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Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy

with high incidence and poor prognosis. In addition, owing to the lack of

diagnostic and prognostic markers, current multimodal treatment options fail

to achieve satisfactory outcomes. Tumor immune microenvironment (TIME),

angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis,

metabolism, and drug resistance are important factors influencing tumor

development and therapy. The intercellular communication of these

important processes is mediated by a variety of bioactive molecules to

regulate pathophysiological processes in recipient cells. Among these

bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs

(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs),

account for a large part of the human transcriptome, and their dysregulation

affects the progression of HCC. The purpose of this review is to evaluate the

potential regulatory mechanisms of ncRNAs in HCC, summarize novel

biomarkers from somatic fluids (plasma/serum/urine), and explore the

potential of some small-molecule modulators as drugs. Thus, through this

review, we aim to contribute to a deeper understanding of the regulatory

mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common

malignancy and the third leading cause of cancer-related deaths

globally, posing a serious threat to human health and life (1, 2).

Until now, mainstay curative treatments have included surgical

resection, liver transplantation, radiofrequency ablation (RFA),

transarterial chemoembolization (TACE), transarterial

embolization (TAE), and systemic treatment with molecular-

targeted agents. Despite great breakthroughs, current treatments

have failed to deliver satisfactory outcomes, with an overall 5-

year survival rate of only 12% (3–5). This failure is attributed to

high heterogeneity, frequent recurrence, and drug resistance of

HCC (6, 7). In addition, owing to the lack of reliable biomarkers,

most patients progress to the intermediate and advanced stages

of HCC at the time of diagnosis, regrettably missing the optimal

treatment window. Therefore, deepening the understanding of

the molecular mechanism to develop new therapeutic strategies

and identifying biomarkers that can be effectively monitored at

an early-stage is crucial in the fight against HCC.

The development of HCC is a multifactorial process. In

recent years, immunotherapy has attracted extensive attention

and has emerged as the next-generation therapy since the

approval of immune checkpoint inhibitors (ICIs). However,

studies have shown that its efficacy is closely related to the

state of the tumor immune microenvironment (TIME).

Essentially, anti-tumor immune efficacy mainly depends

on the status and function of the immune cells in the

TIME. Thus, it is necessary to elucidate the immune

microenvironment of HCC to select appropriate ICIs (7).

Angiogenesis not only delivers oxygen and nutrients to the

growing tumor but also transports tumor cells to the

metastatic site (8). Epithelial-mesenchymal transition (EMT) is

a complex phenotypic event that directly affects changes in the

characteristic features of HCC, such as occurrence, migration,

invasion, metastasis, and even drug resistance (9, 10). Following

primary tumor growth, angiogenesis and EMT, tumors are more

prone to invasion and metastasis, which plays a key role in

limiting patient outcomes overall. Therefore, there is an urgent

need to explore invasive-metastatic cascade response of HCC

(11, 12). Dysregulation of tumor cell metabolic activity may

impair anti-tumor response, whereas metabolic reprogramming

secures energy and substrates for the tumor (13, 14). Even more

disastrous is drug resistance to chemotherapeutic agents in

HCC. According to reports, mortality due to drug resistance

accounts for more than 90% of cancer-specific mortality (15). In

short, the above-mentioned issues are key barriers to the

successful treatment of HCC.

Non-coding RNAs (ncRNAs) are endogenous RNAs

accounting for the majority (98%) of the transcribed genome.

They were once regarded as “dark matter” because of their lack

of ability to encode proteins. After years of exploration, they
Frontiers in Immunology 02
have been found to act as important signaling molecules in the

regulation of key cellular pathways (16–18). They are abundant

and stable and mainly include microRNAs (miRNAs), long non-

coding RNAs (lncRNAs), and circular RNAs (circRNAs).

Approximately 30% of genes in the human body are regulated

by miRNAs, which are the most abundant and studied group of

ncRNAs (19). miRNAs regulate gene expression by binding to

DNA, RNA, or proteins, which further regulates various

biological functions (20). LncRNAs are linear RNAs with a

transcript length of > 200 nucleotides, they have more diverse

modes of action than miRNAs as the roles of spatial and

temporal lncRNAs in cell physiology and pathology have

gradually become clear. They can act as signals, decoys,

scaffolds, or guides. Even the same kind of lncRNAs can

function via different mechanisms (21–23). Emerging evidence

indicates that circRNAs are novel ncRNAs that are related to

many pathological diseases. In contrast to the standard splicing

of linear RNAs, circRNAs are closed-loop structures produced

by back-splicing (24). CircRNAs exhibit high abundance,

diversity, sequence conservation among species, stability, tissue

specificity, and tumor stage-dependent characteristics (25, 26).

They exert their functions by binding to RNA-binding proteins,

sponging miRNAs, translating into peptides or proteins,

regulating gene transcription, and competing with canonical

splicing (26, 27). To date, studies have found that these

functional molecules mediate intercellular communication,

which plays a non-negligible role in the TIME, angiogenesis,

EMT, invasion, metastasis, metabolism, and drug resistance (14,

28–30). ncRNAs can also be detected as circulating molecules in

the serum/plasma/urine, indicating that they are of great

significance in early diagnosis and prognosis. In addition,

small-molecule modulators that target ncRNAs are of great

use. Hence, ncRNAs hold great promise as potential

biomarkers or therapeutic targets (31). Herein, we summarize

the latest findings on ncRNAs (miRNAs, lncRNAs, and

circRNAs) that affect various aspects of HCC, including TIME,

angiogenesis, EMT, invasion, metastasis, metabolism, and drug

resistance. The potential uses of ncRNAs in cancer diagnosis/

prognosis and the therapeutic activity of small-molecule

modulators that selectively target ncRNAs are also summarized.
Regulatory mechanisms of ncRNAs
in HCC

Regulation of TIME

Immune cells are complex, heterogeneous cells with different

developmental stages and functional subpopulations. ncRNAs

present in the TIME can regulate immune cells and influence the

development of tumor immune responses. The molecular

mechanisms by which ncRNAs regulate immune cellular
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subpopulations in TIME and tumor immune response

development are described in detail in this section (Figure 1).

T cells
CD8+ T cells

CD8+ T cells are key players that perform anti-tumor

immune functions in the TIME and characteristic markers of

good prognosis in HCC. They mediate target cell apoptosis by

secreting perforin and granzyme or by expressing Fas ligand

(FasL) (32, 33). Single-cell RNA sequencing indicated that the

effector CD8+ T cells in advanced HCC patients were depleted

and weakened in cytotoxicity compared to those in early-stage of

HCC, which may lead to impaired anti-tumor function (34).

Unfortunately, high expression of activation/depletion markers

(notably PD1, TIM3, and LAG3) on the surface of CD8+ T cells

shifts high-density cytotoxic T cells towards immune exclusion

(35). This phenomenon raises a prerequisite condition for the

application of immune checkpoints, that is, how to convert “cold

tumors” into “hot tumors”, which is also a pressing issue to be

addressed. Some studies have found that targeting ncRNAs can

alter CD8+ T cell activity and restore anti-tumor immune
Frontiers in Immunology 03
function in the tumor microenvironment (TME). Since then,

considerable research has been conducted that ncRNAs regulate

the anti-tumor effects of CD8+ T cells.

