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Aspergillus spp. are widely occurring fungi in nature; they produce toxic compounds
such as aflatoxins (AFs) and mainly target plant products such as corn and nuts.
The development of prevention strategies is challenging because AFs are highly
toxic and have been regulated to small concentrations. This study proposes a new
strategy of AF prevention through the application of rapid methods using acoustic
techniques in combination with fermentation for the elimination of contaminated corn
from bioethanol production processes. An acoustic device was used for the analysis of
model systems consisting of corn and nuts (hazelnuts and peanuts) contaminated with
different amounts of AFs. High correlations were obtained between penetrated acoustic
signal amplitude (Ap) and corn sample density, and between Ap and AF content. Also,
relationships were found between changes in Ap values and AF contamination in the
nuts model systems. The results of biotreatment of contaminated corn during bioethanol
production confirmed that AFs cannot be completely eliminated in dried distiller’s grains
with solubles, a valuable by-product for animal feed. Microbially, contamination of the
raw material has a negative impact on bioethanol quality by increasing the content of
volatile compounds. Therefore, the application of methods such as acoustic screening
is a promising alternative for rapid AF detection in corn and nuts (it can handle multi-
layers of grain). With the application of acoustic techniques, the prevention of AFs in
contaminated raw plant materials could be achieved.

Keywords: Aspergillus spp., corn, nuts, rapid method, aflatoxins screening, acoustic sensors, bioethanol,
detoxification

INTRODUCTION

Aspergillus flavus and A. parasiticus are one of the most common fungal strains in the agricultural
sector, producing the aflatoxins (AFS) AFB1 and AFB2, and AFG1 and AFG2, which are chemically
related to bisfuranocoumarin (Udomkun et al., 2017; He et al., 2018) and found worldwide
in soil, air, and plants (Bandyopadhyay et al., 2016; Rushing and Selim, 2019). Aflatoxins are
potential carcinogens that frequently contaminate food raw materials such as corn, cottonseed,
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FIGURE 1 | The acoustic spectrometer (A) and its schematic drawing (B) (1 – computer; 2 – sine-wave generator; 3 – pulse generator; 4 – frequency converter;
5 – frequency meter; 6 – transmitting acoustic aerial; 7 – power supply; 8 – receiving acoustic aerial; 9 – power supply; 10 – oscilloscope; 11 – digital voltmeter;
12 – grain seeds sample under test).

peanuts, and some tree nuts in high concentrations, representing
a high risk to food and feed chains and lowering the nutritional
quality (Santini et al., 2009; Mikusova et al., 2010; Ritieni et al.,
2010; Weaver et al., 2015; Moretti et al., 2019). Therefore, for
the food and feed industry to avoid economical losses, a major
task is to control the mycotoxin contamination levels in the
end products. The prevention of fungal contamination and the
development of methods for the decontamination of foods from
mycotoxins are important strategies to protect human and animal
health (Ehrlich, 2014; Reinholds et al., 2016; Ismail et al., 2018;
Pankaj et al., 2018; Mwakinyali et al., 2019).

The common practice to determine mycotoxins is to use
laboratory- and time-intensive fundamental chemical, physical,
and enzyme immunoassay analyses (Santos Pereira et al., 2019).
Considering the fact that these mycotoxin detection methods
are complex and expensive, special attention should be given
to innovative mycotoxin determination technology, that will
allow quick and cheap detection of mycotoxins in the raw
materials. Fungal infection not only results in the accumulation
of mycotoxins, but also causes grains to shrivel and become more
porous. This phenomenon is known as head blight or scab, one
of the indicators of poor wheat grain quality (Juodeikiene et al.,
2011; Ropelewska et al., 2019; Zhang and Ji, 2019). Due to changes

TABLE 1 | The corn samples with different contamination levels, used for
bioethanol production.

Corn No. Aflatoxin Concentrations, µg/kg

C-0 0,00

C-14 14,17

C-15 15,24

C-39 38,55

C-50 50,00

C-54 53,68

C-57 56,70

in grain microstructure a rapid and non-destructive method to
evaluate the quality and safety of grains is therefore required to
detect and subsequently eliminate these toxins from the food
chain. The first portable acoustic device equipped with a wide-
range capacity ultrasonic transducer was developed at Kaunas
University of Technology (Lithuania) during the implementation
of the EUREKA ITEA2 project ACOUSTICS for the prediction
of deoxynivalenol (DON) contamination levels in wheat grains.
Project results showed that the acoustics method, applied for
the first time to grain safety monitoring, is innovative and
important in ensuring the safety of grains (ITEA 2 Magazine,
2013; Juodeikiene et al., 2014b). However, until now, no studies
of the influence of Aspergillus spp. and their metabolites on
corn grain and nut microstructure, their technological properties
and the use of an acoustic method for the detection of AFS,
have been performed.

