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Abstract: Anti-microbial drugs are widely employed for the treatment and cure of diseases in animals,
promotion of animal growth, and feed efficiency. However, the scientific literature has indicated
the possible presence of antimicrobial drug residues in animal-derived food, making it one of the
key public concerns for food safety. Therefore, it is highly desirable to design fast and accurate
methodologies to monitor antimicrobial drug residues in animal-derived food. Legislation is in
place in many countries to ensure antimicrobial drug residue quantities are less than the maximum
residue limits (MRL) defined on the basis of food safety. In this context, the recent years have
witnessed a special interest in the field of electrochemical biosensors for food safety, based on their
unique analytical features. This review article is focused on the recent progress in the domain of
electrochemical biosensors to monitor antimicrobial drug residues in animal-derived food.

Keywords: electrochemical biosensors; antimicrobial drug residue; food safety; kanamycin; chloramphenicol;
tetracycline; streptomycin

1. Introduction

Human health is greatly influenced by environment, particularly the quality and nature of the
food consumed. Therefore, in recent decades, food safety and its quality have become prime concerns
owing to the growing food consumption and rapidly changing dietary habits. According to a survey,
unhealthy and contaminated food is associated with approximately 2 million deaths annually all over
the world. In response, public health agencies all over the world are working to put forward stringent
safety measures and food regulations [1,2].

The various antibiotic families used so far in veterinary medicines include sulphonamides,
lincosamides, nitrofurans, trimethoprim, amphenicols, tetracyclines, polymyxins and β-lactams and
quinolones [3–5]. Residues of these drug can pose serious health hazards by contaminating food
products consumed by humans such as milk, chicken, egg, honey, fish or meat [6]. The drug residues
in animal origin food can also trigger the development of antimicrobial resistance, which has become
a serious international issue in recent years [7,8]. These resistant bacterial pathogens can be transferred
to human beings through the food chain which may lead to the inefficiency of antibiotic therapy in
humans infected with resistant pathogens resulting in a rise in morbidity and mortality rates.
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Legislations

Drug residues, as defined by the European Union (EU) and the Center for Veterinary Medicine,
an agency under the Food and Drug Administration (FDA/CVM) in the USA are “pharmacologically
active substances (whether active principles, recipients or degradation products) and their metabolites
which remain in foodstuffs obtained from animals to which the veterinary medicines in question has
been administered” [9]. To reduce the adverse effects and toxicity of antibiotic-resistant pathogens,
the European Union has put forward a “precautionary principle” model whereby some specific
antimicrobial growth promoters are banned [10], while for the veterinary medicines that are not
banned, maximum residue limits (MRLs) have been established by a number of regulatory authorities
in the United States and European countries to ensure consumers’ safety from exposure to harmful drug
residues in animal origin food. The European Union has defined MRL as “the maximum legally acceptable
quantity of pharmacologically active substances (whether active principles, excipients or metabolites) and
their degradation products in food products derived from animals”. Usually, MRL is adjusted according
to the acceptable daily intake (ADI), which also incorporates a maximum safety margin in its calculation.
These calculations are also dependent upon the withdrawal period. The withdrawal period is the time
elapsed between last dosage of a certain drug or any pharmacologically active substance administered to
the individual and the time at which the level of drug residue in food products i.e., meat, eggs, milk or in
animal tissues i.e., liver, muscles, is equal to or less than MRL of that particular antibiotic drug. For instance,
the Canadian MRLs for streptomycin, penicillin, sulfonamides and tetracycline have been calculated to
be 0.5 ppm (chicken muscle), 0.05 ppm (chicken muscle), 0.1 ppm (cattle muscle and 0.2 ppm (chicken
muscle) respectively [11].

Keeping in mind the above facts, it is the need of the day to develop reliable screening
methods for selective and sensitive monitoring of veterinary drug residue levels in animal derived
food to ensure the safe and quality food supply and to curtail their effects on consumers’ health.
To date several analytical methods have been developed to determine the drug residue levels in food
products originated from animals. Usually these methods can be divided into two groups, namely,
screening and confirmatory methods. Screening methods usually provides qualitative or semi-quantitative
results about the analyte. Screening approaches are considered a viable approach owing to their
easy handling, very low margin of false positive results, good selectivity and cost effectiveness [12].
Once a screening method gives a positive result, the next step will be the implementation of a confirmatory
method. Confirmatory approaches are mostly based on liquid chromatography coupled with mass
spectroscopy (LC-MS), gas chromatography/mass spectrometery (GC-MS), and high performance liquid
chromatography (HPLC) [13]. Although biosensor technology is not well established for confirmatory
tests, however, these can provide a future tool for screening purposes in the domain of antimicrobial drug
residue monitoring.

2. Biosensors as an Alternative Analytical Tool

Bioanalysis has been carried out by human beings forever, with the use of the nerve cells of
the nose to detect scents or the enzymatic reactions on the tongue to taste food. With progress in
understanding about the function of living organisms, scientific research has integrated them into
man-made reactions to detect trace amounts of biochemicals in complex systems. Using bioreceptors
from biological organisms or receptors, biosensors have been employed as a new mean of
analytical and chemical analysis. The field of biosensors originated from the work by Clark and
Lyons [14], Guilbault et al. [15], Updike and Hicks [16] and Guilbault and Montalvo [17]. Later on,
a mediated electrochemical biosensor using ferrocene to detect electroactive species was described by
Di Gleria et al. [18]. This work led to the successful commercialization of a glucose pen by Medisens.
Since these first reports, there has been an extensive growth in the field of biosensors with a wide
variety of applications in biological monitoring and environmental sensing [19].

According to The National Research Council (part of the US National Academy of Science),
a biosensor is defined as a detection device that incorporates a living organism or product derived
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from a living system as the recognition element or a bioreceptor and a transducer to convert a biological
reaction into a measurable signal or indication (Figure 1).
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Figure 1. Schematic diagram of a biosensor.

The most important properties of a biosensor such as specificity and sensitivity depend on the
bioreceptor, biomolecule immobilization method and transduction method/surface. The high specificity
of the system can be successfully achieved only if there is a strong efficient coupling reaction between
the biological and transducer components. Bioreceptors are the key factors in the fabrication of biosensor
and can take many forms. Numerous biorecognition elements have been used in biosensing, however,
they can be classified into the following major categories:

1. Enzymes which catalyse specific biochemical reactions
2. Antibodies known as immunoglobulins which form an important part of a biological group

termed binding proteins and bind a particular substance with high affinity
3. RNA/DNA aptamers are ligands selected to have high binding affinity and specificity to

a target molecule
4. Synthetic molecularly imprinted polymers to replace biomolecules
5. Bacteria (genetically modified or not)

For veterinary drug residue detection, the most frequently used biosensors are those based on
antibody/antigen affinity pairs, which are widely used in the immunochemical screening of samples.
These affinity assays mainly make use of optical transducer systems, however, there are also reports
on electrochemical-based output signals in the literature.