Currently, multiple lncRNA biomarkers obtained by

invasive procedures show a great capability in mediating the

interaction between tumor cells and CD8+ T cells, which has

generated great research interest. Tim-3 is a negatively regulated

T-cell-dependent immune responses’ immune checkpoint that

serves as a perfect target for next-generation immunotherapy

owing to its precision and specificity. A previous study reported

that Lnc-Tim3, which is highly expressed in tumor-infiltrating

CD8+ T cells, specifically bond to Tim-3 and blocked the

interaction with Bat3. This phenomenon inhibits downstream

Lck/NFAT1/AP-1 signal transduction, thereby exacerbating

CD8+ T lymphocyte exhaustion (36). Other clinical studies

found that the expression of NEAT1 was upregulated in

peripheral blood mononuclear cells (PBMCs) from patients

with HCC and could interfere with Tim-3 expression by

binding to miR-155. Downregulation of NEAT1 inhibits

apoptosis in CD8+ T cell and enhances cytolytic activity,

thereby inhibiting tumor growth (37).
FIGURE 1

Regulation of ncRNAs to tumor immune microenvironment.
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CircMET is a widely studied circRNA that is aberrantly

expressed in HCC tumors (38). Mice subcutaneously implanted

with Hep1-6-circMET had a smaller tumor burden and a higher

density of tumor-infiltrating CD8+ T cells than those implanted

with Hep1-6-control cell lines. This indicates that circMET is

detrimental to CD8+ T cell infiltration, and in-depth studies

revealed that it achieved its goal through the miR-30-5p/

Snail/dipeptidyl peptidase-4 (DPP4) axis. Based on the

combined clinical approach of DPP4 inhibitor and anti-PD1

blocking immunotherapy, it further validated that the DPP4

inhibitor sitagliptin can enhance CD8+ T cell trafficking and

increase infiltration levels, thereby improving the efficacy of

PD1 blockade immunotherapy, supporting the clinical

application of combining DPP4 inhibitors with anti-PD1

blocking immunotherapy.

CD4+ T cells

CD4+ T cells should not be underestimated because they

perform multiple functions in the adaptive immune system.

They are not only able to kill tumor cells directly (cytotoxic

CD4+ T cells) but are also well-known for their indirect role in

the TIME as T helper (Th) cells. They can coordinate the

enhancement of other anti-tumor effector cell functions, such

as CD8+ T cell function and macrophage phagocytosis.

Differentiation into various subpopulations, such as Th1, Th2,

Th17, and regulatory T (Treg) cells, is induced in different

cytokine environments, with different on anti-tumor effects

(39, 40). Since the study of Treg cells requires an in-depth

review of available information, it was singled out for discussion.

ncRNAs are an integral part of gene expression networks, which

dynamically regulate CD4+ T cells’ differentiation and plasticity.

Dysregulation of certain ncRNAs in cancer cells can increase the

levels of immunosuppressive factors, which in turn contributes

to immune privilege (41).

Interestingly, lncRNA AC099850.3 exerts oncogenic effects

via the PRR11/PI3K/Akt signaling pathway. An immune

infiltration analysis revealed that T follicular helper cells and

CD4+ memory T cells were activated while CD8+ T cells and

monocytes were suppressed when AC099850.3 was up-

regulated, explaining the oncogenicity of AC099850.3 (42).

LncRNA MAIT is mainly expressed in CD4+ T cells from

HCC tumor tissues and paracancerous tissues. It is not only

positively correlated with the level of CD4+ T cell infiltration, but

also with immunosuppressive molecules, such as PD-1, PD-L1,

and CTLA4 (43). miR-26b-5p targeting proviral integrations of

moloney virus 2 (PIM2) can affect the secretion of tumor

necrosis factor a (TNF-a), interferon-g (IFN-g), interleukin-6
(IL-6), and interleukin-2 (IL-2) in CD4+ T cells (44). Th17 cells

mediate pro-inflammatory functions by secreting cytokines

(such as IL-17, IL-21, and L-22), and they participate in many

organ-specific autoimmune diseases. Furthermore, ncRNA

functions are being actively explored in Th17 cells in the
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TIME. miR-132 expression is much higher in CD4 IL-17+ cells

than in CD4 IL-17- cells. miR-132 mediates Th17 cell

differentiation by promoting IL-22 expression, which in turn

enhances hepatic stellate cell (HSC) activation and induces

tumor migration (45).
Regulatory T cells (tregs)

Tregs, a regulatory subpopulation of infiltrating CD4+ T

cells, are recognized as a major suppressive component of the

immune system. They are extremely important for the formation

of an immunosuppressive microenvironment in HCC (46, 47).

Tregs are critical in maintaining self-tolerance and immune

homeostasis and are co-opted by tumor cells to evade immune

surveillance. They are up-regulated in tumor tissues and

peripheral blood from patients with HCC or mice than in

healthy individuals (48). High FOXP3 expression on the cell

surface is a distinctive feature of these cells (47, 49). Several

studies have reported that the biological behavior and function

of Tregs are partially dependent on the regulation of ncRNAs.

ncRNAs affect the expression of immune-related cytokines and

growth factors (e.g., IL-2) by regulating the secretion of

chemokines (e.g., CCL22), which further affects the function

and differentiation of Tregs that accumulate in the TIME (50,

51). Several studies have provided evidence suggesting that miR-

34a, miR-15a, miR-16-1, lnc-EGFR, and lncRNA FENDRR play

a crucial role in affecting Tregs in the HCC microenvironment.

CCL22 is a chemokine required for Tregs to exceed CD8+

T cells. As early as 2012, miR-34a strongly supported the idea

that ncRNAs affect the immunosuppressive function of TIME

by regulating the secretion of CCL22. Yang et al. found that

elevated activity of tumor growth factor-b (TGF-b)
suppressed miR-34a expression and dose-dependently

enhanced production of CCL22 in PVTT-1 cells. This

blocks the strong binding of CCL2 to CCR4 on the surface

of Tregs, resulting in attenuated Treg cell recruitment and

immune escape suppression (52). Similarly, miR-15a and

miR-16-1 direct ly target NF-kB to impair CCL22

transcription. Subsequently, activated NF-kB/CCL22
signaling attenuates the hepatic recruitment of Tregs. Such

biological activity also upregulates CD80 expression in

Kupfer cells (KCs) and CD28 in Tregs, facil itating

communication between KCs and Tregs (53). A study

confirmed the existence of a forward-feedback loop lnc-

EGFR-EGFR-NF-AT1/AP1-lnc-EGFR in Tregs as a

facilitating mechanism for HCC (54). In addition, loss of

GADD45B can upregulate the number of Tregs. However, the

tumor suppressor lncRNA FENDRR targets GADD45B as a

miR-423-5p sponge to suppress the secretion of immune-

related factors TGF-b, vascular endothelial growth factor

(VEGF), IL-2, and IL-10, thereby suppressing Treg-

mediated immune escape (55).
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B cells
B lymphocytes are derived from pluripotent stem cells in the

bone marrow. They play a dual role in tumor immunity by

supporting or suppressing anti-tumor immunity (56). B cells

may act as antigen-presenting cells to enhance humoral and

cellular responses to tumors. However, the strong prognosis of

tumor-infiltrating B cells (TIL-Bs) in cancer reject this idea.