To avoid the detrimental effects of feed and food contaminated
by AFs, not only prevention of contamination but also
decontamination of toxic compounds during processing should
be applied (Taheur et al., 2019). Fungal infection not only
results in the accumulation of AFs, but due to contamination
corn raw materials are no longer available for food or feed
consumption and can be used as biomass. One of the possible
applications of corn biomass is for the production of bioethanol.
It is known that fermentation processes could eliminate grain
contamination, with the possibility of using the by-products
obtained as feed for cattle (Čolović et al., 2019). For this
reason, the degradation or decontamination of mycotoxins
using appropriate biological microorganisms have been used
in the last decade (Juodeikiene et al., 2012; Oliveira et al.,
2013; Peles et al., 2019). Recently, the novel aspects of the
biological detoxification of mycotoxins (Vila-Donat et al., 2018)
included a strategy that relies on mycotoxin inactivation or
transformation to non-toxic products by applying low-cost and
economically feasible decontamination technologies, retaining
the nutritive quality of feed or food, remaining palatable, and
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FIGURE 2 | Microscopic view of healthy kernels with intact starch granules (A) and kernels damaged by fungi showing stripped starch granules (B).

FIGURE 3 | Relationship between content of mold/yeast in scabby hazelnut (A) and peanut (B) model systems.

not changing significantly the physical properties of the raw
material (Haque et al., 2020). A number of microbial species of
bacterial and fungal origin have shown the capability to degrade
mycotoxins via sorption/enzymatic degradation (Risa et al., 2017;
Wang et al., 2018, 2019).

In the present study, the efficiency of corn biomass
bioprocessing was explored by using a multi-step prevention
system: in the first step, acoustic screening of grains with the
elimination of contaminated corn from the production chain
was used, and in the second one, a detoxification approach
(e.g., fermentation with selected bio-tools) for bioethanol
production was applied.

MATERIALS AND METHODS

Plant Material
Corn Samples
Uncontaminated corn grains and grains artificially infected with
Aspergillus flavus with a high level of total AFs (59.2 µg/kg)

were obtained from the USDA (United States). The corn model
systems were prepared by mixing the uncontaminated corn
kernels with 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% of
contaminated kernels.

Nut Samples
Additionally, this study analyzed different nuts (peanuts and
hazelnuts) obtained from a Lithuanian supermarket. The two
model systems (peanuts and hazelnuts) were prepared by mixing
whole-appearance nuts (peanuts and hazelnuts) with mold-
damaged nuts (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%). The
infected nuts were smaller and more shriveled and were selected
according to their degree of shriveling.

Methods of Analysis
Determination of Chemical Composition and the
Qualitative Characteristics of Grain or Nuts
Humidity was determined by the weight loss on drying of the
grain or nuts (130 ± 3◦C) to constant weight [AACC method
44-15 (2000)].
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FIGURE 4 | Relationship between content of scabby corn in model systems (A), density of samples (B), AF content in samples (C), and amplitude of the penetrated
acoustic signal (Ap, frequency 24.3 kHz; n = 10).

The bulk density of the corn or nuts (ρ, kg/m3) was calculated
using the equation ρ = G/V, where G is mass and V is volume.

Grain Microstructure Evaluation
Cross-sectional images of infected and healthy grains were
taken by scanning electron microscope EVO 50 (LEO Electron
Microscopy Ltd., Cambridge, United Kingdom) equipped with a
second electron (SE) detector.

Microbiological Contamination of Nuts
Microbiological tests on both types of nuts were carried
out using five mixtures: (1) 100% whole nuts, (2) 75%
whole nuts + 25% contaminated nuts, (3) 50% whole
nuts + 50% contaminated nuts, (4) 25% whole nuts + 75%
contaminated nuts, and (5) 100% infected nuts. The total
numbers of aerobic microorganisms in the mixtures were
determined using the plate-count agar (CM0325, Oxoid,
United Kingdom). Nuts (10 g) were mixed with 100 ml
of distilled water, and after serial dilution, the obtained
homogenate was mixed with the agar medium and incubated
at 24◦C for 5 days in aerobic conditions. The count of

microorganisms was expressed in CFU (colony-forming units)
per gram of nuts.

Acoustic Technique
Samples of the corn grain, corn grain model system, and different
nuts model systems were screened using a recently developed
portable acoustic spectrometer (Figure 1) with penetration
(Juodeikiene et al., 2014b).

