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Abstract

Motivation: Transcription by RNA polymerase is a highly dynamic process involving multiple dis-

tinct points of regulation. Nascent transcription assays are a relatively new set of high throughput

techniques that measure the location of actively engaged RNA polymerase genome wide. Hence,

nascent transcription is a rich source of information on the regulation of RNA polymerase activity.

To fully dissect this data requires the development of stochastic models that can both deconvolve

the stages of polymerase activity and identify significant changes in activity between experiments.

Results: We present a generative, probabilistic model of RNA polymerase that fully describes load-

ing, initiation, elongation and termination. We fit this model genome wide and profile the enzym-

atic activity of RNA polymerase across various loci and following experimental perturbation. We

observe striking correlation of predicted loading events and regulatory chromatin marks. We pro-

vide principled statistics that compute probabilities reminiscent of traveler’s and divergent ratios.

We finish with a systematic comparison of RNA Polymerase activity at promoter versus non-

promoter associated loci.

Availability and Implementation: Transcription Fit (Tfit) is a freely available, open source software

package written in C/Cþþ that requires GNU compilers 4.7.3 or greater. Tfit is available from

GitHub (https://github.com/azofeifa/Tfit).

Contact: robin.dowell@colorado.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Regulation of gene expression plays crucial roles in diseased and

healthy cellular phenotypes. Gene expression requires RNA

Polymerase II (RNAP) recruitment to promoters and subsequent sig-

naling cues to direct RNAP to fully transcribe the protein coding re-

gion (Bentley, 2014; Fuda et al., 2009). With the advent of high

throughput sequencing data, RNAP’s location has been profiled

genome-wide providing deep insight into the enzymatic stages of

transcription. In brief, RNAP recruitment, initiation, pause, pause

release, elongation and termination are highly controlled transcrip-

tional stages that are distinctly regulated (Fuda et al., 2009; Jonkers

and Lis, 2015; Kwak et al., 2013; Nojima et al., 2015).

Nascent transcription assays, such as Global Run-On (GRO-

seq), Precision Nuclear Run-on (PRO-seq) and Native Elongating

Transcript (NET-seq), measure the production of transcripts from

all cellular RNA polymerases genome-wide (Core and Lis, 2008;

Kwak et al., 2013; Nojima et al., 2015). Given their high degree of

resolution and strand specific nature, these assays have tremendous

potential to refine our understanding of each stage of the transcrip-

tion process. Indeed, these assays have been used to study the transi-

tion from paused to elongating polymerase, enhancer RNA

transcription and sites of RNAP termination (Azofeifa et al., 2016;

Fong et al., 2015; Hah et al., 2013; Wang et al., 2011). Yet the pre-

cision of these techniques depends on an inherently noisy sequencing
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process with biases in both the experimental protocol (Kwak et al.,

2013) and read mapping strategies. To fully explore the richness of

nascent transcriptional assays requires the development of biologic-

ally motivated models of RNAP that provide meaningful summary

statistics of the data.

To identify transcripts within nascent transcription data, work

has primarily focused on segmentation based algorithms such as hid-

den Markov models (HMMs) (Azofeifa et al., 2014; Chae et al.,

2015) and windowing approaches (Allison et al., 2013). These ‘tran-

scribed regions’ share similar statistical properties such as compar-

able levels of mapped reads. However, mapped reads within these

regions are distinctly non-stationary. Seen commonly in chromatin

immunoprecipitation followed by sequencing (ChIP-seq) for RNAP,

‘peaks’ of GRO-seq mapping occur at both promoter proximal and

enhancer regions (Natoli and Andrau, 2012). In fact, traditional seg-

mentation analysis tends to group these visually distinct elements

into one long classification. Consequently, ‘transcribed regions’

often do not correspond to individual transcripts.

Within transcribed regions, the behavior of polymerase lends it-

self to substructure. For example, the initiating form of polymerase

pauses and produces bidirectional peak signatures upstream of the

gene body (Bentley, 2014; Kwak et al., 2013). Several recent efforts

have focused on identifying the bidirectional transcripts characteris-

tic of initiating/paused RNAP using supervised learning approaches

such as naive Bayes (Melgar et al., 2011), support vector regression

(Danko et al., 2015) or logistic regression (Azofeifa et al., 2014).

Although each approach shows promise, these classifications lack

an easy biological interpretation as learned regression coefficients

do not directly represent a biological process. Furthermore, methods

that focus solely on the bidirectional peak signal fail to capture the

productive elongation stage of transcription.