Therefore, it is difficult to determine the specific role of B cells

(57). One claim is that miRNAs may influence the differentiation

of the regulatory B cells (Bregs). Similar to Tregs, Bregs produce

high levels of IL-10 and suppress the host immune response,

thereby exerting a pro-tumor effect (58). An increased frequency

of CD19+ Tim-1 cells and tumor growth have been observed in

young miR-15a/16-/- mice transplanted with HCC cells. This

phenomenon depends on the efficiency of microRNA cluster of

miR-15a/16 that enhances STAT3 activity. Then STAT3

activation contributes to IL-10 production by CD19 Tim-1

cells, and finally promotes Bregs’ activity (59). Pseudogenes

are a special type of lncRNAs. The expression of pseudogenes

RP11-424C20.2 correlates with the level of tumor-infiltrating

immunocytes, including B cells (60). It linked high levels of B

cells with worse outcomes for thymoma (THYM) patients.

Necessarily, further studies are needed to explore how other

ncRNAs exert regulatory effects on B cells and their

specific mechanisms.

Natural killer cells
NK cells can exert their effects as an essential component of

innate immunity even without prior stimulation, which

constitutes the first line of host immunological defense against

cancer cell invasion. NK cells lead to target cell apoptosis by

secreting perforin and granzyme, expressing FasL, and

mediating antibody-dependent cellular cytotoxicity (ADCC)

(61, 62). Changes in the phenotypes and functions of NK cells

have been detected both in patients with aggressive human liver

cancer and transgenic mouse models (63, 64). Single-cell RNA

sequencing and flow cytometry of innate lymphoid cells (ILCs)

revealed that NK cells lose their cytotoxic profile as they

transition into NK-like-ILC3 cells (65). Several therapies of

NK cell-mediated ADCC have been evaluated in clinical trials.

Undoubtedly, NK cells are promising candidates for the

development of advanced cancer immunotherapy. Evidence

collected so far suggested that multiple ncRNAs mediate

interactions between NK and HCC cells.

CD69 is an NK cell activation marker that mediates NK cell

cytotoxicity. When transferred to NK cells, miR-92b causes

CD69 downregulation and cytotoxic damage (66). Chen et al.

found that miR-137, miR-149-5p, and miR-561-5p are

associated with the innate immune response, especially miR-

561-5p. Additional evidence has shown some differences in

chemotaxis and function among different NK cell subsets.

miR-561-5p attenuated the anti-tumor response by
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downregulating CX3CL1 messenger RNA (mRNA) to reduce

the function of CX3CR1 NK cells (67).

Recent studies have found that the LINC00638 is mainly

enriched in eight signaling pathways, in which NK cell-mediated

cytotoxic pathway is highly correlated with immune

infiltration. In HCC tumor tissues, overexpression of ULBP1

can recruit NK cells to the tumor and leads to immune escape

when accompanied by PD-L1 expression. Mechanistically,

LINC00638 can achieve this goal by acting as a sponge for

miR-4732-3p and eliminating the inhibition of ULBP1

expression (68).

Notably, attention has gradually been focused on circRNAs

in HCC immunity regulation. One of the most well-known

examples is circUHRF1 (hsa_circ_0048677). Highly expressed

circUHRF1 sponges miR-449c-5p to upregulate the expression

of the downstream target gene, T-cell immunoglobulin mucin 3

(TIM-3), thereby reducing the secretion of TNF-a and IFN-g,
which ultimately promote the immune escape of HCC cells (69).

Moreover, the downregulation of hsa_circ_0007456 reduces NK

cell susceptibility and attenuates their binding by the

downstream miR-6852-3p/ICAM-1 axis, thus promoting the

immune escape of HCC cells (70).

Tumor-associated macrophages
Macrophages are key mediators of tissue homeostasis. They

can directly kill tumor cells by phagocytizing massive pathogens

(71). Additionally, they are vital antigen-presenting cells that

activate endogenous anti-tumor T cell responses. They

are highly plastic and can be classified into two subtypes:

classical pro-inflammatory activation (M1-like macrophages)

and alternative anti-inflammatory activation (M2-like

macrophages) (72). The tumor recruits them into the TIME

and induces the formation of TAMs, which are crucial for

promoting the immunosuppressive microenvironment, tumor

cell invasion, angiogenic switch, and immune escape of

malignant cells.

Previous studies have shown roles of miRNAs in M1/M2

macrophage polarization, which mediates the onset and growth

of HCC. Zhao et al. reported that the CpG island deletion

(DCpG) of the miR-144/miR-451a promoter induces

chromatin conformational remodeling. It increases the

expression of miR-144/miR-451a while decreasing the

expression of hepatocyte growth factor (HGF) and

macrophage migration inhibitory factor (MIF), conferring the

paracrine activation of macrophage M1-like repolarization (73).

Many studies have revealed the mechanism of action of

lncRNAs in TAM polarization regulation. Overexpression of

PART1 promotes macrophage M2-like polarization by affecting

the miR-372-3p/TLR4 axis (74). Similarly, promoting

competitive adsorption of miR-147a by lncRNA HMMR-AS1

in a hypoxic environment affected ARID3A-mediated

macrophage polarization (75). In addition, it has been found
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that LINC00662, lncRNA TUC339, lncRNA MALAT1,

PCED1B-AS1, lnc-Ma301, and lncRNA cox-2 can promote the

differentiation of TAMs into the M2 phenotype and inhibit the

anti-tumor response (76–81).

Other important studies have confirmed the crucial role of

circRNAs in orchestrating macrophage polarization in HCC

progression. The use of macrophage-specific CD39-knockout

mice showed that circTMEM181 upregulates CD39 expression

in macrophages and CD73 expression in HCC cells. The

cooperation between CD39 and CD73 triggers eATP-

adenosine activation, thereby promoting immunosuppression

(82). Hsa_circ_0110102 may act as a sponge for miR-580-5p to

regulate target gene function. It regulates the secretion of CCL2

into the TME by decreasing PPARa expression. The release of

pro-inflammatory cytokines from macrophages was inhibited by

modulating the COX-2/PGE2 pathway. Thus, hsa_circ_0074854

may be a potential prognostic predictor or therapeutic target for

HCC (83). Besides, the knockdown of hsa_circ_0074854 can

inhibit M2 macrophage polarization both in vitro and in vivo.

Mechanistically, the downregulation of hsa_circ_0074854

inhibits macrophage M2 polarization by interacting with

human antigen R (HuR), thereby inhibiting the migration and

invasion of HCC cells (84).

Other immune cells
In addition to the above-mentioned immune cells, ncRNAs

exert regulatory effects on other immune cells, such as tumor-

associated neutrophils (TANs) and dendritic cells (DCs). TAN is

the most abundant circulating leukocyte in humans that

mediates tumor growth and progression. It has two distinct

phenotypes-N1 (anti-tumor) and N2 (pro-tumor), exhibiting

functional heterogeneity in response to different stimuli (85).