Electrochemical biosensors find widespread application in a diversified area, such as food
quality control, environmental monitoring, and clinical analysis [20]. Recently, studies in this area
emphasize novel sensing strategies with specific consideration of the augmentation of specificity,
response time, and sensitivity. The electrochemical transducer selectivity can be enhanced with chemical
or electrochemical modifications. Mostly, the electrode surface can be modified with the immobilization of
reagents or an electrochemical pre-treatment which enhances the electrochemical properties of the bare
electrode surface [21]. Furthermore, the electrochemical biosensor sensitivity is greatly influenced by the
application of transduction principles. Depending on the electrochemical principle involved, sensors can
be categorized as potentiometric, amperometric, voltammetric, impedimetric and conductivity sensors [22].
An amperometric biosensor measures the current produced when an electroactive species is oxidized or
reduced at a bioreceptor-coated (or antigen-coated) electrode to which an analyte (or bioreceptor) binds
specifically. Potentiometric devices measure the changes in pH and ion concentration when a biorecognition
element immobilized on the electrode surface interacts with an antigen in the sample. The potential
difference between the electrode modified with the biorecognition element and a reference electrode
is a function of the concentration of analyte in the sample. Conductimetric biosensors quantify the
electrical conductivity changes in a solution at constant voltage, generated by biochemical reactions which
particularly produce or consume ions. This type of transducer has a limited response for the detection
of antibiotics due to its poor signal/noise ratio [23,24]. Electrochemical biosensors have advantages,
such as their simplicity, rapidity, portability ease of fabrication, field applicability and low cost, making them
attractive sensing devices for use as alternative analytical methods, with accurate and fast responses without
sample pre-treatment, opening the possibility of direct on-site analysis with intuitive devices [25].
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In the same context, aptamers have attracted great interest in the field of electrochemical
biosensing. Apart from having the same or even higher sensitivity and selectivity as compared to
antibodies, aptamers offer the advantages of large scale production with less expensive in vitro systems
and enhanced environmental stability. Aptamers can be very easily integrated into electrochemical
biosensing platforms due to their ease of modification with various functional groups. The probing
of the affinity binding event in aptamer-based assays is mainly accomplished with an optical output
signal. However, optically-based read out methods of aptamer binding events not only require high
precision and expensive instrumentation, but also involve sophisticated numerical algorithms to
interpret the data. Alternatively, a number of innovative electrochemical aptasensor designs have been
reported in the literature. These type of devices combine aptamers with electrochemical transducers
to generate an electrical signal, and provide a simple, accurate and inexpensive platform for diverse
types of applications [26,27]. Keeping in mind the abovementioned advantages, it can be clearly seen
from the literature that most of the electrochemical biosensors for antimicrobial drug residues reported
in the literature are based on the integration of aptamers as biorecognition element.

3. Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food

Electrochemical biosensors have gained substantial consideration in many areas such as disease
diagnosis, food safety, biomedical applications and environmental monitoring [28,29]. Nanomaterials have
attracted considerable attention in the field of electrochemical biosensors as a way to achieve better
performance, due to their unique electrical and chemical properties. The incorporation of nanomaterials
can potentially increase the response speed, selectivity and sensitivity to meet the requirements of
detection of contaminants in food samples [30,31]. Numerous nano-materials, such as metal nanomaterials,
silica nanoparticles, carbon nanomaterials, and other functionalized nanoparticles, have been used for
sensing antimicrobial drug residues in animal-derived food. Biosensors using an aptamer as a recognition
element are also commonly used for the detection of antibiotic residues in animal-derived foods.
In this context, we highlight the recent progress towards fabrication of electrochemical biosensors to
monitor the most frequently employed antimicrobial drugs.

3.1. Kanamycin

Kanamycin is considered as an important sub-class of aminoglycoside antibiotics produced by the
fermentation of Streptomyces kanamyceticus [32–34]. Keeping in mind health damages, animal-derived foods
must be monitored strictly for kanamycin residues. A variety of analytical approaches have been reported
for the detection of kanamycin level in contaminated foods and body fluids [35]. A label-free amperometric
immunosensor based on graphene sheet-Nafion-thionine-platinum nanoparticles (GS/Nf/TH/Pt)-modified
electrode was proposed for the ultrasensitive detection of kanamycin by Qin et al. The proposed
immunosensor showed good analytical performance features such as a low detection limit (5.74 pg/mL),
wide linear range (from 0.01 to 12.0 ng/mL), high stability, and good selectivity in the detection of
kanamycin. The electrochemical immunosensor was employed to monitor kanamycin in various food
samples with recovery percentages from 99.4 to 106% [36]. Similarly, a highly sensitive label-free
immunosensor for the detection of kanamycin was designed using silver hybridized mesoporous ferroferric
oxide nanoparticles (Ag@Fe3O4 NPs) and thionine-mixed graphene sheet (TH-GS, Figure 2). The proposed
immunosensor exhibited excellent performance such as a low detection limit (15 pg mL−1), wide linear
range (from 0.050 to 16 ng mL−1), short analysis time (3 min), high stability, and good selectivity in the
detection of kanamycin. The immunosensor was evaluated for pork meat samples [37]. The analytical
characteristics of the kanamycin electrochemical immunosensors rein the ported literature are provided in
the Table 1 for better understanding of the readers.



Sensors 2017, 17, 1947 5 of 21

Sensors 2017, 17, 1947  5 of 21 

 
Figure 2. Schematic illustration of the stepwise procedure for the fabrication of a kanamycin 
immunosensor (reproduced with permission from [37]). 

Recently aptamer-based biosensors have been drawing attention as efficient analytical tools with 
good sensitivity [38–42]. Zhu and group reported a label-free aptasensor fabricated by self-assembly 
of gold (AuNPs)/conducting polymer (2,5-di-(2-thienyl)-1H-pyrrol-1-(p-benzoic acid)) nano-
composite onto a screen printed electrode surface through electropolymerization. The aptamer was 
anchored to the electrode via covalent linkages between the COOH groups of the aptamer and the –
NH2 moiety of the polymer. On adding kanamycin, a kanamycin/aptamer conjugate was formed 
which subsequently produced an enhanced current signal in linear sweep voltammetry. The assay 
was applied to determine kanamycin with a detection limit of 4.5 ± 0.2 μg/L and recovery percentages 
of 80.1–98% in food samples [43]. 