Our first approach to a unified model of RNAP behavior

described paused RNAP as an asymmetric double geometric fol-

lowed by elongation signal defined as a homogeneous Poisson point

process (Lladser et al., 2016). Although a significant step forward,

model inference was constrained to single isoform genes as the par-

ameter estimation method supports only one loading event.

Additionally, the model was single stranded and therefore most ap-

plicable to organisms such as Drosophila melanogaster where

paused RNAP does not show bidirectional transcript signal.

To address these limitations, we propose a novel generative

model of RNAP that describes both initiating/paused and elongating

RNAP. The model accounts for signal on both strands simultan-

eously, capturing the behavior of RNA Polymerase II genome-wide.

Even in light of the non-exponential family distribution functions,

we develop a parameter estimation method based on the theory of

maximum likelihood. With our model in hand, we perform infer-

ence into RNAP activity and assay changes in loading event loca-

tions and pausing probabilities across conditions.

2 Algorithm

2.1 Model description
Eukaryotic gene expression is a highly coordinated stochastic pro-

cess involving the enzymatic synthesis of RNA by RNAP. The pre-

cise location of RNAP along DNA can be measured either by

chromatin immunoprecipitation or nascent transcription assays.

Conceptually, in the absence of noise, each read originates from an

actively engaged RNAP molecule. Here we present a unified prob-

abilistic model of transcription that captures the position Z of

RNAP (Fig. 1).

At protein coding genes, RNAP is first recruited to the promoter

region at the transcriptional start site (TSS). We model the loading

position X as a Gaussian distributed random variable with parameters

l; r2 where l represents the typical loading position and r2 the

amount of error in recruitment to l. Upon recruitment, RNAP selects

and binds to either the forward or reverse strand, which we character-

ize as a Bernoulli random variable S with parameter p. Following

loading and pre-initiation, RNAP immediately escapes the promoter

and transcribes a short distance, Y. We assume that the initiation dis-

tance (also referred to as entry length (Jonkers and Lis, 2015)), is dis-

tributed as an exponential random variable with rate parameter k. For

paused polymerase, the final genomic position Z of RNAP is a sum of

two independent random variables (Equation 1).

ZjS � Xþ SY (1)

In Equation 1, S 2 f�1;þ1g represents the reverse and forward

strand decision respectively. Since RNAP processes in a 50 ! 30 dir-

ection, S also encodes the signed displacement away from l. We

solve these convolutions analytically and provide a properly normal-

ized probability distribution function (Equation 2) governing the

loading position and entry length of RNAP.

hðz; s; l; r; k;pÞ ¼ k/
z� l

r

� �
R kr� s

z� l
r

� �
1ðsÞ

1ðsÞ ¼
p : s ¼ þ1

1� p : s ¼ �1

8<:
(2)

From Equation 2, /ð�Þ denotes the standard normal distribution

and 1ð�Þ an indicator function. Rð�Þ represents the Mill’s ratio which

is defined as ð1� Uð�ÞÞ=/ð�Þ where Uð�Þ is the cumulative distribu-

tion function of the standard Gaussian density. To note, the func-

tional limits of h(z, s) as 1=k and r tend to zero are Gaussian and

exponential density functions, respectively. For these reasons, h(z, s)

has been referred to as an exponentially modified Gaussian (Reed

and Jorgensen, 2004).

Following recruitment, strand decision and initiation, RNAP

may transition to productive elongation (e.g. pause release) moving

Fig. 1. Model of polymerase activity. A summary of the probabilistic model

(on left, see text for full description of parameters) with examples of data gen-

erated from the model (on right). Here ‘Loading’ refers to recruitment of poly-

merase and pre-initiation complex formation, ‘Initiation’ refers to initiation of

transcription and promoter-proximal pausing, and ‘Elongation’ refers to pro-

ductive elongation following pause release (Fuda et al., 2009; Adelman and

Lis, 2012; Lee and Young, 2013; Jonkers and Lis, 2015) (Color version of this

figure is available at Bioinformatics online.)
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50 ! 30 to transcribe the full length of the coding sequence. And fi-

nally, RNAP releases from the DNA at termination sites, ls ¼ flf ; lrg
for the forward and reverse strand respectively. We describe the lo-

cation of elongating polymerases as a homogeneous Poisson point

process (Lladser et al., 2016). By well-known conditioning results

for Poisson point processes (Kingman, 1992), the positions of elon-

gating polymerases should be uniformly distributed (Equation 3) be-

tween the loading (l) and termination sites (ls).

uðz; s; l; lsÞ ¼
1ðz; sÞ

s � ðls � lÞ

1ðz; sÞ ¼
1 : sz � sl; sz � sls

0 : otherwise

8<:
(3)

In equation 3, 1ð�Þ represents an indicator function that directly en-

codes the biological constraint that elongating RNAP must first load

at l. Given that Z describes the location of RNAP, it originates either

from the initiating/paused, h(z, s), or elongating, u(z, s), stage of tran-

scription. For brevity, we refer to the Loading/Initiation/Paused and

Elongating/Termination stages as LI and ET respectively.

