabolized by cytochrome P450 [19,23–30]. DDI on intestinal ABCB1 are known to have
clinical consequences: the inhibition of intestinal ABCB1 has been shown to increase the
absorption of dabigatran, talinolol, fexofenadine, or digoxin [23,25–28], while ABCB1 in-
duction reduces exposure to sofosbuvir and dabigatran [30,31]. It has been suggested that
both antiretrovirals and DAA may inhibit intestinal ABCB1, but their activity in this respect
has not been studied thoroughly.

Human-derived precision-cut intestinal slices (hPCIS) are miniature models of the in-
testine with a physiological 3D architecture that can be used to study the effects of intestinal
metabolism and transporter activity on drug pharmacokinetics [32,33]. By conducting accu-
mulation studies in hPCIS and measuring bidirectional transport across Caco-2 cell mono-
layers using RHD123 as a model transport substrate, we recently showed that atazanavir,
lopinavir, maraviroc, ritonavir, saquinavir, ledipasvir, and daclatasvir inhibit ABCB1 in the
intestine [34]. However, abacavir, tenofovir disoproxil fumarate (tenofovir DF), zidovudine,
rilpivirine, etravirine, and sofosbuvir did not detectably inhibit RHD123 transport [34].
We used RHD123 as the ABCB1 probe in these studies because it was reported to be
suitable for measuring ABCB1 inhibition in hPCIS [35] and cell models [21,36,37]. How-
ever, recent studies have shown that relying exclusively on RHD123 as the ABCB1 probe
may prevent the detection of ABCB1 inhibitors that bind to other transporter-competent
sites [20,21]. Therefore, complementary studies with probes that bind to other sites should
be performed [20,21]. Here, we present the results of one such complementary study using
the cardiac glycoside digoxin as the probe. Digoxin was suggested to bind to the large
D site of ABCB1, which partially overlaps with the smaller RHD123 site [20,38], and its
transport appears to be inhibited by a wider range of clinically relevant drugs than that of
RHD123 [20]. In addition, multiple regulatory agencies list digoxin as a suitable ABCB1
substrate that can be used to test for clinical DDI [39,40]. The set of antivirals tested for
ABCB1 inhibition using this probe included all of those used in our previous study [34],
together with asunaprevir, darunavir, elbasvir, grazoprevir, and velpatasvir.

2. Results

2.1. Effect of Antiretrovirals and DAA on Bidirectional Transport of [3H]-Digoxin across Caco-2
Monolayers

We initially performed bidirectional transport experiments using [3H]-digoxin alone,
for which the efflux ratio (rPapp) was 9.53 ± 2.22. Adding the model ABCB1 inhibitor
CP100356 monohydrochloride (CP100356) (2 µM) reduced the rPapp of [3H]-digoxin to
1.49 ± 0.11. These values are comparable to those reported previously, confirming the
functional expression of ABCB1 in the Caco-2 cells [41]. The antiretrovirals atazanavir
(50 µM), darunavir (100 µM), lopinavir (50 µM), rilpivirine (20 µM), ritonavir (50 µM), and
saquinavir (20 µM), as well as the DAAs asunaprevir (50 µM), daclatasvir (20 µM), and
grazoprevir (50 µM), all reduced the rPapp of [3H]-digoxin to values in the range of 1.11 to
1.91, making their effects comparable to that of the model inhibitor. Atazanavir (20 µM),
darunavir (50 µM), etravirine (20 µM), lopinavir (5 µM), and ritonavir (20 µM) and DAA
asunaprevir (20 µM), elbasvir (5 µM), grazoprevir (20 µM), and ledipasvir (50 µM) also
significantly inhibited [3H]-digoxin, albeit to a lesser extent, giving rPapp values of 2.75 to
5.88. Etravirine, elbasvir, and ledipasvir exhibited low solubility, so higher concentrations
that could potentially inhibit ABCB1 more strongly were not tested. No significant effect
on [3H]-digoxin transport was observed for the antiretrovirals abacavir, dolutegravir,
maraviroc, tenofovir DF, and zidovudine, or the DAAs sofosbuvir and velpatasvir. Whereas
abacavir, maraviroc, and tenofovir DF were tested at the highest chosen concentration
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of 100 µM, dolutegravir and velpatasvir were only tested at concentrations of 10 and
5 µM, respectively, due to their limited solubility. These results are summarized in Table 1
(antiretrovirals) and Table 2 (DAAs). Papp values for apical (A) to basolateral (B) and B to
A transports are summarized in Tables S1 and S2.

Table 1. Effects of the antiretrovirals and the model inhibitor CP100356 on ABCB1-controlled [3H]-
digoxin transport across Caco-2 monolayers.