In another study, Qin and co-workers developed a label-free aptasensor for kanamycin based on 
thionine-functionalized graphene. Modified graphene facilitated the charge transfer rate between 
electrode and analyte thereby offering a wide linear range 5 × 10−7–5 × 10−2 μg/mL and a detection 
limit of 0.42 pg/mL. (4-itself). Qin and workers modified a glassy carbon electrode with BMIMPF6 
ionic liquid and MWCNTs, and subsequently deposited a layer of amino-functionalized graphene to 
enhance the conductivity of the modified electrode. K-aptamer was immobilized to the electrode 
surface via phosphoramidate linkages between the aptamer phosphate group and the amino groups 
of graphene. Differential pulse voltammetry was employed to monitor the electrochemical signals. A 
reduction in signal intensity was observed with the increased concentration of kanamycin owing to 
the fact that aptamer/kanamycin complex acted as a barrier to the redox activity at the electrode 
surface. This electrochemical sensor showed LOD of 0.42 μg/L with a linearity of  
0.484–4.845 mg/mL and recovery percentages of 92.15–105.99% [32]. With the aim of proving a 
portable platform, our group has recently devised a facile, label free and portable aptasensor for the 
quantitative determination of kanamycin (KANA) by electrochemical impedance spectroscopy (EIS), 
based on the assembly of in vitro selected single strand DNA (ssDNA) anti-KANA-aptamer-
functionalized screen printed carbon electrodes (Figure 3). Under optimized experimental conditions, 
the devised aptasensor exhibited a dynamic range of 1.2–600 ng mL−1 with linearity 1.2–75 ng mL−1 
and limit of detection of 0.11 ng mL−1. For practical applications, the aptasensor performance was 
verified in spiked milk samples with recovery percentages of 96.88–100.5%. [44]. Table 1 provides 
insight on the analytical parameters of the electrochemical aptasensors for the detection of kanamycin 
reported in the literature. 

Figure 2. Schematic illustration of the stepwise procedure for the fabrication of a kanamycin immunosensor
(reproduced with permission from [37]).

Recently aptamer-based biosensors have been drawing attention as efficient analytical tools with
good sensitivity [38–42]. Zhu and group reported a label-free aptasensor fabricated by self-assembly of
gold (AuNPs)/conducting polymer (2,5-di-(2-thienyl)-1H-pyrrol-1-(p-benzoic acid)) nano-composite onto
a screen printed electrode surface through electropolymerization. The aptamer was anchored to the
electrode via covalent linkages between the COOH groups of the aptamer and the −NH2 moiety of
the polymer. On adding kanamycin, a kanamycin/aptamer conjugate was formed which subsequently
produced an enhanced current signal in linear sweep voltammetry. The assay was applied to determine
kanamycin with a detection limit of 4.5 ± 0.2 µg/L and recovery percentages of 80.1–98% in food
samples [43].

In another study, Qin and co-workers developed a label-free aptasensor for kanamycin based
on thionine-functionalized graphene. Modified graphene facilitated the charge transfer rate between
electrode and analyte thereby offering a wide linear range 5 × 10−7–5 × 10−2 µg/mL and a detection
limit of 0.42 pg/mL. (4-itself). Qin and workers modified a glassy carbon electrode with BMIMPF6

ionic liquid and MWCNTs, and subsequently deposited a layer of amino-functionalized graphene
to enhance the conductivity of the modified electrode. K-aptamer was immobilized to the electrode
surface via phosphoramidate linkages between the aptamer phosphate group and the amino groups
of graphene. Differential pulse voltammetry was employed to monitor the electrochemical signals.
A reduction in signal intensity was observed with the increased concentration of kanamycin owing
to the fact that aptamer/kanamycin complex acted as a barrier to the redox activity at the electrode
surface. This electrochemical sensor showed LOD of 0.42 µg/L with a linearity of 0.484–4.845 mg/mL
and recovery percentages of 92.15–105.99% [32]. With the aim of proving a portable platform, our group
has recently devised a facile, label free and portable aptasensor for the quantitative determination
of kanamycin (KANA) by electrochemical impedance spectroscopy (EIS), based on the assembly
of in vitro selected single strand DNA (ssDNA) anti-KANA-aptamer-functionalized screen printed
carbon electrodes (Figure 3). Under optimized experimental conditions, the devised aptasensor
exhibited a dynamic range of 1.2–600 ng mL−1 with linearity 1.2–75 ng mL−1 and limit of detection
of 0.11 ng mL−1. For practical applications, the aptasensor performance was verified in spiked milk
samples with recovery percentages of 96.88–100.5%. [44]. Table 1 provides insight on the analytical
parameters of the electrochemical aptasensors for the detection of kanamycin reported in the literature.
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Table 1. Electrochemical biosensors for the determination of kanamycin in food samples.

Serial
Number Assay/Principle LOD *

(ng/mL) Linear Range (ng/mL) Sample Reference

1 Amperometric immunosensor 0.00574 0.01–12 Food [36]

2 Square wave voltammetry
based immunosensor 0.015 0.050–16 Pork meat [37]

3 Square wave voltammetry
based immunosensor 0.00631 0.02–14 Food [45]

4 Square wave voltammetry
based aptasensor 6.783 4845–9.69 × 106 Milk [46]

5 Photoelectrochemical aptasensor 96.9 484.5–111,435 - [47]

6 Differential pulse voltammetry
based aptasensor 0.0037 0.05–100 Milk [48]

7 Differential pulse voltammetry
based aptasensor 0.00042 50 × 10−7–50 × 10−2 Food [49]

8 Differential pulse voltammetry
based aptasensor 2810 1 × 10−8–1.5 × 10−7 Milk [34]

9 Differential pulse voltammetry
based aptasensor 8.6 0.01–200 Milk [50]

10 Differential pulse voltammetry
based aptasensor 46 × 10−6 50× 10−6–40 × 10−2 Food [51]

11 Electrochemical impedance spectroscopy
based aptasensor 0.11 1.2–75 Milk [44]

* The LOD was determined in buffer medium.

3.2. Chloramphenicol

Chloramphenicol (CAP) is a broad-spectrum synthetic antibiotic used for treatment of infectious
diseases in humans and animals. High levels of CAP in animal-derived foods have adverse side
effects on human health. Among the different detection methods, electrochemical biosensors have
attracted more attention towards monitoring of CAP. Yang et al. developed a novel electrochemical
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sensors based on multiwalled carbon nanotubes@molecularly imprinted polymer (MWCNTs@MIP)
for the detection of chloramphenicol [52]. 3-Hexadecyl-1-vinylimidazolium chloride was used as
a monomer to prepare MIP on the surface of MWCNTs. Polymerization of functionalized MWCNTs
was performed in the presence of chloramphenicol as template. Subsequently, the synthesized
MWCNTs@MIP were used for coating a glassy carbon electrode modified with mesoporous carbon
(MC) and three-dimensional porous graphene (DPG). The MC and DPG increased the sensitivity
of the sensor. The binding of CAP to MWCNTs@MIP was evaluated by cyclic voltammetry and
differential pulse voltammetry. The designed immunosensor was used to determine chloramphenicol
with a detection limit of 0.032 ng mL−1 and linear response ranges of 1.615–161.5 ng mL−1 and
161.5–1292 ng mL−1. The biosensor performance was validated with spiked milk and honey samples
with recovery percentages of 91–104%. The designed biosensor shows a satisfactory LOD with
respect to the chloramphenicol MRL (0.3 ng mL−1), however, it should also be investigated in
a food matrix. Hamidi-Asl et al. designed an electrochemical aptasesnsor for sensitive detection of
chloramphenicol, based on gelatin type B as a biocompatible matrix to incorporate CAP aptamers [53].
The mixture of gelatin and CAP aptamers was dropped onto the surface of gold screen printed electrodes.
The hydrophilic porous network of gelatin provided an appropriate environment for aptemer entrapment
and facilitated the electron transfer between electrode surface and target molecule. Differential pulse
voltammetry was employed for the detection of CAP. The designed aptasensor showed a detection
limit of 0.059 ng mL−1 and a linear range from 0.097 to 0.626 ng mL−1. The developed aptasensor was
demonstrated with CAP monitoring in spiked skimmed cow’s milk samples with recovery percentages
of 82–93%. This biosensor with a simple structure shows a good sensitivity. However, milk samples
were spiked with higher concentrations of CAP to evaluate the effect of food matrix on biosensor
sensitivity. In another study, a label-free electrochemical biosensor was fabricated for quantification
of chloramphenicol [54]. In this electrochemical biosensor, monoclonal antibody was immobilized into
hollow gold nanospheres/chitosan composite coated on the surface of glassy carbon electrode (Figure 4).
After binding of chloramphenicol to monoclonal antibodies on the surface of electrode, differential pulse
voltammetry was used for the detection of CA. Under optimal conditions, a detection limit of 0.06 ng mL−1