Nascent transcription assays serve as a readout on RNAP dy-

namics. Like most high throughput assays, GRO-seq (or PRO-seq)

is a population averaged assay, thus providing a histogram reflecting

the distribution of RNAP locations. In this way, however, GRO-seq

does not directly identify whether a read originated from either the

LI or ET stage of polymerase activity. To capture these processes

jointly, let k be a multinomial random variable that records a spe-

cific transcriptional component and is selected with probability wk.

Thusly, K ¼ fk 2 Nþ : k � Mg represents a finite set of M tran-

scriptional components. With this in mind, pðz; s; HÞ represents a

mixture distribution describing an arbitrary number of initiation

and elongation components (Equation 4).

pðz; s; HÞ ¼
X
k2K

wkf ðz; s;k; hkÞ (4)

Importantly, f ðz; s; kÞ in Equation 4 may represent either h(z, s) or

u(z, s) (Equations 2, 3 respectively). If KP represents the set of LI

components and KE represents the set of ET components, then 8ke

2 KE there exists a kp 2 KP such that lk lower or upper bounds the

support of ke depending on the strand orientation of ke. In this way,

LI and ET components are directly linked.

2.2 Model inference
Under a finite M-mixture model, we wish to perform model infer-

ence over H given nascent transcription data. Let G be the set of

aligned reads across the entire genome where each g 2 G consists of

a genomic coordinate z and strand identifier s. At some genomic

locus ½a;b�, let D ¼ fg 2 G : a � z � bg and N ¼ jDj. In total, we

seek to identify a parameter set H� under which D is most probable,

LðHjDÞ (Equation 5), i.e. the maximum likelihood estimate (MLE).

H� ¼ argmax
H

YN
i¼1

X
k2K

wkpðgi; hkÞ (5)

Without specifying the set of transcriptional component identifiers

(K) associated with D, Equation 5 does not emit a closed form solu-

tion. Even still, fD;Kg does not fully specify l^
k; k

^
k or r^

k as zi equals

the sum of two latent random variables: xi (loading position) and yi

(initiating length). However, observing the set of initiating lengths (Y)

effectively decouples the convolution in Equation 2 allowing for a

straightforward computation of the MLE for a Gaussian and an

exponential distribution. Taken together, let the complete data be

C ¼ fD;K;Yg. It follows easily that LðHjCÞ has a closed form solu-

tion given the assumed independence of zi; si;ki; and yi.

Although we do not observe K or Y, we can treat ki and yi as ran-

dom variables and perform iterative optimization of Equation 5 by

the Expectation Maximization algorithm (EM). The EM algorithm

alternates between two steps: the E-step computes the conditional

expectation of latent variables fki; yig given observed variables

gi ¼ fzi; sig (Equation 6) and the M-step performs a gradient step

along this expectation.

E½log pðCjhÞjD; ht� ¼ð
y2Rþ

X
k2K

XN
i¼1

log pðki; yi; gi; hÞ
YN
j¼1

pðyj; kjjgj; h
tÞ (6)

Admittedly daunting, simplification of Equation 6 can be achieved

in a number of ways. First, we assume that ki and yi are independent

therefore pðyj;kjjgj; h
tÞ ¼ pðkjjgj; h

tÞ � pðyjjgj; h
tÞ. Furthermore, pðyjj

gj; h
tÞ integrates to one across R

þ and
P

k2K pðkjgj; h
tÞ sums to one

over all k 2 K components. Finally, we need not consider pðyijgiÞ for

mixture components involving elongating polymerase. Therefore, we

can see that the complete data log-likelihood function depends only

on three quantities: yi; y
2
i and ki.