Therefore, it is a potent modulator of TIME. The deregulation of

miR-223 may play a role in a range of liver diseases by affecting

neutrophil infiltration. In addition, miR-223 expression

positively correlates with the differentiation of granulocyte-

monocyte progenitor cells into granulocytes (86). As antigen-

presenting cells, DCs can induce primary immune responses

(87). Wu pointed out that lncRNA ASB16-AS1 negatively

correlated with dendritic cells and neutrophils as validated in

five HCC cell lines (88). The mechanism by which ncRNAs

regulate immune cells in the TIME is still in its infancy and

needs to be supported by further studies.
Regulation of tumor angiogenesis

In the tumor growth environment, there is a dynamic

imbalance between pro- and anti-angiogenic factors. As a

hypervascular tumor, HCC tends to induce the secretion of

proangiogenic factors such as VEGF, angiopoietin-1 (ANGPT1),

platelet-derived growth factor (PDGF), and basic fibroblast
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growth factor (bFGF). This phenomenon contributes to

angiogenesis, enabling tumors to receive adequate nutritional

support and expel metabolic waste and carbon dioxide, leading

to continuous tumor growth and progression (8, 89).

Overexpression of VEGF contributes to vascular network

development, endothelial cell proliferation, and tube formation

(90, 91). Current anti-angiogenesis drugs, such as bevacizumab

and ramucirumab, mostly target the VEGF signaling pathways.

Accumulating evidence suggests that ncRNAs regulate tumor

progression by interacting with VEGF in HCC. A previous study

showed that miR-195 is negatively correlated with angiogenesis

which directly inhibits VEGF levels and VEGF receptor 2

signaling in endothelial cells (92). Another study showed that

the lncRNA PAARH positively correlated with vascular

invasion in HCC tissues, upregulated VEGF expression and

microvascular density. PAARH facilitated the recruitment of

HIF-1a to the VEGF promoter, which caused high VEGF

expression (93). In addition to VEGF, ncRNAs interact with

other growth factors. By targeting ANGPT1, miR-375

suppresses proangiogenic activity and miR-3682-3p weakens

angiogenesis both affecting tumor progression (94, 95).

ncRNAs promote angiogenesis through crosstalk with

cancer-associated endothelial cells (ECs), affecting tube

formation (30). It has been shown that miR-210 targets

SMAD4 and STAT6 to stimulate EC tubulogenesis in vitro

and angiogenesis in vivo. STAT6 alleviates the inhibitory

effects of IL-13 on human coronary artery EC migration and

tube formation; however, the mechanism of action of SMAD4

on ECs remains unknown (96). In contrast, ncRNAs inhibit the

permeability of ECs to mediate cancer cell proliferation, which

are potential targets for anti-angiogenic therapies. For example,

miR-638 can disrupt endothelial tight junctions and enhance the

permeability of FITC-dextran by downregulating VE-cadherin

and ZO-1 expression in non-cancerous regions of the liver (97).

Another study has explained the specific mechanism by which

circRNA-100,338 regulates endothelial permeability. CircRNA-

100,338 affects cell permeability and vasculogenic mimicry (VM)

capability by interacting with NOVA2 and inhibits HCC growth

by binding to IFN-a (98).

Collectively, ncRNAs can regulate angiogenic activity

through different pathways (Figure 2). ncRNAs may be

emerging targets for anti-angiogenic therapies. The clinical

benefits of multi-kinase inhibitors (such as Sorafenib and

Lenvatinib) that target VEGF and its receptors have not been

as good as initially expected, perhaps partly because of the off-

target effect of anti-tumor agents (99). Synergistic biological

effects exist between antiangiogenic agents and ICIs, and

their toxicity profiles do not overlap (99). Based on these

characteristics, some experts have focused on promoting the

ncRNA-targeting combinations of ICI inhibitors with Sorafenib

or other anti-angiogenic drugs, which could contribute through

the aforementioned mechanism.
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Regulation of EMT

EMT is indispensable at all life stages from embryonic

development to death, and it is essential for the acquisition of

the invasive and metastatic characteristics of malignant tumors.

Featured with reversibility, plasticity, and heterogeneity, EMT

can alter multiple phenotypic changes including the loss of cell

polarity, dissolution of intracellular junctions, and basement

membrane detachment (9, 10). Epithelioid cell markers, such

as b-catenin, E-cadherin, ZO-1, and claudin-1, were negatively

correlated with the EMT process, while mesenchymal-like cell

markers, such as Snail, twist, vimentin, N-cadherin, ZEB, and a-
SMA, were positively correlated with the EMT process. Besides,

certain signaling pathways facilitate the EMT process, such as

the Wnt/b-catenin signaling pathway. An increasing number of

studies have shown that ncRNAs act as mediators affecting the

EMT process in tumor cells (28).

ZO-1 regulates cell material transport and maintains

epithelial polarity. Circ-0004277 competitively binds to HuR

and blocks the binding of ZO-1 and HuR, thereby stimulating

EMT progression and promoting HCC (100). LncRNA

TP53TG1 is a tumor suppressor gene that negatively

correlates with N-calmodulin and vimentin, and positively

correlates with E-cadherin and claudin-1 at the protein and

RNA levels (101). Snail acts as a major player in EMT, whereas

HOTAIR negatively regulates the EMT process (102). The

results confirmed that HOTAIR-sbid, a HOTAIR deletion

mutant, can impair the interaction between Snail and EZH2,

thus affecting the capacity of Snail to convey EZH2 to specific

epithelial target sites (i.e., HNF4a, E-calmodulin, and

HNF1a). The design of such dominant-negative mutants

opens new perspectives for highly specific future RNA
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therapeutics to counteract tumor progression (103). A recent

investigation showed that the tumor-suppressive function of

circPABPC1 is manifested by promoting the degradation of

b1 integrin (ITGB1), a pivotal member of the integrin family,

thereby reducing cell adhesion between cells and the extracellular

matrix (104). In contrast, lncRNA TP53TG1 interacts with

peroxiredoxin-4 (PRDX4) to promote its ubiquitin-mediated

degradation, subsequently downregulating the levels of proteins

involved in theWnt/b-catenin pathway, thereby slowing down the
EMT process (101). Notably, a growing body of information is

available on different ncRNAs, such as miR-1246, lncRNA

DLGAP1-AS1, and circMTO1, which regulate the Wnt/b-
catenin pathway to affect the EMT process (105, 106). In

addition, miR-92a-3p inhibits the PTEN/Akt/Snail pathway,

miR-612 inhibits the Sp1/Nanog signaling pathway, and

lncRNA LL22NC03-N14H11.1 activates the H-RAS/MAPK

pathway to induce mitochondrial fission, all of which can

explain the key role of ncRNAs in EMT progression (107–109).

Furthermore, scientists have elucidated how ncRNAs regulate

the EMT process in HCC from some new perspectives. In addition

to the Sp1/Nanog signaling pathway mentioned above, Liu et al.

found that miR-612 regulates the EMT process through direct

downstream target HADHA-mediated lipid reprogramming.

Mechanistically, miR-612 affects invadopodia formation through

HADHA-mediated alterations in the b-oxidation of fatty acids,

cholesterol biosynthesis, and cell membrane fluidity (110). Evidence

also indicates that cell cycle-related genes are involved in the

regulation of ncRNAs in EMT; for example, miR-186 induces

apoptosis by directly targeting cyclin-dependent kinase 6 (CDK6)

(111). In conclusion, ncRNAs are key factors regulating the EMT

process in HCC (Figure 3); however, their regulatory functions and

underlying mechanisms remain to be elucidated.
FIGURE 2

Regulatory mechanisms of ncRNAs to tumor angiogenesis.
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Regulation of tumor invasion
and metastasis

Tumor invasion and metastasis are complex processes of

multi-stage evolution and hallmarks of malignancy, and can lead

to a low survival rate in patients with distal metastasis. Even

more problematic is that the current clinical situation is not

conducive for detecting dormant cancer cells and micro-

metastasis. This further exacerbates the difficulty of treatment,

which requires a deeper understanding of tumor invasive and

metastatic mechanisms. The processes remodeling the

extracellular microenvironment that ncRNA-induced, such as

angiogenesis and EMT, are niches for tumor metastasis. Those

have been described in detail in the previous two sections.