with a linear range from 0.1 to 1000 ng mL−1 was obtained. The designed biosensor was used to determine
CAP in meat samples including beef, fish and pork which had been spiked with three concentration
levels of CAP (10, 20 and 50 µg g−1). The recovery percentages were obtained in the range of 85–93%.
However the immunosensor showed a good accuracy in real samples, but the spiking levels were very
high compared to the MRL.
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Figure 4. Schematic representation of the electrochemical immunosensor fabrication steps for the detection
of chloramphenicol (reproduced from Zhang et al. [54] with permission).

Yan et al. fabricated an electrochemical aptasensor for quantification of CAP in honey samples
based on target-induced strand release [55]. For the construction of aptasensor, CAP aptamer was
coated onto the surface of gold electrode. The immobilized aptamer specifically hybridized with
a complementary detection probe. In the absence of CAP, aptamer/detection probe duplex was
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formed, and a strong electrochemical signal was obtained. In the presence of CAP, aptamer-CAP
complex was formed and release of detection probe from the electrode surface resulted in a reduced
electrochemical signal. Differential pulse voltammetry was used for the measurement of CAP.
Under optimal conditions, the detection limit of the aptasensor was 0.094 ng mL−1 with a linear
range from 0.323 ng mL−1 to 323 ng mL−1. The recoveries in honey samples were from 84.4% to
102.0%. The biosensor shows a good sensitivity in buffer solution. The main disadvantage of the
designed biosensor is the long assay time where the incubation time with CAP was 2 h and insufficient
incubation time could result in incomplete binding for CAP.

Carbon nanomaterials are widely used for the construction of electrochemical biosensors.
One of the most attractive carob nanostructures is graphene due to its unique properties such as
high surface area, super electrical conductivity and fast electron transfer [56]. Zhang et al. reported the
development of an electrochemical sensor for the detection of chloramphenicol using three-dimensional
reduced graphene oxide architectures (3DRGOA) [57]. They prepared 3DRGOA through reduction
of graphene oxide using zinc foil. The resulted 3DRGOA was coated onto the surface of a glassy
carbon electrode (GCE). For detection and quantification of CAP, the interaction between CAP and
3DRGOA/GCE surface was investigated using differential pulse voltammetry. It was observed that the
increment in reduction peak current at −633 mV is proportional to the chloramphenicol concentration.
The electrochemical sensor was able to detect CAP concentrations as low as 48.45 ng mL−1 with a linear
range from 323 to 3.65 × 104 ng mL−1. According to the LOD results, the designed sensor doesn’t
show enough sensitivity when the MRL is set at 0.3 ng mL−1. Moreover, the high dilution factor
of food samples (300 times) before electrochemical measurement can lead to false negative results
considering the low MRL of CAP. The applicability of the designed biosensor for CAP detection was
investigated in milk samples and CAP eye drops with recovery percentages of 97.3–104.6%. It is worth
mention that 3DRGOA provided a larger surface area and lower resistance towards electron transfer
in comparison with conventional two-dimensional graphene for the construction of electrochemical
biosensors. The sensor showed a high selectivity, stability, and reproducibility.

Molybdenum disulfide (MoS2) nanosheet is a type of graphene-like two-dimensional nanomaterial
which is very attractive in the fabrication of electrochemical sensors/biosensors. Yang et al. investigated
the use of molybdenum disulfide nanosheet along with self-doped polyaniline for construction of
an electrochemical biosensor [58]. They used ultrasonic exfoliating to incorporate self-doped polyaniline
(SPAN) into molybdenum disulfide nanosheets. The resulting nanocomposite provided a highly
negative charge surface, due to its negative charges and the benzene rings in the SPAN structure,
and was able to adsorb molecules with conjugated structures or positive charges. The obtained
nanocomposite was used for coating a carbon paste electrode and then detection of conjugate structured
CAP. It was shown that the combination of SPAN and MoS2 exhibited a significant synergistic effect to
reduce CAP. The designed biosensor detected CAP with a detection limit of 20.99 ng mL−1 and linear
range of 32.3–3.23 × 105 ng mL−1 which is not a satisfactory sensitivity. The biosensor was applied for the
measurement of CAP in eye drops and the recovery percentages were 98.2–101.3%. The performance of
this biosensor wasn’t checked in food samples.

In another approach, Zheng et al. reported an electrochemical biosensor based on vertical silica
mesochannels (VSMs) and cylindrical surfactant micelles (CSMs) for the detection of CAP in milk
and honey samples [59]. They modified indium tin oxide (ITO) electrode surfaces using vertical
silica mesochannels to support cylindrical surfactant micelles of cetyltrimethylammonium bromide
(CTAB) in 2–3 nm channels. CTAB has the property to extract and concentrate organic analytes with
lipophilic properties from liquid samples, so the electrode coated with VSMs/CSMs was capable of
quantifying CAP with an excellent performance compared to the corresponding uncoated and VSM-
coated electrodes. Chloramphenicol was detected using differential pulse voltammetry with a limit
of detection as low as 40 ng mL−1 and linear ranges from 0.1 × 103 to 3.6 × 103 ng mL−1 and from
3.6 × 103 to 1.5 × 104 ng mL−1. The biosensor doesn’t exhibit sufficient sensitivity based on the MRL.
The fabricated biosensor was used to determine CAP in spiked honey and milk samples with recovery
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percentages of 97–103%. An important advantage of the biosensor was the possibility of determination
of CAP in food samples without any pre-treatment which is related to the performance of highly
ordered cylindrical surfactant micelles.