The probability a component k given a data point gi (Equation 7)

follows immediately from Bayes’ Theorem and for succinctness we

define this term as rk
i . Commonly referred to as the responsibility

term (Bilmes et al., 1998), rk
i measures the extent to which gi belongs

to some component k.

rk
i ¼ pðkjgi; h

g
kÞ ¼

wk � pðgi; h
g
kÞP

k2K wk � pðgi; h
g
kÞ

(7)

Turning to Y, the convolution of Z induced by the simultaneous

loading and initiation of RNAP requires a more involved computa-

tion to the expected value of LðD [ YÞ given the incomplete data

(Equation 8). Fortunately however, knowledge of Z¼ zi reveals con-

ditional dependence between X and Y and thus a way forward for it-

erative optimization of l;r; and k.

E½log pðD [ YjhÞjD; ht� ¼XN
i¼1

ð1
0

log pðyi; gi; hÞpðyijgi; h
tÞdy ¼

log
Nk

r
ffiffiffiffiffiffi
2p
p �

XN
i¼1

½kE½Yjgi; h
t�þ

1

2r2
z2

i � siE½Yjgi; h
t� þ E½Y2jgi; h

t� � 2lðzi � siE½Yjgi; h
t�Þ þ l2Þ�

�
(8)

To complete the E-step, we define the conditional expectation of the

initiating length Y conditioned on ht, Equation 9.

E½Yjgi; h
t� ¼ siðz� lÞ � kr2

þ r
Rðkr� siðzi � lÞ= rÞ

E½Xjgi; h
t� ¼ zi � siE½Yjgi; h

t�

E½Y2jgi; h
t� ¼ k2r4 þ r2ð2kðl� zÞsi þ 1Þ

þ ðzi � lÞ2 � rðkr2 þ siðl� ziÞÞ
Rðkr� siðzi � lÞ= rÞ

E½X2jgi; h
t� ¼ E½Xjgi; h

t�2 þ E½Y2jgi; h
t�

�E½Yjgi; h
t�

(9)
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Expectations over X (the random variable governing RNAP loading

position) given gi and ht can be shown easily from the linearity of

expectation.

With the necessary conditional expectations defined, we solve

for the maximum of Equations 6 and 8. Equation 10 provides the

‘update rules’ for the EM algorithm.

wtþ1
k :¼ rk

r
; ptþ1

k :¼
PN

i¼1 rk
i Iðsi ¼ 1Þ
rk

ltþ1
k :¼ 1

rk

XN
i¼1

E½Xjgi; h
t�rk

i ;
1

ktþ1
k

:¼ 1

rk

XN
i¼1

E½Yjgi; h
t� � rk

i

rtþ1
k :¼ 1

rk

XN
i¼1

E½X2jgi; h
g�rk

i � 2lk

XN
i¼1

E½Xjgi; h
t�rk

i � þ l2

" (10)

In keeping with the traditional notation of mixture models in

Equation 10, we define rk ¼
PN

i¼1 rk
i and r ¼

P
k2K rk.

Due to the finite nature of uniform distributions, our EM update

rules (Equation 10) assume that ls is fixed, presumably to the min-

imal or maximal order statistics, g0 and gn of D. However, the

length of elongation or exact site of termination varies throughout

the genome (Derrien et al., 2012). In this way, a fixed ls is an un-

attractive modeling assumption of RNAP.

To optimize ls requires an adjusted EM algorithm. In brief, we

want to preserve the contractive map property of the EM namely

jHtþ1 �H�j � bjHt �H�j where 0 < b < 1 and H� refers to a

fixed point of the EM map. Yet, moving ls away from the max and

min order statistics will result in some gi 2 D having no probability

mass (LðHÞ ! 0) or LðHÞ to monotonically decrease.

To estimate for an optimal ls, we place a uniform distribution

over D with support between ½a;b� and pðsÞ ¼ 0:5 for either s ¼ þ1

or s¼ – 1. The mixing weight ðwkÞ remains fixed at minðE=jDj;1Þ
where E represents the expected number of mapping errors across

½a; b�. Under a binomial error model assumption, E ¼ pjGjjb� aj=S
where S refers to the length of the genome, jGj the total number of

mapped reads and p represents the probability that a read maps by

chance alone. With this addition, ls is no longer confined to the min

and max order statistics of D. We provide a pseudo-code description

of our MLE methodology in the Supplement (Algorithm 1).

2.3 Model selection
An important limitation of finite mixture models is a-priori know-

ledge of jHj, the number of transcription components. To perform

model selection over potentially many component sizes, we utilize

penalized Bayesian Information Criterion (BIC), equation 11.

BICðH;LÞ ¼ ajHj log N � 2 logL (11)

L represents the likelihood function evaluated at H�, a is the penalty

term, jHj is the number of free parameters within a specific model

topology (e.g. one initiation component, one forward strand and

one reverse strand elongation component contains 8 free param-

eters) and N is the total number of data points within D. In brief,

BIC penalizes model complexity while balancing improvement in L.