Compound Concentration [3H]-Digoxin rPapp
1

Control 6 nM 9.53 ± 2.22

+CP100356 2 µM 1.49 ± 0.11 ***

+Abacavir 100 µM 10.39 ± 2.35

+Atazanavir 2 20 µM 5.57 ± 0.81 *
50 µM 1.15 ± 0.22 ***; #

+Darunavir
20 µM 6.19 ± 1.83
50 µM 3.28 ± 0.39 ***
100 µM 1.74 ± 0.26 ***; #

+Dolutegravir 3 10 µM 11.91 ± 2.05

+Etravirine 3 20 µM 3.23 ± 0.41 ***

+Lopinavir 2 5 µM 5.24 ± 1.69 *
50 µM 1.91 ± 0.23 ***; #

+Maraviroc
20 µM 11.25 ± 0.11
100 µM 8.80± 1.26

+Rilpivirine 2 20 µM 1.52 ± 0.53 ***

+Ritonavir 2 20 µM 2.75 ± 0.97 ***
50 µM 1.11 ± 0.10 ***

+Saquinavir 2 5 µM 8.50 ± 3.30
20 µM 1.36 ± 0.20 ***; #

+Tenofovir DF 100 µM 11.76 ± 0.07

+Zidovudine 100 µM 13.42 ± 0.28
1 rPapp, efflux ratio. Statistical analysis was performed using an ordinary one-way ANOVA with Dunnett’s
post hoc multiple comparisons test. Values differing significantly from the control are indicated by the labels
* (p < 0.05) or *** (p < 0.001). Values differing significantly from those obtained with the same compound at a
lower concentration are indicated by the labels # (p < 0.05). 2 Higher concentrations were not tested because an
rPapp of approximately 1 was reached. 3 Higher concentrations were not tested due to limited solubility.

Table 2. Effects of the tested DAAs and the model inhibitor CP100356 on ABCB1-controlled [3H]-
digoxin transport across Caco-2 monolayers.

Compound Concentration [3H]-Digoxin rPapp
1

Control 6 nM 9.53 ± 2.22

+CP100356 2 µM 1.49 ± 0.11 ***

+Asunaprevir 2 20 µM 3.07 ± 0.52 ***
50 µM 1.27 ± 0.18 ***

+Daclatasvir 2 5 µM 9.75 ± 0.43
20 µM 1.22 ± 0.33 ***; ###

+Elbasvir 3 5 µM 5.88 ± 1.01 *

+Grazoprevir 2 20 µM 3.79 ± 0.27 ***
50 µM 1.21 ± 0.15 ***

+Ledipasvir 3 20 µM 9.39 ± 1.76
50 µM 3.96 ± 0.90 **; #
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Table 2. Cont.

Compound Concentration [3H]-Digoxin rPapp
1

+Sofosbuvir 100 µM 6.09 ± 0.18

+Velpatasvir 3 5 µM 7.38 ± 1.81
1 rPapp, efflux ratio. Statistical analysis was performed using an ordinary one-way ANOVA with Dunnett’s post
hoc multiple comparisons test. Values differing significantly from the control are indicated by the labels * (p <0.05),
** (p < 0.01), or *** (p < 0.001). Values differing significantly from those obtained with the same compound at a
lower concentration are indicated by the labels # (p < 0.05) or ### (p < 0.001). 2 Higher concentrations were not
tested because an rPapp of approximately 1 was reached. 3 Higher concentrations were not tested due to limited
solubility.

2.2. Effect of Antiretrovirals and DAA on ATP Content in hPCIS

Because the validity of accumulation studies in hPCIS strongly depends on hPCIS
viability, we investigated the effect of 2.5 h treatments with [3H]-digoxin (0.3 µCi/mL;
15 nM) together with antiretrovirals, DAAs, or CP100356 on the ATP content of hPCIS
prepared from intestine samples collected from four donors. There were no statistically
significant differences between the ATP contents of the tested samples (Figure 1). The
median ATP concentrations detected in hPCIS exposed to antiretrovirals ranged from 4.5 to
5.7 pmol × µg−1, while those in DAA-treated hPCIS were between 5.5 and 5.4 pmol × µg−1. For
comparative purposes, the ATP contents of control hPCIS and hPCIS exposed to CP100356
(2 µM) were 6.1 and 6.6 pmol × µg−1, respectively. It thus appears that the model inhibitor
and antivirals did not affect PCIS viability, even at the highest tested concentrations.
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Figure 1. ATP contents of hPCIS (n = 4) after 2.5 h of incubation with [3H]-digoxin in the presence
of the studied (A) antivirals and (B) DAA at their highest tested concentrations. Data are presented
as medians with interquartile ranges. Statistical significance was assessed using the nonparametric
Kruskal–Wallis test followed by Dunn’s test. No statistically significant differences were found.
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2.3. Effect of Antiretrovirals and DAA on [3H]-Digoxin Accumulation in hPCIS