Liu and co-workers developed an amperometric aptasensor for the detection of CAP. For construction
of this aptasensor, a glassy carbon electrode surface was modified with a nanocomposite prepared
from silver nanoparticles (AgNPs) and reduced graphene oxide (rGO) [60]. Then, CAP aptamers
were immobilized on the surface of the modified electrode. Upon the binding interaction
between CAP and its specific aptamer and then electrocatalytical reduction by the AgNPs/rGO
nanocomposite, an electrochemical signal was produced. Due to the electrocatalytic activity of
silver nanoparticles in CAP reduction, it was hybridized with rGO to produce a synergetic catalysis
effect. Cyclic voltammetry (CV), and linear sweep voltammetry (LSV) were used for electrochemical
measurements. Under optimized conditions, the aptasensor detected CAP with a detection limit of
0.65 ng mL−1 and a linear range of 3.23–1.13 × 104 ng mL−1. Although compared to other studies,
the LOD of this aptasensor is relatively good, it is lower than the MRL of CAP. The performance of the
aptasensor was evaluated in spiked fresh milk and milk powder samples with a recovery percentages
of 95–104%. The biosensor was selective and reproducible, but the incubation time with CAP was
quite long (40 min).

Various analytical methods have been developed for simultaneous detection of multiple
antibiotic residues. Among these, electrochemical biosensor have attracted considerable attention.
Yan et al. described an electrochemical biosensor for simultaneous detection of chloramphenicol and
oxytetracycline (OTC) using high-capacity magnetic hollow porous (MHP) nanotracer coupling
exonuclease-assisted target recycling [61]. In this electrochemical aptasensor, MHPs were used
for immobilization of metal ions (Cd+2 and Pb+2) in order to amplify the signal and simplify the
separation and detection processes. Metal ion-immobilized MHPs were conjugated with DNA
strands. For construction of the biosensor, complementary strands with CAP and OTC aptamers were
immobilized on the surface of a glassy carbon electrode. In the absence of CAP and OTC, they formed
a complex with a specific aptamer. After incubation with CAP and OTC, aptamers were released from
double stranded DNA and conjugated MHPs were hybridized with the DNA strands on the surface
of the electrode. Aptamer-CAP and aptamer-OTC were digested by exonuclease I and the target
molecules released for another round of recycling, resulting in the signal improvement. Due to the
dual signal amplification, detection limits of 0.15 and 0.10 ng mL−1 were obtained for CAP and OTC,
respectively, which are satisfactory considering the MRL (0.3 ng mL−1 for CAP and 0.1 ng mL−1

for OTC), indicating the high sensitivity of the designed biosensor. The linear range between
signals and the concentrations of CAP and OTC were obtained in the range of 5 × 10−4–50 ng mL−1.
Cyclic voltammetry was used for electrochemical measurements. The aptasensor was evaluated with
spiked milk samples and the recovery percentages were in the range of 94.9% and 104.2% for CAP,
and 91.7% and 104.3% for OTC. The sensor has certain advantages such as selectivity and enough
sensitivity for antibiotic detection in foods.

Another multiplex detection assay was reported by Chen et al. [62]. They developed an electrochemical
aptasensor for multiplex detection of chloramphenicol and oxytetracycline using probe-based
metal ions encoded with nanoscale metal-organic frameworks (NMOF) as a substrate, and circular
strand-replacement DNA polymerization (CSRP) target triggered the amplification strategy.
For construction of this biosensor, magnetic gold nanoparticles (MGNPs) were modified with assisted
DNA (aDNA). Two captured DNA (cDNA) strands were used with their sequences composed of
aptamer (specific for CAP and OTC) and the complementary sequence of the primer as a template
for the polymerization reaction. Two reporter DNA (rDNA) strands were connected to metal ions
encoded the NMOF. Hybridization of three strands (aDNA, cDNA and rDNA) with each other
created a “Y-shape” structure. In the presence of target molecules (CAP and OTC), this Y-shape
structure was dehybridized, due to aptamer binding to target, and rDNA released in the supernatant.
The designed biosensor was highly sensitive (with respect to the MRL) with a detection limit of
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0.1 × 10−4–0.2 × 10−4 ng mL−1 towards CAP and OTC, respectively, and a linear range between
0.3 × 10−4 and 16.1 ng mL−1. The high sensitivity of the biosensor was due to approximately
17 times amplification of the signal. The performance of the aptasensor was evaluated in spiked milk
samples with a recovery percentage between 84.0% and 102.8%. A summary of reported studies on
electrochemical biosensors for the detection of chloramphenicol is provided in Table 2.

Table 2. Summary of reported studies on electrochemical biosensors for the detection of chloramphenicol.

Serial
Number Assay Format LOD *

(ng/mL) Linear Range (ng/mL) Sample Reference

1
Differential pulse

voltammetry based
molecularly imprinted sensor

0.032 1.615–161.5 and
161.5–1292 Milk and honey [52]

2
Differential pulse

voltammetry
based aptasensor

0.059 0.097–0.626 Milk [53]

3
Differential pulse

voltammetry
based immunosensor

0.06 0.1–1000 Beef, fish, pork [54]

4
Differential pulse

voltammetry
based aptasensor

0.094 0.323–323 Honey [55]

5 Differential pulse
voltammetry sensor 48.45 323–3.65 × 104 Milk and eye drops [57]

6 Differential pulse
voltammetry sensor 20.99 32.3–3.23× 105 Eye drops [58]

7 Differential pulse
voltammetry sensor 40 0.1 × 103–3.6 × 103 and

3.6 × 103–1.5 × 104 Milk and honey [59]

8
Cyclic voltammetry and

linear sweep voltammetry
based aptasensor

0.65 3.23–1.13 × 104 Fresh milk and
milk powder [60]

9 Cyclic voltammetry
based aptasensor 0.15 5 × 10−4–50 Milk [61]

10 Square wave voltammetry
based aptasensor 0.1 × 10−4 0.3 × 10−4–16.1 Milk [62]

11
Differential pulse

voltammetry
based immunosensor

0.11 0.2–80.0 Milk [63]

12 Amperometric sensor 1.615 323–1938 Milk [64]

13
Potentiometry based

molecularly
imprinted sensor

323 323–3.23 × 106 Pharmaceutical
drugs [65]

* The LOD was determined in buffer medium.

3.3. Tetracycline

A variety of electrochemical biosensors for the detection of tetracycline (TC) have been designed.
Que et al. [66] developed an electrochemical immunosensor based on a platinum-catalyzed hydrogen
evolution reaction (HER) for the detection of tetracycline. For the construction of this immunosensor,
graphene nanosheets (GN) were initially decorated by platinum nanoparticles (PtNPs). Then,
the synthesized GN-PtNPs were used for the labeling of tetracycline-bovine serum albumin conjugates
(TC-BSA, Figure 5). The assay was based on competitive binding of target tetracycline and TC-BSA labeled
with GN-PtNPs to anti-TC antibody immobilized onto the surface of a gold electrode. The electrochemical
signal was amplified via immersion of the immunosensor into a platinum developer solution containing
[PtCl4]2−. The designed immunosensor was highly sensitive toward tetracycline with a detection limit of
6 pg mL−1 and a linear range of 0.05–100 ng mL−1. The immunosensor performance was validated with
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spiked milk, honey and peanut samples. The recovery percentage in these samples was in the range of
86–118%. According to the minimum level of spiking results (0.5 ng mL−1) and the MRL of TC in milk
(100 ng mL−1), the immunosensor shows a high sensitivity. Moreover, the incubation time for TC detection
was relatively short (30 min).Sensors 2017, 17, 1947  11 of 21 
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Aptamers are the most commonly employed bio-receptor elements in the electrochemical
biosensors for the detection of tetracycline. An ultrasensitive M-shaped aptasensor was developed
for quantitation of tetracyclines in food products [67]. In this electrochemical biosensor, potassium
hexacyanoferrate (III) (K3[Fe(CN)6])/potassium hexacyanoferrate (II) trihydrate (K4[Fe(CN)6]·3H2O)
solution was used as a redox probe for measurement of differential pulse voltammetry (DPV) and
cyclic voltammetry (CV) output signal.