Unless otherwise specified, a is set to one for all subsequent analysis.

3 Results

3.1 Estimation of RNAP location from GRO-seq
After confirming our model inference method using simulated data

(see Supplementary text and Fig. S1), we assess our model on pub-

licly available biological data. To perform model inference of RNAP

location requires an interval ½a; b� where GRO-seq read mapping

data (D) can be collected. To this end, we utilized Fast Read Stitcher

(FStitch) that implements a maximum entropy Markov model to

segment the genome into ‘transcribed regions’ (Azofeifa et al., 2014,

2016). In a HCT116 GRO-seq dataset (Allen et al., 2014), FStitch

classified 19 709 transcribed regions. With these regions in hand, we

computed H� by our MLE methodology across mixtures containing

jKj 2 f1; 2; . . . ;20g for each interval independently and selected a

final H� by the minimum BIC score.

Figure 2A shows a transcribed region with reference to the esti-

mated density function. As a final illustrative example, Figure 2B

displays the associated Bayesian Information Criterion scores as a

function of model complexity. Supplementary Table S1 provides a

collection of statistics describing the distribution of fitted param-

eters across all transcribed regions.

To address the accuracy of our model complexity procedure, we

reasoned that at active single isoform genes we should predict only

one LI component while at transcriptionally inactive regions (by

FStitch) we should predict no components. Supplementary Figure S2

highlights the accuracy of our RNAP inference model to discrimin-

ate between active and inactive transcribed regions based solely on

LI component presence (AUC	0:95). At a FDR of 0.05, we observe

that the distribution of jKpj at single isoform genes contains a clear

and prominent mode at jKpj ¼ 1 (Supplementary Fig. S2).

Fig. 2. Characteristic loci showing RNAP inference. (A) The final inferred density function at characteristic transcribed region and the super enhancer region con-

tained therein, defined by FStitch (Azofeifa et al., 2016) and dbSuper (Khan and Zhang, 2016) respectively. (B) The BIC calculation across 20 mixture models.

A model complexity of 5 is shown to be minimal and thus considered optimal (Color version of this figure is available at Bioinformatics online.)
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The distribution of jKpj at both single isoform genes and all

FStitch-defined transcribed regions is heavy tailed, suggesting an ap-

preciable number of transcribed regions contain more than one

RNAP loading event (Supplementary Fig. S3). To assess whether the

model is incorrectly introducing extra LI component centers to com-

pensate for data poorly described by an exponentially modified

Gaussian distribution, we compared the distribution of jbli � blj j
(i 6¼ j) at loci harboring jKpj > 1 to the distribution of LI component

standard deviation (br þd1=k). We observe that median pairwise LI

component center distance far exceeds what we would expect under

the variability of LI component sizes, indicating that fbl1; ::; blkg de-

scribe independent portions of the data.

Suggested by the associated standard deviations in Supplementary

Table S1, bH varies from locus to locus: some genes experience a large

degree of initiation (1=k
 0) or considerable strand bias p 6¼ 0:5.

Whether this variability relates to experimental noise or actual biolo-

gical structure, may be addressed by the reproducibility and consist-

ency of bH across biological replicates. To this end, FStitch defined

transcribed regions between replicate one and two were merged and

model inference, by Tfit, was performed in each replicate

independently.

We observe strong correlation in model selection (Supplementary

Fig. S4A) and exceedingly high correlation between identical param-

eters (e.g. qðkrep1; krep2Þ ¼ 0:95, Supplementary Fig. S4B), suggesting

that estimated parameters display low variance. Apart from w and ls,

we observe little to no correlation between differing parameters (e.g.

krep1 and prep2, Supplementary Fig. S4C), suggesting that there is no

confounding dependencies between parameters.

Estimates of wp sufficiently larger than the population average

(two standard deviations, Supplementary Table S1) are significantly

lacking in an overlapping transcription start site (p-value numeric-

ally indistinguishable from zero, Hypergeometric test). Intuitively,

this is expected as transcription over enhancer regions or non-

coding regulatory loci do not harbor downstream gene bodies. We

observed that the loading strand bias (p) tracks closely with the

strand orientation of the underlying RefSeq gene (Supplementary

Fig. S5A). Particularly, �p 
 0:5 and �p � 0:5 for forward and re-

verse strand gene annotations respectively. Loading events lacking

an annotated TSS display no appreciable strand bias, �p 	 0:5.