To investigate the inhibitory effect of antivirals on ABCB1 in the intestine, we used
hPCIS prepared from jejunal tissue obtained from five donors. The model ABCB1 in-
hibitor CP100356 (2 µM) increased the accumulation of [3H]-digoxin 12-fold. As shown
in Figure 2A, the uptake of [3H]-digoxin increased when hPCIS were treated with atazanavir
(50 µM; 9.2-fold), darunavir (100 µM, 4.0-fold), lopinavir (50 µM, 5.0-fold), ritonavir
(20 and 50 µM; 4.5- and 5.0-fold, respectively), and saquinavir (20 µM, 4.0-fold). The
observed increases were comparable to those observed for CP100256 (2 µM). In contrast
to the results obtained in Caco-2 cells, atazanavir (20 µM), darunavir (50 µM), etravirine
(20 µM), and rilpivirine (20 µM) did not inhibit [3H]-digoxin efflux from hPCIS. Aba-
cavir (100 µM), dolutegravir (10 µM), lopinavir (20 µM), maraviroc (100 µM), saquinavir
(5 µM), tenofovir DF (100 µM), and zidovudine (100 µM) also did not induce any detectable
inhibition of [3H]-digoxin efflux, in accordance with the results obtained using Caco-2 cells.
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Figure 2. Effects of selected (A) antiretrovirals and (B) DAA on [3H]-digoxin accumulation in hPCIS.
Data are presented as medians (n = 5). Statistical analysis was performed using the nonparametric
paired Friedman test followed by Dunn’s test: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***).

In keeping with the observation in Caco-2 cells, the DAAs asunaprevir (at both tested
concentrations of 20 and 50 µM) and daclatasvir (at 20 µM) increased the [3H]-digoxin
uptake by factors of 9.3, 15.2, and 13.2, respectively, whereas sofosbuvir (100 µM) had no
effect. However, in contrast to the results obtained in Caco-2 cells, grazoprevir increased
[3H]-digoxin uptake only at the highest tested concentration (50 µM); the other compounds
showing inhibitory activity in vitro, i.e., elbasvir (5 µM) and ledipasvir (20 and 50 µM),
caused no inhibition of [3H]-digoxin efflux from hPCIS. Conversely, velpatasvir (5 µM)
caused a significant (9.3-fold) increase in [3H]-digoxin accumulation in hPCIS.
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3. Discussion

Combination antiretroviral therapy and DAA treatment regimens are a highly effective
standard pharmacotherapy for HIV and HCV infections, respectively [11,42]. However,
they frequently give rise to DDI with other antiretrovirals, DAA, or drugs used to treat co-
morbidities [15,43–45]. Antiretrovirals and DAA are known to interact with ABCB1 [16–18],
but their ability to inhibit ABCB1 directly in the human intestine has not previously been
studied in detail.

We have previously tested the inhibitory effect of antiretrovirals and DAA on the
intestinal ABCB1-mediated transport of the fluorescent probe RHD123 [36] using a com-
bination of bidirectional transport studies in Caco-2 cells and accumulation assays in
PCIS [34]. The main advantages of RHD123 are its low cost, easy detection, and rela-
tively low toxicity [36]. However, relying exclusively on RHD123 as an ABCB1 probe
may prevent the detection of ABCB1 inhibitors that bind to other transporter-competent
sites [20–22]. Digoxin, the probe used in this study, is frequently prescribed by clinicians
despite its narrow therapeutic index and high frequency of DDI, including with antiviral
drugs [11,15,42,46]. Importantly, it is considered to be a sensitive substrate for testing
ABCB1 transport and the inhibition of ABCB1-mediated efflux in cell lines [39,47] because
it undergoes minimal metabolism and exhibits low inhibitory potency towards clinically
relevant intestinal transporters other than ABCB1 [38,48]. The use of digoxin instead
of RHD123 in inhibition studies increases the number of identified inhibitors, probably
because it has a larger binding region that partially overlaps with the R-site [20,21,49].

As stated previously, hPCIS prepared from human jejunum were used in this study.
The jejunum has a very high absorptive capacity and a high expression of ABCB1 [50].
The ileum has similar characteristics [51,52], but tests on this segment were not performed
because, at the time of writing the manuscript, it was impossible to collect healthy seg-
ments of the human ileum from the University Hospital in Hradec Kralove. Viability was
assessed via an ATP content analysis in control and drug-exposed hPCIS, as previously
recommended [33–35].