First, three aptamer-complementary strands (CS1, CS2 and CS3) were immobilized onto the
surface of screen-printed gold electrodes (SPGEs), followed by formation of an M-shaped structure due
to binding of tetracycline aptamer (TC-apt) with three CSs. The complex of TC-apt-CSs decreased the
access of redox probe to the electrode surface and led to a weak electrochemical signal. After incubation
with tetracycline and its interaction with the aptamer, the M-shape structure was not formed and this
led to an increased access of the redox probe to the electrode surface, and thus a strong electrochemical
signal was obtained. The authors reached a limit of detection (LOD) as low as 0.19 ng mL−1 and
a linear range of 0.67–1554 ng mL−1 (Figure 6). The designed biosensor was used to determine TC in
spiked milk and serum samples. The recovery percentages in serum samples were 93.1% and 103.8%.
The unique feature of the biosensor was its M-shape structure that made a significant difference in the
peak current in the presence and absence of TC. The fabricated electrochemical aptasensor showed high
selectivity toward TC with a detection time of 75 min. Sensitivity is an important factor in the design
of any biosensor. A variety of strategies including application of nanomaterials have been employed
to improve the sensitivity, especially where the detection of low level of analytes is highly desirable.
The introduction of nanomaterials into electrochemical biosensors is considered as a novel approach
for the construction of electrochemical biosensors. Nanomaterials have many advantages such as large
surface area and high conductivity that make them a promising tools to modify the electrode surface
in electrochemical biosensors. Carbon nanotubes are among the more attractive nanomaterials which
are currently employed in electrochemical biosensors due to their unique electronic properties [68].

To obtain a highly sensitive electrochemical aptasensor for tetracycline, a glassy carbon
electrode (GCE) was modified with multi-walled carbon nanotubes (MWCNTs) [69]. Firstly,
carboxylated MWCNTs were coated onto the surface of the electrode, followed by covalent binding of
amine-functionalized anti-TC aptamer. In this aptasensor, the MWCNTs were utilized as carriers for
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electron transfer between the ferricyanide (as redox probe) and the electrode surface to perform the
electrochemical signal amplification. GCEs functionalized with MWCNTs/anti-TC aptamer presented
a strong Faradaic current. The complex formation between aptamer and analyte (TC) increased
the electron transfer resistance of [Fe3(CN)6]3−/[Fe4(CN)6]2− redox probe and subsequently the
generated current was decreased. It is worth mentioning that the sensitivity of the aptasensor increased
significantly due to the increased conductivity. A detection limit of 2.22 ng mL−1 with a linear range
of 4.44–2.22 × 104 ng mL−1 was reported by the authors, which was satisfactory. Under optimized
conditions, the TC detection time was 30 min. The aptasensor was employed for the detection of
tetracycline in milk samples. The recovery percentage was in the range of 88–96%.
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Figure 6. Assay formats of an electrochemical aptasensor for tetracycline detection. When tetracycline
is absent, the M-shape structure is formed due to aptamer binding to CSs, resulting in the inhibition of
redox probe access to the electrode surface and a reduced electrochemical signal (a). When tetracycline
is present, it is captured by the aptamer and the M-shape structure is not formed. As a result of
degradation of CS1 and CS2 by Exo 1, the redox probe has access to the electrode surface and the
electrochemical signal increases (b). (Adapted from Taghdisi et al. [67] with permission).

In addition to biological recognition elements such as antibodies and aptamers, researchers have
recently introduced the utilization of synthetic materials in the fabrication of electrochemical biosensors.
Molecular imprinted polymers (MIP) are among the promising artificial materials for the development
of stable “solid-state like” artificial recognition elements. They are synthetic polymers that are
produced by crosslinking monomers in the presence of a target analyte used as a template species.
The use of MIP in the electrochemical biosensor for the tetracycline detection has been reported in
the literature [70]. The biosensor was based on the electropolymerization of p-amino-thiophenol
(PATP) along with functionalized gold nanoparticles on the surface of a gold electrode. Ferricyanide
solution was used as a redox probe to perform the linear sweep voltammetric detection of tetracycline.
The tetracycline binding to the specific cavity on the imprinted electrode increased the electron
transfer with enhancement in the measured current. The MIP electrochemical biosensor was used
for the detection of TC in spiked honey samples and the recovery percentages were in the range of
101.8–106.0%. A detection limit of 9.8 × 10−8 ng mL−1 with a linear range of 9.94 × 10−5–9.94 ng mL−1

was obtained with the purposed electrochemical artificial biosensor which indicates its high sensitivity.
A significant increase in sensitivity was observed due to application of gold nanoparticles in the
construction of the polymer matrix which were integrated to increase the conductivity of the transducer
surface. In this research, an extraction time of 20 min and an incubation time of 30 min was chosen in
order to obtain the optimal signal.

Magnetic nanoparticles (MNPs) are also considered as a good candidate in the development
of electrochemical biosensors. This is mainly due to their particular characteristics such as large
surface area, unique physicochemical properties and easy production. However, despite their
numerous advantages, they are prone to aggregation, limiting their application in the construction
of biosensors [71]. To overcome the abovementioned drawbacks, Zhan et al. [72] used MPNs
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(Fe3O4) along with reduced graphene oxide (rGO) and sodium alginate (SA) nanocomposite to
construct a tetracycline electrochemical aptasensor. A screen printed carbon electrode was coated
with rGO-Fe3O4/SA nanocomposite and TC-binding aptamer was subsequently immobilized on the
modified surface. Tetracycline was quantified by differential pulse voltammetry with a detection limit
of 0.27 ng mL−1 and a linear range of 0.44–2.22 × 103 ng mL−1. The designed aptasensor provided
a rapid, highly sensitive and selective platform for the detection of TC. The biosensor was not applied
for the analysis of real food samples.