Further, malignant cells’ ability to distant movement is a

favorable niche for tumor metastasis (112). Research on

ncRNAs in the complex invasive-metastatic cascade response

has provided new insights into the molecular mechanisms

involved in hepatocellular carcinoma.

Upregulation of miR-1251-5p in tissues of HCC patients is

significantly associated with clinical stage, high tumor lymph

node metastasis (TNM), and poor prognosis. miR-1251-5p

overexpression promoted cell invasion in vitro, whereas miR-

1251-5p silencing inhibited HCC cell invasion in vivo. A-kinase

anchor protein 12 (AKAP12) exerts anti-tumor effects by acting

as a scaffolding protein in signal transduction. The luciferase
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report showed that miR-1251-5p could directly target AKAP12

for oncogenic effects, and this mechanism was validated by

AKAP12 knockdown rescuing the miR-1251-5p knockdown-

attenuated cell invasion (113). miRNAs have been studied for a

long time and there is now a wealth of data on their broad and

critical role in tumor metastasis through target genes and

signaling pathways, such as miR-195, miR-122, miR-103a-3p

(92, 114, 115). LncRNAs regulate the expression of target genes

by mediating miRNA activity. Metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) is a widely studied

lncRNA in cancer and is important for cancer-related pathway

regulation. The luciferase reporter assay confirmed that

MALAT1 negatively regulates miR-200a expression and is

involved in the proliferation and invasion of Hep3B cells

under hypoxia (116). It is well established that lncRNA is a

key regulator of tumorigenesis. Liu’s research cascaded the exact

correlation of this lncRNA to hepatocyte invasion and metastasis

and revealing downstream regulatory pathways. The potential

miRNA binding site of lncRNA BACE1-AS, miR-377-3p, was

identified by a raw letter prediction and experimentally

confirmed method. Further, the analysis showed that miR-

377-3p negatively regulates CELF1, an RNA-binding protein

that is a relative marker of malignancy (117). MMP9, a member

of the zinc-dependent endopeptidase family, is a vital role in

metastasis, especially in degrading ECM. Mouse xenograft

models and mouse lung metastasis models confirmed the pro-
FIGURE 3

Regulatory mechanisms of ncRNAs to epithelial-mesenchymal transition.
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tumor growth and lung metastasis role of circUBAP2. It

negatively regulates HCC by acting as a competing

endogenous RNAs(ceRNAs) for miR-194-3p and inhibiting

MMP9 (118). In conclusion, complex biochemical and

biological alterations in the tumor cells themselves and the

associated stroma contribute to this aggressive phenotype. The

involvement of ncRNAs in this process also expands the hope for

finding new regulatory key nodes and therapeutic strategies for

metastatic tumors.
Regulation of tumor metabolism

Vasculature-restricted glucose and oxygen delivery is

insufficient to supply uncontrolled proliferation of cancer cells.

Therefore, cancer cells undergo metabolic reprogramming as a

survival strategy. Cancer cells generate energy through aerobic

glycolysis and lactic acid fermentation in a process rather than

the TCA cycle to meet the energy demand of rapid cancer cell

proliferation. This process is known as the Warburg effect. In

this way, additional substrates and energy requirements can be

provided for the biosynthesis of macromolecules (14, 119, 120).

Several ncRNAs have been shown to rewire glycolytic networks

(14). Zheng et al. found that LINC01554 negatively regulates the

key rate-limiting enzyme pyruvate kinase isozyme M2 (PKM2)

in the aerobic glycolysis pathway of HCC. However, whether this

mechanism is due to ubiquitin-mediated degradation or as a

scaffold remains to be further investigated. In contrast,

LINC01554 inhibits the PI3K/Akt/mTOR signaling pathway,

which is a central signaling pathway coordinating glucose

uptake, glycogen synthesis, and tumorigenesis (121).

Consistent with LINC01554, circRPN2 also facilitates

glycolytic reprogramming through the Akt/mTOR pathway

(122). In addition, it inhibits aerobic glycolysis by regulating

the miR-183-5p/FOXO1 axis. Moreover, studies have verified

that lncRNA TUG1, lncRNA RAET1K, and circFBLIM1 play a

role in metabolic reprogramming by regulating glycolysis

(123–125).

In addition to their roles in glycolytic metabolism, miR-21

and miR-122 play central roles in hepatic lipid metabolism and

cholesterol synthesis relying on a complex lipogenic

transcriptional network (126, 127). miR-21 regulates lipid

metabolism through at least three pathophysiological pathways

in a zebrafish model. One of the approaches is that miR-21

promotes hepatic lipid accumulation via the PTS (PI3K/Akt,

TGF-b/SMAD3, STAT3) signaling networks. As for miR-122,

free fatty acid (FFA) increases miR-122 secretion and

transportation by activating retinoic acid-related orphan

receptor alpha (ROR-a). In turn, miR-122 reduces the

mRNAs levels of genes (Agpat1 and Dgat1) involved in

triglyceride synthesis.

Amino acid metabolic remodeling is another powerful

proponent of cancer cell malignant activities. Mechanism can
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be attributed to the interaction between lncRNA and rate-

limiting enzyme of amino acid synthesis pathway. Chen et al.

found that LINC01234 bound to the promoter of ASS1 to inhibit

its transcriptional activation, thereafter leading to increased

aspartate levels and activation of rapamycin pathway targets

(128). As the understanding of tumor cell metabolism in TME

continues to advance, people have discovered multiple strategies

to target tumor metabolism. Currently, fatty acid synthesis

inhibitors (FAS), especially targeting fatty acid synthase

(FASN), have been focused on as potential strategies for

cancer treatment. The molecular mechanisms by which the

ncRNAs mentioned in this section affecting HCC metabolism

are summarized in Figure 4.
Regulation of drug resistance

For unresectable HCC, the main treatment approaches

include chemotherapy (e.g., Cisplatin and 5-Fluorouracil) and

molecular targeted therapies (e.g., multi-kinase inhibitors,

monoclonal antibodies, and ICIs). Multidrug resistance (MDR)

is inevitable in tumor cells with their rapid development.

Statistics indicate that only 30% of HCC patients show an

increase in overall survival (OS) by 3 months after treatment

with Sorafenib (129). Moreover, Sorafenib resistance was

observed within 6 months of treatment, with adverse events of

varying degrees, such as gastrointestinal reactions, hand-foot

syndrome, and hypertension (130, 131). To further understand

the emerging function and mechanism axis of ncRNAs in HCC,

chemoresistance has become a hot research topic.