Given our model predicts l as the site of RNAP loading and ls as

the site of elongating termination, we compared the location of l

and ls to estimates of annotated transcriptional start sites (TSS) and

termination sites respectively. We observed a high degree of correl-

ation between l and the TSS, noting a significant 	40 base pair up-

stream displacement of l from the TSS (Supplementary Fig. S5B).

This displacement is in line with estimates from other groups using

independent methods (Jonkers and Lis, 2015). Similar to previous

estimates of transcription termination (Azofeifa et al., 2016; Fong

et al., 2014), we observed ls to be 	6KB downstream the polyadeny-

lation site (Supplementary Fig. S5C).

3.2 Predicting enzymatic changes of RNAP following

experimental perturbation
Of significant importance to transcriptional studies is to monitor

changes in RNAP activity following experimental perturbation.

Specifically, the transition between promoter-proximal pausing into

the subsequent RNAP elongation constitutes a highly regulated pro-

cess of tremendous interest (Adelman and Lis, 2012). A popular

metric to quantify changes in RNAP pausing, the ‘pausing ratio’

computes mapped reads under some TSS-centered window divided

by mapped reads under some gene body-centered window. Given

that our model directly infers LI and ET RNAP stages from data

alone, we ask whether we can correctly identify changes in RNAP

activity following experimental perturbation known to affect pro-

moter proximal pausing.

We reanalyzed data from two studies that utilized GRO-seq to

probe RNAP pausing activity. Specifically, one study knocked down

bromodomain-containing protein 4 (Brd4) in HEK293 cells and

observed global changes in RNAP pausing ratios suggesting a crit-

ical role in RNAP pause release (Liu et al., 2013). Yet another study

noted global shifts in RNAP pausing ratios by cyclin-dependent kin-

ase (CDK) 9 inhibition in HeLa cells (Laitem et al., 2015). With

these datasets, we hypothesis that our model should accurately re-

produce the observed changes in pausing ratios by appropriate

changes in the LI and ET mixing weights.

For each dataset, we performed model estimation and computed

changes in estimated parameters between the untreated and treated

cells. Specifically, we fit a single component mixture model (one LI

component and two ET components) at each gene annotation re-

gion. We then compared pairwise fold change in LI component mix-

ing weights first between untreated biological replicates and then

between untreated and treated experiments. In both studies, we

observed highly significant global changes in LI component mixing

weights relative to untreated replicates (Fig. 3A).

Although easily computable, the standard pausing ratio calcula-

tions rely on ad hoc methods of window sizes and distance thresh-

olds (Adelman and Lis, 2012). To highlight this point explicitly, we

examined the impact of TSS-centered window size on the pausing

ratio (Fig. 3B). Intuitively, window sizes that are either too small or

too large dramatically reduce the observable differences between

treated and untreated cells. For comparison, we provide the distribu-

tion of LI standard deviation obtained from our model.

3.3 RNAP model accurately predicts marks of regulatory

elements
Beyond annotated genes, it is well known that key chromatin marks

are associated with transcription in different parts of the genome (The

ENCODE Project Consortium, 2007, 2012). Moderate levels of

H3K4me1/2 and high levels of H3K27ac mark active enhancers

whereas high levels of H3K4me3 and H3K27ac mark areas of active

promoters. Recent studies show that these marks harbor transcription

(Li et al., 2016) and show a characteristic ‘bidirectional’ signature,

where forward and reverse strand read coverage appear positively and

negatively skewed respectively. To study the interplay between

Fig. 3. Changes in promoter proximal pausing are correctly identified by a gen-

erative model of RNAP. Mixture model inference was performed over RefSeq

gene annotations between control and treated cell lines in two independently

derived datasets: Laitem 2015 and Liu 2013. (A) The predicted difference in LI mix-

ing weights between control (on left) and treated cells. Under a normal assump-

tion, mean mixing weights were compared using a t-test. (B) The distribution of

LI length (box) with the traditional computation of the pausing ratio as a function

of window size, plotted for the control (bottom line) and treated (top line) cell lines

of the Laitem 2015 dataset. Grey shading indicates one tenth of one standard

deviation (Color version of this figure is available at Bioinformatics online.)
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enhancer transcription and chromatin landscape requires the develop-

ment of models to accurately identify bidirectional transcripts.