Of the antiretrovirals tested, atazanavir, darunavir, etravirine, lopinavir, rilpivirine, ri-
tonavir, and saquinavir inhibited ABCB1-mediated digoxin transport in Caco-2 cells and/or
hPCIS. The inhibitory effects of atazanavir, darunavir, ritonavir, and saquinavir are consis-
tent with results from previous studies using other in vitro experimental models [37,53,54]
and with reported increases in the AUC of digoxin and dabigatran etexilate in vivo [11].
The inhibitory activity of atazanavir, ritonavir, and saquinavir was also previously ob-
served in Caco-2 cells and hPCIS when using RHD123 as the probe [34]. Furthermore, in
accordance with results obtained using non-intestinal experimental models [54,55], we
found that lopinavir is a potent inhibitor of the ABCB1-mediated transport of RHD123 [34]
and digoxin in Caco-2 cells and hPCIS (Table 1 and Figure 2A). Similarly, a docking analysis
using a mice model of ABCB1a (PDB code: 4M1M, Figure S1) showed large binding contact
in an ABCB1a cavity (Figure S2) and binding free energy (Table S3). Surprisingly, lopinavir
does not alter the pharmacokinetics of ABCB1 substrates in vivo [11]. This is probably be-
cause prolonged exposure to lopinavir increases ABCB1 expression, which compensates for
its inhibitory activity. As a result, overall reductions in ABCB1 activity following lopinavir
treatment are only observed after acute exposure [56]. Rilpivirine was also previously
suggested to inhibit ABCB1 in vitro [11,57]. However, rilpivirine at a dose of 25 mg/day
does not significantly affect the pharmacokinetics of digoxin or tenofovir DF in vivo [57],
suggesting that the inhibition of ABCB1 in human tissues by itself is insufficient to change
the pharmacokinetics of ABCB1 substrates. In keeping with this hypothesis, rilpivirine
did not affect digoxin efflux in hPCIS (Figure 2A). Additionally, our results indicate that
etravirine inhibits ABCB1 in Caco-2 monolayers, contradicting results obtained previously
using cell line models with calcein, pheophorbide A, and RHD123 as probes [37,58]. Pre-
sumably, the inhibitory effects of etravirine towards ABCB1 probe substrates differ because
of the presence of multiple substrate binding sites in ABCB1 [20,21,49]. However, etravirine
had no significant inhibitory effect in experiments using hPCIS. We therefore hypothesize
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that it is only a weak ABCB1 inhibitor, in accordance with the information provided in the
summary of product characteristics for the drug Intelence, in which etravirine is the active
ingredient [59], and a docking analysis (Figure S3).

Abacavir, dolutegravir, tenofovir DF, and zidovudine have been identified as likely
ABCB1 substrates [60–63]. This identification is supported by their relatively high free en-
ergies of binding to the transporter (see Table S3). In keeping with previous studies [11,37],
we observed no ABCB1 inhibitory activity for abacavir, tenofovir DF, or zidovudine. There-
fore, these antiretrovirals are unlikely to compete with digoxin for binding to its ABCB1
binding pocket or to affect ABCB1 function by binding to the access tunnel [64]. The
docking analysis also showed a narrower contact of abacavir with the binding cavity when
compared with lopinavir (Figure S2). We also did not observe any inhibitory activity of
dolutegravir (Table 1, Figure 2A), contradicting a previous suggestion that it might be a
weak inhibitor of digoxin transport in MDCK-ABCB1 cells based on apparent activity at a
concentration of 100 µM [60]. However, the reported solubility of this drug in dimethyl
sulfoxide (DMSO) is poor; its maximum dissolved concentration is claimed to be in the
range of 5 to 10 mM. Therefore, we prepared the stock solution at a concentration of 10 mM.
To avoid exceeding the maximum DMSO concentration of 0.1% in the test solution, we
could only test dolutegravir at concentrations of up to 10 µM. Because the concentration
of dolutegravir could potentially exceed 100 µM in the intestine, an inhibitory effect on
intestinal ABCB1 in patients cannot be ruled out based on our results.