Aberrantly expressed miRNAs are universal features of

HCC. From the perspective of clinical medication (Sorafenib,

5-Fluorouracil, Cisplatin), researchers have systematically

elaborated on miRNAs modulating HCC drug resistance as

well as the underlying mechanisms (132). Glucose metabolism

has been implicated in the maintenance of Sorafenib resistance

in HCC cells (133). Activation of the PI3K/Akt signaling

pathway enhances glycolysis, and the expression of

downstream glycolysis genes cause reactions in Sorafenib-

resistant HCC cells. Studies verified that both miR-30a-5p and

miR-32-5p were abnormally expressed in drug-resistant tissues,

and may be targets for reversing Sorafenib resistance in HCC.

miR-30a-5p induces MDR to activate the PI3K/Akt signaling

pathway by upregulating CLCF1, while miR-32-5p activates the

PI3K/Akt signaling pathway by downregulating PTEN (133,

134). Intravenous injection of miR-199-modified vehicle

suppress mTOR signaling (135, 136). Overactivation of the

mTOR signaling pathway promotes tumorigenesis and tumor

progression, which significantly sensitizes HCC cells to

Doxycycline (137).

Autophagy plays a dual role in drug resistance. Few lncRNAs

influence Sorafenib-induced chemoresistance and sensitivity

through autophagy mechanism. A previous study showed that
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Rutin treatment reduced the number of autophagosomes in

Sorafenib-resistant cells, while reducing the expression of the

lncRNA BANCR (BANCR knockdown increases the sensitivity

of Sorafenib-resistant cells to Sorafenib). The lncRNA BANCR

inhibits autophagy through the BANCR/miRNA-590-5P/OLR1

axis (138). Another study reported that the lncRNA CRNDE has

the opposite effect as it enhances the stability of ATG4B

primarily by isolating miR-543, thereby triggering autophagy

(139). The autophagy mechanism of drug resistance is regulated

not only by lncRNAs but also by circRNAs. Li et al. identified

968 dysregulated circRNAs in Cisplatin-resistant HCC tissues

and reported that circARNT2 competes with miR-155-5p to

upregulate PDK1-induced autophagy, ultimately enhancing the

sensitivity of HCC cells to Cisplatin (140).

In addition to autophagy, circRNAs function through many

other mechanisms. For instance, circMED27, circMEMO1,

circFOXM1, circFN1, and circRNA-SORE act as ceRNAs

targeting corresponding miRNAs to affect the drug resistance

or sensitivity of HCC cells to chemotherapy drugs (140–144).

Existing studies have confirmed the molecular mechanisms

associated with resistance to the first-line chemotherapy drug,

Oxaliplatin (OXA), in which cancer stem cells (CSCs) play an

important role (145, 146). The lncRNA DUBR is highly

expressed in liver CSCs and functions as one of the factors

that promote OXA resistance. Liu et al. found that the specificity

protein 1 (SP1)-induced lncRNA DUBR upregulates CIP2A

expression via the E2F1 protein, promoting stemness and

OXA resistance. They also identified another mechanism by

which lncRNA DUBR acts as a ceRNA to upregulate CIP2A,

which in turn stabilizes the E2F1 protein, thereby activating the

Notch1 signaling pathway (147). Additionally, circMRPS35-

encoding peptide is significantly induced by chemotherapeutic
Frontiers in Immunology 10
agents and promotes Cisplatin resistance, suggesting that

circMRPS35 may be a possible mediator of Cisplatin resistance

(148). Interestingly, emerging evidence suggests that ncRNAs

are involved in the resistance to immune checkpoint blockers. A

newly reported example is that where circUHRF1 can impair the

function of NK cells and induce an exhausted phenotype that

cannot secrete IFN-g and TNF-a. Hence, circUHRF1 could be

regarded as a therapeutic target for anti-PD1 immunotherapy

and drug resistance (69). In conclusion, clarifying the

mechanisms of drug resistance (Figure 5) and targeting these

dysregulated ncRNAs would be a fatal step forward in

HCC treatment.
Clinical significance of ncRNAs
in HCC

Most HCC patients are often diagnosed too late or have a

high recurrence rate, that is why exploring predictive/prognostic

biomarkers in early-stage of HCC is relevant for physicians to

develop precise treatment strategies (149). Evaluation of tissues

from liver biopsies and surgical specimens are both invasive

approaches that too painful for the patient. a-fetoprotein (AFP)

is the “gold standard” but with suboptimal sensitivity and

specificity of only 39-64% and 76-91% (150, 151). Moreover,

AFP appears as an unanticipated false positive that is elevated in

some patients with chronic liver diseases (e.g., cirrhosis, viral

hepatitis, etc.). More reliable biomarkers are urgently needed to

monitor and diagnose HCC and improve patient prognosis. The

secretion of circulating ncRNAs has been identified in biological

fluids (e.g., serum, plasma, and urine) of patients (the process is

shown in Figure 6), where changes in levels or expression
FIGURE 4

Regulatory mechanisms of ncRNAs to tumor metabolism.
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indicate cancer status. Owing to their abundance, accessibility,

non-invasiveness, easy reproducibility, and disease specificity,

ncRNAs are considered ideal non-invasive diagnostic

biomarkers for HCC (152). As a non-invasive liquid biopsy,

ncRNAs have entered the spotlight for the development of

diagnostic markers in oncology. Several ncRNAs in body fluids

have been the most promising biomarkers to date. This section

summarizes the main diagnostic/prognostic markers currently

under investigation.
ncRNAs act as diagnostic biomarkers

miRNAs
In recent years, several research groups have evaluated the

potential of miRNAs as diagnostic, prognostic, and therapeutic

responsiveness biomarkers for liver disease using clinical trial

databases or clinical trials. In addition, the clinical utility of

circulating miRNAs in patients with HCC has been explored,

such as miR-21, miR-122, miR-96, miR-194/192, and miR-484;

more information is summarized in Table 1. The plasma

oncogenic factor miR-21 has been explored as a biochemical

marker for HCC considering its important role in HCC

progression. The potential of miR-21 as a biomarker for HCV

patients complicated by HCC was explored by collecting trials

registered in the clinicaltrial.gov database, enrolling a total of 100

participants aged 31-67 years in Egypt (NCT05449847). miR-21

can differentiate between uncomplicated and complicated HCV

patients. It has been suggested that multiple miRNAs or a

combination of miRNAs with the already widely used AFP

may be more desirable diagnostic modalities. For instance, the

combination of miR-21, miR-122, and miR-96 in serum showed

a much higher diagnostic accuracy in the cirrhotic group than
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AFP or miR-21 alone (153). A combination of miRNAs has

shown a higher area under the curve (AUC) value of 0.924. Thus,

miR-21 was not only superior to AFP alone, but also showed

better differentiation in combination with AFP. Studies have

confirmed that miR-221 is also upregulated in patients with

HCC. The AUC of the combination with AFP for diagnosis is

0.945, sensitivity is 93.33%, specificity is 77.78%, accuracy is

90.9%, and thus the combination has a better performance than

individual detection (164). Clinical trials of miR-221 have also

been conducted, and details can be found by querying

NCT02928627. Shohda identified liver-specific miR-484 as an

early diagnostic marker for HCC. miR-484 has shown great

sensitivity in distinguishing HCC from non-HCC, with an AUC

of 0.67. Moreover, miR-484 signatured across various stages of

HCV-mediated hepatic disease progression, revealing promising

performance in staging, prognosis, and early diagnosis (157).