Although our model of RNAP does not implicitly assume LI

components to appear bidirectional, certain parameter combin-

ations (e.g. p 	 0:5 and 1=k
 0) will show both positive and nega-

tive skew emanating from l. To profile for bidirectional transcripts

genome wide, we hereafter utilized our EM seeding method (com-

plete description in Supplement; HB set to the parameter values in

Supplementary Table S1).

To assess the accuracy of our bidirectional transcript classifica-

tions, we monitored how well a regulatory mark (DNase I HS,

H3K27ac, H3K4me1/3) may be predicted from bidirectional tran-

scription alone. With an HCT116 GRO-seq dataset (Allen et al.,

2014), we benchmarked our method against the current state-of-the-

art bidirectional detection algorithm, dREG (Danko et al., 2015). The

BIC penalty a (Tfit) and support vector regression score (dREG) was

varied. True positives were considered as an overlap with chromatin

mark peaks (HCT116 (The Encode Project Consortium, 2012),

MACS broad peak settings) and the resulting bidirectional transcript

prediction. To assess false positives, we randomly selected an equiva-

lent number of 2KB loci that do not overlap MACS peak calls. Thus,

a false positive is a bidirectional prediction overlapping a negative ex-

ample. We observed improvements over dREG across all regulatory

marks (Fig. 4A, B). Both dREG and Tfit predict H3K27ac marks ex-

ceedingly well from bidirectional transcript presence alone, suggesting

that H3K27ac signal reflects nascent transcription.

3.4 Three dimensionally paired loci display centrality

and associativity based on bidirectional transcription
The role of transcription at enhancer elements (defined commonly

as non-TSS associated H3K27ac presence) remains an open and

exciting question. Correlation in both transcript levels and three di-

mensional proximity of enhancer elements and target genes (Allen

et al., 2014; Azofeifa et al., 2014; Le et al., 2013) point prominently

to the functional importance of enhancer transcripts. To begin to ad-

dress the question of enhancer RNA function, we present an analysis

that demonstrates both the utility of our predicted RNAP loading

events and the intriguing relationship between chromatin interaction

datasets and nascent transcription assays.

Given that the insulator protein CTCF has been implicated as a

key player in enhancer to gene looping events (Phillips and Corces,

2009; Splinter et al., 2006), we examined the loci-loci pair inter-

action network defined by Chromatin Interaction Analysis by

Paired-End Tag Sequencing (ChIA-PET) for CTCF derived from the

K562 cell line (The Encode Project Consortium, 2012). With a cell

line matched GRO-seq dataset (Core et al., 2014), we compared net-

work attributes of loci containing or lacking bidirectional transcript

predictions (c¼1, FDR¼0.05 according to H3K27ac prediction).

Figure 5A displays two illustrative connected component examples,

built as described in the Supplement.

Enhancers are implicated in defining key cellular phenotypes

such as cell fate (Creyghton et al., 2010; Whyte et al., 2013) and

tumorigenesis (Hnisz et al., 2015; Qian et al., 2014) and thus may

play a central role in three dimensional looping. Our constructed

network reflects locations in the genome (nodes) connected by the

CTCF ChIA-PET data. With this in mind, we grouped nodes by

whether they lacked or contained an association with an annotated

TSS or Tfit prediction and computed common measures of node

centrality. We observed the highest degree of node centrality at non

TSS associated bidirectional transcripts across all criteria

(Supplementary Table S2). This result suggests that enhancer RNAs

play a central role in the 3D configuration of the genome.

With the advent of chromosome conformation capture technol-

ogy, extensive chromosomal looping has been observed at so called

transcription factories (Deng et al., 2013). These discrete nuclear

sites of transcription allow for rapid expression of many three di-

mensionally proximal genes (Edelman and Fraser, 2012). To this

end, we investigated evidence of modularity or network homophily

based on lacking or containing bidirectional transcript presence.

Indeed, the proportion of edges linking bidirectionally transcribed

nodes is much higher than by chance alone (Fig. 5B). Furthermore,

computation of network modularity (a measure of network label

Fig. 4. RNAP model accurately profiles for bidirectional transcription. (A) A re-

ceiver operating characteristic (ROC) curve displaying the relationship be-

tween true and false positive rates of H3K27ac prediction from bidirectional

transcription alone. The area under the ROC curve (AUC) values are summar-

ized for multiple marks. As a Venn diagram, (B) shows the overlap in bidirec-

tional transcription classifications between dREG and Tfit at false discovery

rate of 0.05 relative to the H3K27ac prediction (Color version of this figure is

available at Bioinformatics online.)