Of the tested DAA, asunaprevir, daclatasvir, and grazoprevir inhibited ABCB-mediated
digoxin transport in Caco-2 cells and hPCIS. Asunaprevir and daclatasvir have been previ-
ously suggested to inhibit ABCB1 in vitro [34,65], and both drugs increase digoxin bioavail-
ability in humans [15,66]. Velpatasvir inhibited ABCB1 only in hPCIS. This finding is
consistent with observations in healthy volunteers, in whom velpatasvir increased digoxin
exposure by 34% without changing its t1/2 [67]. Ledipasvir inhibited RHD123 transport in
Caco-2 cells [34] and is suggested to modestly increase the AUC of digoxin in humans [42].
Our data, obtained using hPCIS, thus support the conclusion that asunaprevir, daclatasvir,
and ledipasvir increase the digoxin AUC by inhibiting intestinal ABCB1. Elbasvir also
inhibited ABCB1 in vitro [42], but its effect on intestinal ABCB1 inhibition appears to be
minimal in humans (11% increase in plasma AUC) [42], which is consistent with its lack
of effect in our hPCIS experiments (Figure 2B). Although grazoprevir is a substrate for
ABCB1 [42], it was reported not to inhibit ABCB1 in vitro [68], contradicting the results
obtained with both of our experimental models. Unfortunately, the studies in which this
inhibitory activity was observed are not publicly accessible, making it impossible to know
what concentrations were tested or which experimental models were used. The concen-
trations of grazoprevir tested in our assays could plausibly occur in the small intestine
during therapy, so their effects on the intestinal absorption of ABCB1 substrates in humans
warrant evaluation. Sofosbuvir is also a substrate of ABCB1 that does not appear to inhibit
ABCB1 [42]. Our experiments using digoxin (Table 2, Figure 2B) and RHD123 [34] as probes
confirmed this compound’s non-inhibition of ABCB1. Since the calculated free energy of
binding of sofosbuvir to ABCB1 is similar to that of digoxin (Table S3), it can be speculated
that its mode of binding to ABCB1 differs from that of typical inhibitors [64].

Some antivirals exhibited different inhibitory potencies towards ABCB1-mediated
digoxin efflux in Caco-2 cells and hPCIS (Tables 1 and 2 and Figure 2). Etravirine, rilpivirine,
elbasvir, and ledipasvir inhibited digoxin transport in Caco-2 cells but had no effect on
digoxin accumulation in hPCIS. Because Caco-2 cells and human jejunum express compa-
rable levels of ABCB1 [50,69], we hypothesize that this outcome is due to the previously
suggested greater sensitivity of bidirectional transport studies [70], which results from the
reduced binding of test compounds to cell membranes [70] and the narrower tight junctions
in the Caco-2 system [71]. Furthermore, differences in the expression of metabolic enzymes
and uptake transporters between the Caco-2 cell line and hPCIS could also explain these
discrepancies. The hPCIS, compared to the Caco-2 cell line, express a cytochrome P450 3A4
(CYP3A4) drug-metabolizing enzyme [50]. Some of the tested antivirals can be extensively
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metabolized by CYP3A4 [72], resulting in less pronounced ABCB1 inhibition. On the other
hand, metabolites that are produced by enzymatic conversion can also inhibit ABCB1 [73].
On the contrary, the Caco-2 cell line expresses higher levels of some uptake transporters,
which could lead to the increased intracellular concentration of the antivirals, leading to
the more significant ABCB1 inhibition [50,74]. The hPCIS-based model was previously also
found to be less sensitive than the Caco-2 system when measuring the inhibitory potency
of maraviroc and ledipasvir [34]. On the other hand, velpatasvir had no effect on digoxin
transport in Caco-2 cells, but inhibited ABCB1 in hPCIS. However, it should be noted
that, due to its low solubility, velpatasvir was only tested at a concentration of 5 µM, even
though its suggested IC50 for ABCB1 is approximately 20.6 µM [67]. We hypothesize that
its lack of effect in Caco-2 cells was due to the extensive binding of velpatasvir to bovine
serum albumin in the acceptor compartment, which would reduce the amount of free
velpatasvir present in bidirectional experiments. Alternatively, velpatasvir metabolites pro-
duced in hPCIS by CYP3A4 [42] could be responsible for the ABCB1 inhibition seen in that
model system.

The use of digoxin as the probe in these bidirectional transport studies led to the
identification of etravirine and rilpivirine as ABCB1 inhibitors (Tables 3 and 4), neither
of which were identified as inhibitors when using RHD123 as the probe [34]. This is
consistent with evidence that ABCB1-mediated digoxin transport appears to be affected by
a wide spectrum of clinically relevant compounds [20,21]. However, maraviroc significantly
affected the ABCB1-mediated transport of RHD123 [34], but not digoxin, in Caco-2 cells
(Table 3). The docking analysis showed that maraviroc binds to ABCB1 with a free energy
of binding of −8.85 kcal/mol, which is similar to that for digoxin (−8.55 kcal/mol) and
greater than that for RHD123 (−6.74 kcal/mol; see Supplementary Materials, Table S3
and Figure S4). The absence of DDI between maraviroc and digoxin is also supported by
clinical findings showing that total exposure to digoxin was unaffected by the presence of
maraviroc in healthy volunteers [75].