LncRNAs
LncRNA UCA1 and lncRNA WRAP53 act as natural p53

single transcripts and are effective in regulating the expression of

corresponding sense genes. The role of lncRNA UCA1 in

bladder cancer and breast cancer has been previously

identified, while the role for HCC remains elusive. In a study,

both lncRNAs were found to be highly expressed in the sera of

HCV patients with HCC, with AUC-ROC of 0.76 and 0.87,

respectively. Interestingly, the combination of lncRNA UCA1,

lncRNA WRAP53, and AFP resulted in a high diagnostic

sensitivity of 100%, strongly confirming the diagnostic efficacy

of the combination of miRNA and AFP (176). To validate these

two lncRNAs as potential biomarkers for HCC diagnosis, a

clinical trial has been published, enrolling a total of 80

participants. This work is nearing completion and we will wait

to see the results of the validation (NCT05088811). In another
FIGURE 5

Regulatory mechanisms of ncRNAs to drug resistance
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TABLE 1 Diagnostic biomarkers of ncRNAs for HCC.

Types ncRNA Sample Expression Patients enrolled Diagnostic accuracy
(PC vs. non-PC)

Confidence
Interval (CI)

References

miRNA miR-93-5p urine ↑ 64 HCC, 65 HC AUC 0.906, sensitivity 87.9%,
specificity 93.8%

/ (153, 154)

miRNA miR-93-5p plasma ↑ 64 HCC, 65 HC AUC 0.905, sensitivity 86.2%,
specificity 95.4%

/ (154)

miRNA miR-155 serum ↑ 80 HCC, 80 CHB, 40 HC AUC 0.743, sensitivity 80%,
specificity 62.5%

/ (155)

miRNA miR-21+miR-122+
miR-96

plasma ↑ 50 HCC, 50 LC, 50 HC AUC 0.924, sensitivity 82%,
specificity 92%

/ (153)

miRNA miR-10b-5p plasma ↑ 38 HCC AUC 0.65, sensitivity 76%,
specificity 55%

0.54-0.77 (156)

miRNA miR-221-3p plasma ↑ 38 HCC AUC 0.69, sensitivity 87%,
specificity 52%

0.58-0.80 (156)

miRNA miR-21-5p plasma ↑ 38 HCC AUC 0.78, sensitivity 74%,
specificity 77%

0.69-0.87 (156)

miRNA miR-223-3p plasma ↑ 38 HCC AUC 0.63, sensitivity 61%,
specificity 70%

0.51-0.75 (156)

miRNA miR-484 plasma ↓ 41 HCC, 47 HF, 40 LC, 40 HC AUC 0.67 0.5067–0.8307 (157)

miRNA miR-224 serum ↑ 89 HCC, 50 HC AUC 0.910 0.84-0.98 (158, 159)

miRNA miR-148a plasma ↓ 155 HCC, 95 LC, 95 HC AUC 0.949, sensitivity 90.6%,
specificity 92.6%

0.916-0.981 (160, 161)

miRNA miR-409-3p serum ↓ 20 HCC, AUC 0.80, sensitivity 85%,
specificity 70%

0.66-0.95 (162)

miRNA miR-125a-3p serum ↓ 12 HCC AUC 0.98, sensitivity 80%,
specificity 100%

/ (158, 163)

miRNA miR-221 serum ↑ 45 HCC, 45 HC AUC 0.945, sensitivity
93.33%, specificity 77.78%

0.655-0.894 (154, 164)

miRNA miR-221+AFP serum ↑ 45 HCC, 45 HC sensitivity 96.49%, specificity
88.00%

/ (164)

miRNA miR-125b plasma ↓ 64 HCC, 59 LC, 63 CHB, 56 HC AUC 0.891, sensitivity 85.9%,
specificity 78.6%

0.835-0.947 (156, 165)

miRNA miR-122 plasma ↓ 80 HCC, 20 HC AUC 0.98, sensitivity 87.5%,
specificity 95%

/ (161)

miRNA miR-224 plasma ↑ 80 HCC, 20 HC AUC 0.93, sensitivity 92.5%,
specificity 90%

/ (161)

miRNA miR-338-5p plasma ↑ 47 HCC, 29 LC, 31 HC AUC 0.909, sensitivity 72.3%,
specificity 99.68%

/ (166)

miRNA miR-764 plasma ↑ 47 HCC, 29 LC, 31 HC AUC 0.791, sensitivity 74.5%,
specificity 77%

/ (166)

miRNA miR-15b-5p plasma ↑ 47 HCC, 29 LC, 31 HC AUC 0.765, sensitivity 68.1%,
specificity 80%

/ (166)

miRNA miR-21 plasma ↑ 126 HCC, 50 HC AUC 0.953, sensitivity 87.3%,
specificity 92.0%

/ (159, 164)

lncRNA SCARNA10 serum ↑ 182 HCC, 105 BLD, 149 HC AUC 0.82, sensitivity 70%,
specificity 77%

/ (167)

lncRNA SCARNA10+AFP serum ↑ 182 HCC, 105 BLD, 149 HC AUC 0.92, sensitivity 88%,
specificity 80%

/ (167)

lncRNA HULC, serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.796, sensitivity 86.0%,
specificity 62.4%

0.734-0.858 (168)

lncRNA MALAT1 serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.768, sensitivity 59.7%,
specificity 80.6%

0.706-0.830 (168)

lncRNA LINC00152 serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.895, sensitivity 78.3%,
specificity 89.2%

0.854-0.936 (168)

lncRNA PTENP1 serum ↓ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.602, sensitivity 89.1%,
specificity 29.0%

0.526-0.678 (168)

(Continued)
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TABLE 1 Continued

Types ncRNA Sample Expression Patients enrolled Diagnostic accuracy
(PC vs. non-PC)

Confidence
Interval (CI)

References

lncRNA PTTG3P serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.785, sensitivity 82.9%,
specificity 61.3%

0.723-0.847 (168)

lncRNA SPRY4-IT1 serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.808, sensitivity 76.7%,
specificity 71.0%

0.750-0.866 (168)

lncRNA UBE2CP3 serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.812, sensitivity 88.4%,
specificity 62.4%

0.754-0.870 (168)

lncRNA UCA1 serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.858, sensitivity 81.4%,
specificity 75.3%

0.810-0.907 (168)

lncRNA Linc00152+AFP serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.906 sensitivity 85.3%,
specificity 83.4%

0.870-0.942 (168)

lncRNA Linc00152+UCA1+AFP serum ↑ 129 HCC, 49 LC, 27 CHB, 93 HC AUC 0.912, sensitivity 82.9%,
specificity 88.2%

0.878-0.945 (168)

lncRNA SENP3-EIF41 plasma ↓ 3 HCC, 3 HC AUC 0.8028 / (169)

lncRNA LINC00853 serum ↑ 90 HCC, 35 LC, 28 CHB, 29 HC AUC 0.934, sensitivity
93.75%, specificity 89.77%

0.887-0.966 (170)

lncRNA lnc85 serum ↑ 112 HCC, 43 LC, 52 HC AUC 0.869, sensitivity 80.0%,
specificity 76.5%

0.828-0.918 (171)

lncRNA lncRNA-D16366 serum ↓ 107 HCC, 28 HBV, 18 ALD, 12
fatty liver disease, 85 HC

AUC 0.752, sensitivity 65.5%,
specificity 84.6%

/ (172)

lncRNA lncRNA SNHG1 plasma ↑ 72 HCC, 50 LC, 50 HC AUC 0.92, 0.86-0.96 (173)

lncRNA GAS5-AS1 plasma ↓ 156 HCC, 58 HC AUC 0.824, sensitivity 89.5%,
specificity 89.5%