The oxidation properties of tetracycline have also been explored in the construction of TC
electrochemical biosensors. Gan et al. [73] described a simple electrochemical biosensor based on the
electrochemical oxidation of tetracycline. A mixture of Fe and Zn nanoparticles were incorporated
into montmorillonite (MMT) nanolayers by cation-exchange method to enhance the MMT catalytic
activity. Then, Fe/Zn-MMT as a sensing film was utilized for the surface modification of a glassy
carbon electrode. The oxidation response of tetracycline on the surface of the fabricated electrode
was studied using differential pulse voltammetry in the presence of sodium dodecyl sulfate (SDS) as
an anodic reaction facilitator of TC. In the absence of tetracycline, the sensor showed no oxidation
response. The designed sensor showed a detection limit of 4.44 ng mL−1 with a linear range of
133.2–23.088 × 103 ng mL−1. Furthermore, the electrochemical biosensor was successfully employed
for the detection of tetracycline in feedstuffs, chicken, fish and shrimp samples with recovery
percentages of 97.2–103%.

A label-free electrochemical nanobiosensor was developed by Zhang et al. [74] for the
detection of tetracycline. For the construction of the biosensor, a nanoporous silicon (PS) chip
was firstly functionalized with amino groups through silanization in 3-aminopropyltriethoxysilane.
Then, tetracycline aptamer was immobilized on the surface of the amino modified PS chip.
Non-specific sites were blocked with bovine serum albumin (BSA). The fabricated biosensor
was used for the determination of tetracycline based on electrochemical impedance spectroscopy
(EIS). Tetracycline binding to the aptamer resulted in a decrease in impedimeric response.
The nanobiosensor was able to detect tetracycline with a LOD of 0.89 ng mL−1 and a linear range
from 0.93 to 27.71 ng mL−1. The biosensor was not applied for the analysis of real food samples or the
evaluation of food matrix effects.

Kim et al. [75] reported the development of an electrochemical aptasensor for the detection
of tetracycline based on the immobilization of biotinylated TC aptamer on a streptavidin-modified
screen-printed gold electrode. The binding of TC to aptamer was evaluated by cyclic voltammetry
and square wave voltammetry (SWV) in the presence of ferricyanide as redox probe. Upon binding
of tetracycline to the aptamer, the rate of electron flow of the redox probe was hindered, leading to
a decreased electrochemical current. The presented sensing platform provided a higher sensitivity than
a thiol-modified aptamer which can be attributed to the efficient attachment of biotinylated aptamer
onto the surface of gold electrode. The designed aptasensor showed a detection limit of 4.44 ng mL−1

with a linear range of 4.44 ng mL−1–4.44 µg mL−1. The aptasensor was selective in a mixture of TC and
other tetracycline derivatives (oxytetracycline and deoxycycline). The biosensor was not applied for
the analysis of real food samples. Table 3 summarizes the analytical performance of the electrochemical
biosensors for the detection of tetracycline reported in the literature.

Table 3. Summary of reviewed studies on electrochemical biosensors for the detection of tetracycline.

Serial
Number Assay Format LOD *

(ng/mL)
Linear Range

(ng/mL) Sample Reference

1 Cyclic voltammetry
based immunosensor 0.006 0.05–100 Milk, honey

and peanut [66]

2 Differential pulse voltammetry
(DPV) based aptasensor 0.19 0.67–1554 Milk [67]

3 Differential pulse voltammetry
based aptasensor 2.22 4.44–2.22 × 104 Milk [69]
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Table 3. Cont.

Serial
Number Assay Format LOD *

(ng/mL)
Linear Range

(ng/mL) Sample Reference

4
Linear sweep voltammetry

based molecularly
imprinted sensor

9.8 × 10−8 9.94 × 10−5–9.94 Honey [70]

5 Differential pulse voltammetry
based aptasensor 0.27 0.44–2.22 × 103 - [72]

6 Differential pulse voltammetry
based sensor 4.44 133.2–23.088 × 103

Feedstuff,
chicken, fish
and shrimp

[73]

7 Electrochemical impedance
spectroscopy based aptasensor 0.89 0.93–27.71 - [74]

8
Cyclic voltammetry and square

wave voltammetry (SWV)
based aptasensor

4.44 4.44–4.44 × 103 - [75]

9
Electrochemical impedance

spectroscopy (EIS)
based aptasensor

0.001 0.005–5.0 Milk [35]

10 Cyclic voltammetry based
molecularly imprinted sensor 0.04 0.1–40 - [76]

11 Cyclic voltammetry
based aptasensor 1 0.1–100 Milk [77]

12 Amperometry
based immunosensor 0.86 2.84–171 Milk [78]

13
Electrochemical impendence

spectroscopy (EIS)
based aptasensor

10 10–3.0 × 103 Milk [79]

14 Differential pulse voltammetry
based aptasensor 0.25 × 10−2 0.04–4.44 × 105 Milk [80]

15 Cyclic voltammetry sensor 0.09 1.0–10.0 Water [81]

* The LOD was determined in buffer medium.

3.4. Streptomycin

Due to the potential risks of streptomycin, various methods have been recently developed for the
detection of its residues in animal-derived foods. Among these methods, electrochemical biosensors
have received particular attention. Que et al. [82] developed a molecularly imprinted polymer (MIP)
for the electrochemical detection of streptomycin. The MIP was constructed by co-polymerization
of aniline and o-phenylenediamine on the surface of a gold electrode. The sensor was based on the
competitive binding of enzyme-labeled streptomycin and free streptomycin in the cavities on the MIP
modified transducer surface. Catalytic oxidation of glucose by conjugated glucose oxidase generated
the electrochemical signal. The method shows a high sensitivity due to its enzymatic amplification
methodology. A detection limit of 7.0 pg mL−1 with a linear range from 0.01 to 10 ng mL−1 was
obtained which shows the high sensitivity of the biosensor considering the MRL of streptomycin
(200 ng mL−1 in milk). The biosensor was demonstrated in spiked milk and honey samples with
recovery percentages from 82 to 124.24%. The biosensor was simple and selective towards other
antibiotics. A similar approach was described by Liu et al. [83] using magnetic molecularly imprinted
polymer nanospheres (mMIP). The mMIP nanospheres were synthesized using the assembly of
[AuCl4]− ions on the surface of magnetic beads (MBs) and then polymerization of o-phenylenediamine
on the surface of functionalized MBs was carried out in the presence of STR templates. Au(III) ions
caused the polymerization of o-phenylenediamine monomers onto the magnetic beads, while Au(III)
ions were reduced to Au atoms. The prepared mMIP nanospheres were based on the competitive
binding of target STR and STR labeled with glucose oxidase (GOx) to recognition cavity sites on the
magnetic beads (Figure 7).