Table 3. Inhibition of bidirectional transport of the probes digoxin and RHD123 [34] across monolay-
ers of Caco-2 cells in the presence of various drugs.

Compound Concentration Digoxin
Inhibition

RHD123
Inhibition #

CP100356 2 µM YES YES
Abacavir 100 µM NO NO

Atazanavir 50 µM YES YES
Daclatasvir 20 µM YES YES
Etravirine 20 µM YES NO
Ledipasvir 50 µM YES YES
Lopinavir 5 µM YES YES
Maraviroc 100 µM NO YES
Rilpivirine 20 µM YES NO
Ritonavir 50 µM YES YES

Saquinavir 20 µM YES YES
Sofosbuvir 100 µM NO NO

Tenofovir DF 100 µM NO NO
RHD123, rhodamine123; # results are taken from [34].

Table 4. Inhibition of digoxin and RHD123 transport in human PCIS by various drugs.

Compound Concentration Digoxin
Inhibition

RHD123
Inhibition #

CP100356 2 µM YES YES
Atazanavir 50 µM YES YES
Daclatasvir 20 µM YES NO *
Ledipasvir 50 µM NO NO *
Lopinavir 50 µM YES YES
Maraviroc 100 µM NO NO *
Ritonavir 100 µM YES YES

Saquinavir 20 µM YES YES
RHD123, rhodamine123; * increased uptake of RHD123 was observed in some samples, but the median did not
differ significantly from that of the control; # results are taken from [34].
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4. Materials and Methods
4.1. Reagents and Chemicals

[3H]-digoxin was purchased from Moravek Biochemicals (Brea, CA, USA). Abacavir,
atazanavir, etravirine, lopinavir, maraviroc, rilpivirine, ritonavir, saquinavir, tenofovir
DF, and zidovudine were obtained from the NIH AIDS Reagent Program. Asunaprevir,
daclatasvir, darunavir, dolutegravir, elbasvir, grazoprevir, ledipasvir, sofosbuvir, and vel-
patasvir were acquired from MedChemExpress LLC (Middlesex County, NJ, USA). The
model ABCB1 inhibitor CP100356 [76], the ATP bioluminescence assay kit, DMSO, Dul-
becco’s Modified Eagle Medium, ethanol (EtOH), fetal bovine serum, nonessential amino
acid solution, and penicillin–streptomycin solutions were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Hanks’ balanced salt solution, William’s medium E containing L-
glutamine (WME), and the bicinchoninic acid protein assay kit were obtained from Thermo
Fisher Scientific (Waltham, MA, USA). Krebs–Henseleit buffer was prepared as described
by de Graaf et al. [31]. All other reagents were of analytical grade.

4.2. Stock Solutions and Test Solutions

CP100356 and all antivirals were dissolved in DMSO, while digoxin was dissolved in
99.9% EtOH. The stock solutions were stored at −20 ◦C before use. The final concentration
of DMSO was 0.1% in all experiments. The final concentrations of EtOH in hPCIS and
Caco-2 cells were 0.03% and 0.012%, respectively. The highest tested concentrations of the
antivirals were determined by their solubility in the incubation medium; if solubility was
not limiting, the maximum tested concentration was the lowest concentration at which the
rPapp became comparable to that achieved with CP100356.

4.3. Cell Culture and Growth Condition

The Caco-2 colorectal adenocarcinoma cell line (ATCC HTB-37) was purchased from
the American Type Culture Collection and cultured in high-glucose Dulbecco’s Modi-
fied Eagle Medium, with L-glutamine supplemented with 10% fetal bovine serum and a
1% nonessential amino acid solution. Cells were routinely cultured in an antibiotic-free
medium and incubated in a humidified incubator under a 5% CO2 atmosphere at 37 ◦C.
Cells from passages 10 to 40 were used in all in vitro experiments.

4.4. Human Tissue Samples

Intestinal samples (jejunum) were collected from five donors (Table 5) while they
were undergoing the Whipple procedure (pancreaticoduodenectomy) at the University
Hospital in Hradec Kralove, Czech Republic. Sample collection was performed with written
informed patient consent and the approval of the local research ethics committee (approval
no. 201511 S26P and 202103 I67P) [34,77].

Table 5. Characteristics of intestinal donors.