The spectrometer measures in relative units the amplitude of
the acoustic signal (Ap) that penetrates the sample matrix over
the frequency range 10–80 kHz. The 15–40 kHz interval was
selected as the optimum frequency range. The duration of each
measurement was ∼10 s. The test was carried out by placing the
test portion of 200 g of sample into a plastic vessel whose base
was covered with sound-transmitting material. The thickness of
the sample layer was 50 mm and diameter 80 mm.

Determination of AFs
The quantitative analysis of the total AFs (B1, B2, G1, and G2) in
corn samples and corn samples after bioethanol production (the
stillage obtained after drying at 50◦C for 24 h) was performed
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FIGURE 5 | Relationship between content of scabby hazelnuts and peanuts in model systems (A,B, respectively) and amplitude of the penetrated acoustic signal
(Ap, frequency 18.1 and 27.0 kHz; n = 10).

by a competitive enzyme linked immunosorbent assay (ELISA)
according to the total AF test (AgraQuant R©, Romer Labs Ltd.,
Germany) procedure. The ground test sample amount used in
the ELISA assay was 100 g. Mycotoxin extraction and testing was
carried out according to the manufacturer’s instructions.

Acidity analysis of fermented broth in bioethanol production
was performed according to our previous study (Juodeikiene
et al., 2012). The concentration of ethanol was determined using
direct distillation and pycnometry.

Volatile compound determination was completed by
gas chromatography (GC). Corn samples with different
contamination levels were used for bioethanol production
(Table 1). The bioethanol production was performed by using
the low-temperature process according to Juodeikiene et al.
(2014a). A Hewlett-Packard 5890 gas chromatograph equipped
with an FID detector was used for the quantitative analysis of
volatile compounds as described by Juodeikiene et al. (2014a).

RESULTS AND DISCUSSION

The Changes in the Microstructural
Composition and Microbiological
Contamination of Corn Grains and Nuts
Damaged by Aspergillus spp.
Microscopic analysis of the grains contaminated by Aspergillus
and the wholesome corn shows visible damage on the surface
of the contaminated grain kernels (Figure 2B) and shows what
happens to the structure of the grain kernels when attacked by
Aspergillus spp. In Figure 2A, the structure of the grain kernel
walls is healthy and wholesome; in Figure 2B, the starch granules
have been “consumed” by the fungus and a more skeleton-like
type of landscape appears. Endosperm cells of healthy kernels
(Figure 2A) were filled with regular-shaped starch granules and
distributed in the unfolded protein matrix. On the other hand, the
endosperm in the Aspergillus-damaged kernels were restructured,
fractured, and of irregular form and formed single agglomerates

that are influenced by the amylolytic degradation of the starch
granules (Figure 2B).

Additionally, the microbiological contamination effect was
studied on the hazelnut and peanut model systems, which were
prepared by mixing visually damaged and contaminated nuts
with wholesome ones. Statistical analysis showed a significant
positive relationship between the number of scabby hazelnuts
(R2 = 0.939, p < 0.05) and peanuts (R2 = 0.874, p < 0.05) in model
samples and mold/yeast counts, respectively (Figures 3A,B).

Fungal infection not only results in the accumulation of
mycotoxins, but could also considerably influence the structure
and the physical criteria of corn grains and nuts. These
changes in the structure influence the porosity of the kernels
as well as change the packing factor of kernels in the matrix
and could be the basis for the development of a screening
method for detection of microbial contamination in this type
of raw material.

The Application of the Acoustic
Screening Technique for the Detection
of Microbiological Contamination in
Corn Grains and Nuts Damaged by
Aspergillus spp.
The influence of contaminated grains on grain bulk density was
studied by determining the relationship between the content
of damaged grains and the amplitude of the penetrating (Ap)
acoustic signal measured by the acoustic spectrometer (Figure 4).
As shown in Figures 4A,C, strong inverse linear relationships
were obtained between the number of contaminated corn grains
in model samples, the AF content in the samples measured by
ELISA [AFL(ELISA)], and the amplitude of the acoustic signal
in the model samples (R2 = −0.684 and R2 = −0.679, p < 0.05,
respectively). A strong positive correlation was observed between
the density of model corn samples and the Ap values recorded
using the acoustic spectrometer (R2 = 0.729, p < 0.05) as shown
in Figure 4B. Further acoustic analyses were performed with
contaminated hazelnut and peanut samples (Figures 5A,B).
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FIGURE 6 | The acidity of wort obtained during fermentation of whole corn
grains and contaminated grain samples (C-0, C-14, C-15, C-39, C-50, C-54).