Catalytic oxidation of glucose substrate by GOx generated an amplified electrochemical signal.
Under optimal conditions, a detection limit of 10 pg mL−1 with a linear range of 0.05–20 ng mL−1 was
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obtained. The sensor performance was successfully evaluated by spiked milk and honey samples with
recovery percentages of 81–129%. The biosensor results for spiked samples showed good accordance
with the results obtained by a high-performance liquid chromatography method. The reaction time for
determination of STR was 10 min, which is excellent considering the high sensitivity of the biosensor.Sensors 2017, 17, 1947  15 of 21 
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In order to achieve a high sensitivity in electrochemical biosensors, nanoparticles can provide
a good alternative to enzymes for signal amplification. Yin et al. [84] demonstrated an electrochemical
aptsensor based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes
(GNP-MWCNTs-Fe3O4) and nanoporous PtTi (NP-PtTi) alloy for the detection of streptomycin.
A bare glassy carbon electrode (GCE) surface was modified with GNP-MWCNTs-Fe3O4 composite
followed by deposition of a NP-PtTi suspension. Then, STR aptamer was immobilized onto the
NP-PtTi/GNP-MWCNTs-Fe3O4/GCE. Possible remaining active sites were blocked with bovine serum
albumin (BSA) to avoid any nonspecific signals. MWCNTs-Fe3O4 nanocomposite was supposed to
provide a large surface area and improved electronic conductivity. Furthermore, gold nanoparticles
due to their unique properties such as large surface area, great electron transfer and biocompatibility
could efficiently increase the immobilization content of STR aptamer. NP-PtTi alloy provided
a matrix for effective immobilization of STR apatmer and a conductive pathway for electron transfer.
Under optimized experimental conditions, the aptasensor showed an excellent sensitivity with
a detection limit of 7.8 pg mL−1 and a linear range from 0.05–100 ng mL−1. The practical performance
of the aptasensor was evaluated in spiked milk samples. The recovery percentage was in the
range of 97.3–105.2%. The aptasensor showed a good reproducibility, high selectivity and stability.
The incubation time for STR detection was 120 min, which is relatively long.

Yin et al. [85] also demonstrated an electrochemical biosensor based on “signal attenuation” for
sensitive detection of streptomycin. In the given biosensor, electrochemical signal was amplified
by utilization of nanomaterials including porous carbon nanorods (PCNRs), gold nanoparticles
(AuNPs) and copper oxide (CuO) functionalized multiwalled carbon nanotube (MWCNTs) composites.
A glassy carbon electrode was coated with porous carbon nanorods, and then MWCNTs-CuO-AuNPs
suspension was subsequently casted onto the surface of the PCNRs-modified electrode. The resulting
electrode was functionalized with streptomycin aptamer through interaction between the gold
nanoparticles and the thiol groups of the aptamer. Complex formation between streptomycin and
immobilized aptamer generated the attenuated output signal. Electrochemical measurements were
performed in the form of differential pulse voltammetry (DPV). Under the optimized conditions,
the reported apatasensor exhibited a detection limit of 0.036 ng mL−1 with a linear range of
0.05–300 ng mL−1. The aptasensor feasibility was demonstrated for the detection of streptomycin in
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milk and honey samples. The recovery percentage was from 96.7% to 105.8%. The detection time for
STR was estimated at 120 min. The aptasensor exhibited an excellent selectivity and sufficient stability.

Danesh et al. [86] developed an electrochemical arch-shape aptasensor for quantitation of streptomycin
in milk samples. The biosensor was based on a gold electrode, streptomycin aptamer, complimentary strand
(CS) of aptamer, exonuclease I (Exo I) and ferricyanide as redox probe. STR aptamer was immobilized onto
the surface of the gold electrode in an arch-shaped fashion with its complimentary strand. In the absence
of STR, the arch-shape structure remained unchanged and CS was protected from Exo I. A relatively
weak electrochemical signal was obtained due to the limited access of the redox probe to the electrode
surface. After incubation with STR, CS was displaced with Exo I, and increased access of redox probe
to the electrode surface led to a strong electrochemical signal. Differential pulse voltammetry (DPV)
measurements of STR showed a detection limit of 6.62 ng mL−1 with a linear range of 17.43–871.5 ng mL−1.
The designed electrochemical biosensor was used for STR measurement in spiked milk and serum samples
which were complex biological fluids containing different components. Calculated LODs in spiked milk
and serum samples were 11 ng mL−1 and 10.2 µg kg−1, respectively. The resulted LODs were higher than
measured LOD in the buffer medium but were lower than the toxicity level of STR in blood (35 µg mL−1)
and the maximum acceptable level of STR in milk (200 µg kg−1). The recovery percentages in serum
samples were 95.4% and 98.2%.

In another study, Liu et al. [87] reported a simple electrochemical immunoassay for the sensitive
detection of streptomycin. For the fabrication of the biosensor, monoclonal anti-STR antibodies were
immobilized onto an organosilica colloid nanocomposite. Then, a glassy carbon electrode was coated
on the sensing interface using a sol-gel method (Figure 8a). For the construction of bio-nanolabels,
the mesoporous silica was firstly decorated with gold nanoparticles, and then horseradish peroxidase
(HRP) enzyme and STR-bovine serum albumin (BSA) conjugates were co-immobilized on the
transducer surface (Figure 8b). The streptomycin was measured based on the competition between
STR analyte and STR-BSA conjugates. The assay was performed in the presence of hydrogen peroxide
as enzyme substrate and electrochemical current was measured. In the presence of high concentrations
of STR in the sample, the electrochemical current was decreased and vice versa. The required time for
antigen-antibody interaction was 30 min which is satisfactory compared with other electrochemical
biosensors. Under optimized conditions, the immunosensor showed a detection limit of 5 pg mL−1

with a linear range of 0.05–50 pg mL−1 which is excellent sensitivity. The immunosensor was employed
to detect streptomycin in spiked milk, honey, kidney and muscle samples. The recovery percentage in
spiked samples was 94–114%.
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4. Conclusions and Future Prospects

From our overview of the monitoring of antimicrobial drug residues in animal-derived food,
it can be concluded that nanomaterial-based electrochemical biosensors possess excellent value
due to their rapid response, low cost and good selectivity and sensitivity, and hence have been
extensively employed for the detection of antimicrobial drug residues. However, an important aspect
in the construction of high-performance nanomaterial-based electrochemical biosensor platforms
is the appropriate selection of transducer surface. It is very well established that good electrode
materials have not only excellent conductivity, catalytic activity, and biocompatibility to accelerate
signal transduction, but also amplify biorecognition events with specifically designed signal tags,
resulting in high sensitivity. The incorporation of nanomaterials potentially increases the response
speed, selectivity and sensitivity to meet the requirements of detection of contaminants in food
samples. This review paper has highlighted the importance of diverse nanomaterials, such as metal
nanomaterials, silica nanoparticles, carbon nanomaterials and other functionalized nanoparticles in the
construction of electrochemical biosensors for monitoring antimicrobial drug residues in food samples.
Despite of all this progress, future research must focus on various aspects to improve the monitoring
of antimicrobial drug residues. For example, although electrochemical biosensors facilitated very low
detection limits of kanamycin, tetracycline and streptomycin, however, a much needed improvement
in the design of electrochemical biosensors is required to achieve the detection of chloramphenicol at
low levels below the regulatory limits.

The design of array systems based on the immobilization of various biomolecules to identify
different analytes simultaneously can reduce the analysis cost, and can be proved as a better detection
platform for drug residues. The portability and reusability of electrochemical biosensors can be
another attractive feature for the future research to meet the needs for rapid, on-site detection. Lastly,
a new trend can be use of nanolabels to replace the enzyme labels in the affinity-based electrochemical
biosensors to perform highly sensitive detection of antimicrobial drug residues in food samples.
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