Patient No. Gender Age (Year) Medication(s)

1 F 62 candesartan, levothyroxine

2 F 71 diosmin, flavonoids

3 F 73 apixaban, atorvastatin, betaxolol, omeprazole, pancreatin, ramipril, rilmenidine

4 F 49 dosulepin, lactulose, pancreatin, pantoprazole, pregabalin, thiamine, trazodone,

5 M 74 acetylsalicylic acid, amlodipine, budesonide, flavonoids, ipratropium bromide,
levothyroxine, metformin, omeprazole, tamsulosin, telmisartan

4.5. In Vitro Bidirectional Permeability Experiments

Transport experiments were performed using microporous polycarbonate membrane
filters (0.4 µm pore size, 12 mm diameter; Transwell® 3401; Costar, Corning, NY, USA),
as previously described [34]. Caco-2 cells were seeded at a density of 3 × 105 cells per
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insert and cultured for 21 days in a standard cultivation medium containing 1% penicillin–
streptomycin. The medium was changed every other day, during which the transepithelial
electrical resistance (TEER) across the cell monolayers was measured using a Millicell-ERS
instrument (Millipore Corporation, Bedford, MA, USA) [34]. The TEER values before
the start of the experiment ranged from 1100 to 1900 Ωcm2, which is consistent with
previous reports [78,79]. For the bidirectional permeability assay, a Hanks’ balanced salt
solution buffer was used. The pH in the A compartment was adjusted to 6.5 using a
methanesulfonic acid solution, while that in the B compartment was adjusted to 7.4 using a
HEPES solution [34,80]. The volumes used were 0.5 mL and 1.5 mL in compartments A
and B, respectively. To improve the reproducibility of the results, the receiver compartment
always contained 1% bovine serum albumin, as previously recommended [80]. All wells
were preincubated for 30 min with the appropriate transport buffer, containing CP100356
or one of the tested antiviral drugs [34,80]. The assay was started by placing fresh buffer
containing CP100356 or an antiviral drug in the donor compartment (compartment A for A
to B transport and compartment B for B to A transport) together with [3H]-digoxin at an
activity level of 0.12 µCi/mL, corresponding to a low non-saturating concentration of 6
nM [81]. Samples (200 µL) were collected after 1 and 2 h from the receiver compartment;
after the first collection, fresh receiver solution was added to the receiver compartment to
maintain the original volume [80]. The concentration of [3H]-digoxin was quantified using
a Tri-Carb 2900TR liquid scintillation analyzer (Packard Bioscience, Meriden, CT, USA).
Its concentration in the samples collected during Caco-2 experiments was measured after
adding 1 mL of Ultima GoldTM Cocktail. A to B and B to A transport were evaluated in
terms of an apparent permeability coefficient (Papp), calculated using the equation in [80,81].

Papp = (dC/dt) × Vr/(A × C0) (1)

where dC/dt is the change in concentration over time measured during the linear phase
of transport over 1 h, Vr is the volume of the receiver well in milliliters, A is the area
of the membrane in square centimeters, and C0 is the initial concentration in the donor
compartment. The efflux ratio (rPapp) was then calculated using the equation [80,82]:

rPapp = (Papp B to A)/(Papp A to B) (2)

4.6. Analysis of the ATP Content in hPCIS

To evaluate whether antivirals or [3H]-digoxin at an activity of 0.3 µCi/mL (15 nM) had
any impact on the viability of the hPCIS, the intracellular ATP content, which is a verified
marker of the preservation of vital cell processes [35], was measured using the CLS II ATP
bioluminescence assay kit (Roche, Mannheim, Germany), as previously described [34,35,83].
Measurements were performed using fresh hPCIS after 2.5 h incubation with [3H]-digoxin
(0.3 µCi/mL; 15 nM) and/or the antivirals. The ATP contents before and after incubation
were then compared.