Fig. 5. CTCF paired loci network displays assortativity by bidirectional presence (A) displays two characteristic connected components on chromosome 1 and 2

from a CTCF ChIA-PET dataset derived from the K562 cell line. Nodes are colored as to whether a Tfit prediction overlaps a paired loci by one base pair or not;

Bidir. and �Bidir. respectively. The circumference of the node is proportional to the degree. (B) The proportion of edges containing a similar label, significance is

calculated by a Binomial test. (C) The distribution of the assortativity coefficient across all connected components,> 0 indicates modularity (Color version of this

figure is available at Bioinformatics online.)
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clustering) shows weak assortativity across most connected compo-

nents (Fig. 5C).

4 Discussion

We described a probabilistic, generative mixture model that is

founded on a biologically motivated description of RNAP behavior.

Our model is inspired by the current understanding of polymerase

behavior (Core et al., 2014; Fuda et al., 2009; Kwak et al., 2013;

Lee and Young, 2013) at protein coding genes and provides a prin-

cipled mathematical approach to GRO-seq data analysis. To per-

form model inference, we derived a parameter estimation scheme

based on the theory of maximum likelihood and the Expectation

Maximization algorithm. When applied to GRO-seq, our model can

not only identify individual transcripts but also quantify their char-

acteristics, as evidenced by the fact that the loading site predictions

of our model correlate well with RefSeq annotation.

The relatively recent and unexpected discovery that enhancers

are themselves transcribed challenges our conventional view of tran-

scriptional regulation (Li et al., 2016). Whether the underlying re-

gion is a promoter or an enhancer, our model explicitly assumes a

singular behavior of RNAP genome-wide. The ability of our model

to fit well to transcribed regions that are unannotated suggests that

the unified model recently proposed in the literature (Andersson

et al., 2015; Core et al., 2014) and assumed here is appropriate.

Turning our generative model to a discriminative classifier, we

observed that our bidirectional transcript predictions precisely re-

cover sites of marked regulatory chromatin. Indeed, our method

outperforms the current state of the art algorithm (Danko et al.,

2015) for bidirectional transcript classification. Furthermore, our

observation that non-TSS associated bidirectional transcripts consti-

tute a central role in CTCF ChIA-PET networks points yet again to

the increasing importance of enhancer RNAs.

The parameters of our model provide meaningful summary stat-

istics of nascent transcription data. Changes in these statistics across

cell types, experimental conditions and/or perturbations reflect bio-

logically meaningful alterations in RNAP behavior. Consistent with

this idea, our inference procedure confirmed a dramatic change in

pausing probability following experimental perturbations for two

independently derived datasets. We anticipate that our model will

be used to assign particular regulatory proteins to the distinct stage

of polymerase they regulate. In the case of a single experiment, cor-

relations between the parameters of our model and other high

throughput datasets will inform on the underlying regulatory pro-

cess. For example, it is of great interest to monitor the co-occurrence

of transcription factor binding events and motifs with initiation site

predictions obtained from our model.

As we learn more about how polymerase is regulated, it will be

possible to extend our model accordingly. Close inspection of GRO-

seq read coverage reveals oscillatory behavior within the gene body,

as such a homogeneous Poisson point process may not be an appro-

priate model governing transcriptional elongation. Pol II elongation

rates vary and influence a number of co-transcriptional processes

(Jonkers and Lis, 2015; Jonkers et al., 2014), suggesting that the un-

dulations observed in the elongation region could be biologically in-

formative. However, the extent to which heightened levels of

mapped reads correspond to mapping biases or biologically mean-

ingful points of transcription regulation is unclear. Additionally,

RNAP is thought to pause proximal to its termination (Bentley,

2014). Indeed, an interesting and prominent 30 peak is often

observed a few kilobases upstream of the end of the elongation

region (Fong et al., 2014). More detailed studies of both elongation

and transcriptional termination, both experimentally and computa-

tionally, are needed to shed light onto these processes (Fong et al.,

2014; Jonkers and Lis, 2015). Furthermore, an improved under-

standing of these process may also require us to re-evaluate the inter-

pretation of particular parameters.

In summary, with the advent of high throughput sequencing

transcriptional assays like GRO-seq, RNAP is now being studied in

increasingly exciting and precise ways. One of the key goals of our

mixture model was to provide a set of biologically interpretable par-

ameters that capture alterations in polymerase behavior induced by

changes in regulatory proteins. To this end, a key next step will be

the development of rigorous statistical methods for detecting poten-

tially small, but meaningful changes in model parameters between

experiments. We believe our proposed mixture model is one of the

first steps in building a comprehensive predictive model of RNAP.
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