Results indicated that as microbiological contamination of
nuts increased, the amplitude of the acoustic signal penetrating
the nut sample decreased. The obtained results are in agreement
with previous studies in which a strong dependence between
DON and the content of scabby kernels in wheat matrix was
found by Juodeikiene et al. (2008, 2014b) and Tutelyan (2004).
The results of the fungal invasion are that the attacked grains
shrivel (become scabby in the case of wheat) and become
more porous. The same is true for corn kernels affected by
A. flavus, although the shriveling is less manifested compared
to wheat grains because the pericarp of the corn kernel is
sturdier. At the point of harvest, a mixture of wholesome
and shriveled grains (or more porous kernels) is seen. The
differences between the wholesome (less scabby nuts) and
contaminated nuts (more scabby nuts) can also be detected
by screening acoustic techniques (Figure 5). Experiments have
shown that the acoustic behavior of porous granular materials
can be characterized essentially in terms of porosity and
airflow resistance (Guo et al., 2019; Pereira et al., 2019).
Furthermore, it was found (Guo et al., 2005) that in beads
of cereal grains, the absorption of the acoustic signal depends
on the size and shape of the particles. Therefore, it is
advisable to use developed equipment at point of harvest
where one strain of cereal usually dominates (with one particle
size and shape).

The Effect of Microbial Contamination by
Aspergillus spp. on the Fermentation
Processes During Bioethanol Production
The influence of corn biomass being contaminated with AFs
at different levels on alcoholic fermentation was evaluated by
chromatographic analysis of the yield ethanol and fusel oils.

The process of fermentation of corn contaminated with AFs
resulted in a higher organic acid formation (on average 7.03
times) in wort compared to the control sample (Figure 6).

Qualitative and quantitative analysis of bioethanol showed
(Figure 7) that fermentation of AF-contaminated corn produced,
on average, higher levels of higher alcohols: isoamyl alcohol

FIGURE 7 | Concentrations of metabolic products in bioethanol during
fermentation of corn contaminated with AFs.

FIGURE 8 | Concentration of AF in corn samples before fermentation versus
after fermentation.

(35.57%), propyl alcohol (8.63%), and methanol (88.62%).
During the experiment, the levels of AF in the infected corn
before and after fermentation were examined (Figure 8).

Our study showed that contamination of corn with AFs has a
negative influence on the fermentation process by increasing the
acidity profile (Figure 6) and increasing secondary metabolites in
the final product (Figure 7).

However, the positive detoxification effect of fermentation was
achieved by reducing the AF content by ∼29,71% in the by-
product of ethanol production (DDGS) (Figure 8). DDGS is
characterized by its high contents of protein, fiber, and various
minerals and vitamins (Chatzifragkou and Charalampopoulos,
2018; Chen et al., 2019), which are valuable as animal nutrition
in feed. Increasing supply and demand for DDGS (Wu and
Munkvold, 2008) is expected to be driven by increased bioethanol
production (Mohanty and Swain, 2019), which will allow DDGS
to be used as a renewable source (Kumar and Singh, 2019).
There is still no information offering biological tools for the
complete elimination of mycotoxins from fermentation media,
including raw materials.

The obtained results of the possible biological
decontamination are in agreement with other reviewed
papers (Mahmood Fashandi et al., 2018; Chiocchetti et al.,
2019). Fermentation is influenced by microorganisms occurring
naturally in the raw materials or by the addition of starter
cultures of microorganisms. Yeasts, such as S. cerevisiae
and various lactic acid bacteria (LAB), occur naturally
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and spontaneously as a natural part of fermentation in the
food industry. Detoxification of mycotoxins usually occurs in
two stages: sorption and enzymatic degradation of mycotoxins
(Perczak et al., 2018; Pereyra et al., 2018).

CONCLUSION

A portable acoustic penetration spectrometer was applied for
high-throughput monitoring of contaminated corn and nuts
(hazelnuts and peanuts). Strong correlation coefficients were
achieved between acoustic results and corn grain density
and AF concentrations in model systems (R2 = 0.729 and
−0.684, p < 0.05, respectively). The relationships between the
amplitude of the acoustic signal penetrating the samples and
AF contamination of hazelnuts and peanuts presented strong
relationships (R2 = 0.816 and 0.803, p < 0.05, respectively). Our
results show that bioprocesses such as bioethanol production
cannot completely eliminate AF contamination of dried distillers’
grains with solubles (AF removal was on average 29.71%). In
addition, there is a problem with bioethanol quality (lower
ethanol content and more volatile metabolites). Therefore, the
development and use of rapid methods, such as the use of
broadband capacitive acoustic transducers, are still very attractive
solutions for AF prevention. Because of its speed, non-invasive
character, and quantification ability, this method is comparable
in precision to wet-chemistry methods such as ELISA and

is far faster and cheaper per analysis to set up than wet-
chemistry methods. It lends itself to the monitoring and high-
throughput detection of AFs in corn and nuts and eliminates their
contamination of the food chain.
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