4.7. Ex Vivo Accumulation Experiments in hPCIS Prepared from the Jejunum

Ex vivo accumulation assays were performed as previously described [32]. Directly
after surgery, the resected part of the human jejunum was placed in cold (4 ◦C) Krebs–
Henseleit buffer oxygenated with carbogen gas [32,34,35]. The muscle layer was removed,
and the remaining mucosa was cut into fragments measuring approximately 5 by 20 mm,
which were then embedded in a 3% agarose solution (3% (wt/vol) in 0.9% NaCl, 37 ◦C).
PCIS of approximately 300 µm thickness were cut using a Krumdieck tissue slicer (Alabama
R&D, Munford, AL, USA). Slices were pre-incubated for 30 min in the presence of CP100356
or an antiviral drug in WME [34,35] and then transferred to a WME incubation medium
containing [3H]-digoxin (0.3 µCi/mL; 15 nM) and the compound being tested. Both
incubation steps were conducted in a humidified atmosphere of 80% O2 and 5% CO2 at
37 ◦C [32,34,35]. The accumulation of [3H]-digoxin was stopped after 2 h of incubation by
washing the slices twice in the Krebs–Henseleit cold buffer (4 ◦C). Slices were transferred to
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2 mL microvials containing 600 µL of acetonitrile solution (acetonitrile/water ratio, 2:1) and
approximately 300 mg of glass minibeads (diameter, 1.25 to 1.65 mm; Carl Roth, Karlsruhe,
Germany), and homogenized with a FastPrep24 5G minibead beater (MP Biomedicals,
Santa Ana, CA, USA; 6.0 m/s, twice for 45 s each). The samples were then centrifuged
(10 min; 7800 g). Concentrations of [3H]-digoxin in the supernatant samples (300 µL) were
assessed after mixing them with 1.5 mL of Ultima Gold™ via scintillation counting (Tri-
Carb 2900TR liquid scintillation analyzer, Packard Bioscience). The pellets obtained during
centrifugation were dried overnight at 37 ◦C and then solubilized in 200 µL of 5 M NaOH
for 24 h. Milli-Q water was then added to the samples to achieve a NaOH concentration
of 1 M. The protein content was measured using a bicinchoninic acid protein kit (Thermo
Fisher Scientific, Waltham, MA, USA). The measured [3H]-digoxin concentrations were
normalized against the protein content.

4.8. Statistical Evaluation

Statistical analysis of bidirectional transport across Caco-2 cells was performed using
an ordinary one-way ANOVA with Dunnett’s post hoc multiple comparisons test. The
statistical significance of differences in the measured ATP contents of hPCIS after different
treatments was assessed using the non-parametric Kruskal–Wallis test followed by Dunn’s
test. The effect of antivirals on [3H]-digoxin accumulation in hPCIS was evaluated using
the non-parametric paired Friedman test followed by Dunn’s test. Values differing from
controls at the p < 0.05, p < 0.01, and p < 0.001 levels are indicated with the labels *, **, and
***, respectively.

5. Conclusions

We have shown that asunaprevir, atazanavir, daclatasvir, darunavir, grazoprevir,
lopinavir, ritonavir, and saquinavir inhibit ABCB1 in both Caco-2 monolayers and hPCIS.
Therefore, we conclude that these drugs have a high potential to cause DDIs on intestinal
ABCB1. Our hPCIS data also suggest that velpatasvir may inhibit intestinal ABCB1. There
is supporting clinical evidence that most of these antivirals increase the AUC of ABCB1
substrates. Our findings suggest that the inhibition of intestinal ABCB1 contributes to
this increase in AUC and should, therefore, be taken into account when establishing new
antiviral combination regimens or when considering polypharmacy in HIV- and/or HCV-
positive patients, especially in cases involving drugs whose absorption is significantly
reduced by ABCB1, such as dabigatran etexilate and digoxin [11,15]. On the other hand,
abacavir, dolutegravir, maraviroc, sofosbuvir, tenofovir DF, and zidovudine exhibit no
apparent inhibitory activity towards ABCB1. Comparing the two experimental models
used in this work, we conclude that the bidirectional transport-based assay using Caco-2
cells is more sensitive and better able to reveal ABCB1 inhibition, but that the results of
hPCIS experiments agree more closely with published in vivo findings. Additionally, more
inhibitors are identified when using digoxin as the ABCB1 probe substrate than when using
RHD123. However, both probes have limitations, so inhibitory potency should be tested
using at least two ABCB1 probes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15020242/s1, Figure S1: Location of the binding cavity used in the
docking experiment within the ABCB1a crystal structure (PDB code: 4M1M); Figure S2: Visualizations
of the top scoring poses of lopinavir and abacavir within the ligand binding cavity; Figure S3:
Visualizations of the top scoring pose of etravirine within the ligand binding cavity together with
digoxin and RHD123; Figure S4: Visualizations of the top scoring pose of maraviroc within the ligand
binding cavity together with digoxin and RHD123; Table S1: Effects of the antiretrovirals and the
model inhibitor CP100356 on ABCB1-controlled [3H]-digoxin transport across Caco-2 monolayers—
Papp values; Table S2: Effects of the tested DAAs and the model inhibitor CP100356 on ABCB1-
controlled [3H]-digoxin transport across Caco-2 monolayers—Papp values; Table S3: Binding free
energies of the top scoring poses of RHD123, digoxin, CP100356, and the studied antivirals in the
ABCB1a mouse crystal structure. References [20,84] are cited in the supplementary materials.
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