0.741-0.906 (174)

lncRNA lncRNA LRB1 serum ↑ 326 HCC, 73 HC AUC 0.892, sensitivity
92.43%, specificity 71.85%

0.843-0.922 (175)

lncRNA LncRNA UCA1
+lncRNA WRAP53
+AFP

serum ↑ 82 HCC, 34 CHC, 44 HC 100% sensitivity / (176)

lncRNA lncRNA PVT1
+uc002mbe.2+ and AFP

serum ↑ 71 HCC, 64 HC AUC 0.764, sensitivity
60.56%, specificity 90.62%

0.684–0.833 (177)

circRNA hsa_circ_0005397 plasma ↑ 89 HCC, 40 BLD, HC 79 AUC 0.737, sensitivity
75.36%, specificity 66.67%

0.671-0.795 (178)

circRNA circRNA 0006602 plasma ↑ 87 HCC, 30 HC AUC 0.907, sensitivity 77.0%,
specificity 93.3%

/ (179)

circRNA Circ-CDYL+HDGF
+HIF1AN

/ ↑ / AUC 0.73, sensitivity 75.36%,
specificity 66.67%

0.65-0.80 (180)

circRNA circTMEM45A serum ↑ 30 HCC, 30 HC AUC 0.888 0.823-0.954 (181)

circRNA hsa_circ_0051443 plasma ↓ 3 HCC, 3 HC AUC 0.8089 / (182)

circRNA hsa_circ_0000976 plasma ↑ 158 HCC, 52 CHB, 50 LC, 53 HC AUC 0.863 0.819–0.907 (183)

circRNA hsa_circ_0007750 plasma ↑ 152 HCC, 54 CHB, 50 LC, 50 HC AUC 0.843 0.796–0.890 (183)

circRNA hsa_circ_0139897 plasma ↑ 290 HCC, 80 CHB, 80 LC, 76 HC AUC 0.769 0.728–0.810 (183)

circRNA circRNA SMARCA5 plasma ↓ 133 HCC, 31 LC, 33 HC AUC 0.938, sensitivity
86.67%, specificity 89.32%

0.910-0.966 (184)

circRNA circRNA SMARCA5
+AFP

plasma ↓ 133 HCC, 31 LC, 33 HC AUC 0.992, sensitivity 100%,
specificity 100%

0.983-1.002 (184)

circRNA hsa_circ_0003998 plasma ↑ 100 HCC, 50 CHB, 50 HC AUC 0.894, sensitivity 84.0%,
specificity 80%

0.86-0.922 (185)

circRNA hsa_circ_0001445 plasma ↓ 104 HCC, 57 LC, 44 CHB, 52 HC AUC 0.862, sensitivity 94.2%,
specificity 71.2%

0.710-0.845 (186)

circRNA circ_104075 serum ↓ 10 HCC, 60 HC AUC 0.973, sensitivity 96%,
specificity 98.3%

/ (187)
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ontiersin.org

https://doi.org/10.3389/fimmu.2022.985815
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2022.985815
study, Huang discussed the diagnostic efficacy of eight lncRNAs

alone and in combination with AFP, in which the combination

of LINC00152 and AFP in serum had the highest accuracy in

predicting HCC. The AUC and sensitivity of LINC00152 alone

are limited and correspond to an increase when used in

combination with AFP. Next, researchers have investigated the

diagnostic ability of the combinations of various lncRNAs and

AFP, and the combination of LINC00152, UCA1, and AFP has

shown the most reliable predictive ability, with an AUC of 0.912,

sensitivity of 82.9%, and specificity of 88.2% (168). The

expression of SENP3-EIF4A1 in patients with HCC was

significantly lower than that in healthy controls, with an AUC

of 0.8028 obtained by ROC analysis. Simultaneously, its

expression is associated with tumor size, tumor stage, and

lymph node metastasis (169). The ROC curve showed that

LINC00853 exhibited excellent discriminatory ability in the

diagnosis of all-stage HCC (AUC = 0.934, 95% CI = 0.887-

0.966). On comparing the diagnostic performance with that of

AFP with a 14-fold cut off value, LINC00853 showed sensitivity,

specificity, and positive predictive values of 93.75%, 89.77%, and

76.92% respectively. These parameters all far exceed the

sensitivity of 9.38%, specificity of 72.73%, and positive

predictive value of 11.11% exhibited by AFP for diagnosis of

early-stage HCC (170). The combination of lncRNA PVT1,

uc002mbe.2, and AFP also far exceeded either the lncRNA or

AFP assessed alone. Surprisingly, this combination distinguished

patients with HCC from healthy controls, regardless of whether

the patients were infected with HBV (177).

CircRNAs
Compared to miRNA and lncRNA, the number of studies on

circRNA as a diagnostic biomarker is relatively few. Plasma

circSMARCA5 can differentiate liver disease progression with

high accuracy (AUC = 0.938, sensitivity of 0.853, specificity of

0.711). More excitingly, it has significant implications in

diagnosing HCC patients with low AFP levels, especially for

those with serum levels below 200 ng/ml, and is a better serum

predictor for patients with poorly diagnosed AFP (184).

Circ_104075 is highly expressed in patients with HCC and

levels decreased after curative surgery. It is positively

correlated with stage of HCC and was able to predict the

development of disease. It has an AUC of 0.973, sensitivity of

96.0%, and specificity of 98.3%, surpassing the classical protein

biomarkers AFP, a-fetoprotein-L3 (AFP-L3), and des-carboxy-

prothrombin (DCP) (187). Likewise, circRNA applies to this

combination. Circ-CDYL, the most significantly upregulated

circRNA in a ncRNA network from a validated tumor tissue,

interacts with the target genes encoding hepatoma-derived

growth factor (HDGF) and hypoxia-inducible factor

asparagine hydroxylase (HIF1AN). These proteins are highly

and specifically expressed in early-stage of HCC. Compared with

early-stage HCC patients, the combination of Circ-CDYL,
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HDGF, and HIF1AN increased the AUC, sensitivity, and

specificity to 0.73, 75.36%, and 66.67% respectively. These

results confirmed that the diagnostic efficiency of circ-CDYL

or circ-CDYL in combination with HDGF and HIF1AN was

higher than that of AFP alone, however this does not apply to

advanced HCC (180). Along with the proliferation of research

on circRNAs, circRNAs that can be used as diagnostic

biomarkers also containing circTMEM45A, hsa_circ_0051443,

hsa_circ_0000976, hsa_circ_0007750, and hsa_circ_0139897

(181–183).
ncRNAs act as prognostic biomarkers

HCC is known for its high recurrence rate and poor

prognosis. In addition to their diagnostic values, circulating

ncRNAs have been identified as valid prognostic markers.

When changes occur in the human body, the altered levels of

these ncRNAs can be used as a feature and a “beacon” for cancer

prognosis. Studies on the application of ncRNAs as prognostic

biomarkers in hepatocellular carcinoma are summarized

in Table 2.

miRNAs
Differentially expressed serum/plasma miRNAs are helpful

in the prognosis of HCC. Circulating miR-21 has long been

shown to be an oncogenic factor, with its high serum levels

predicting poor prognosis. Extensive studies have associated it

with poor survival, high levels of recurrence, and an increased

risk of disease progression. According to Lee’s study, miR-21 not

only correlates with OS and progression-free survival (PFS), but

also relates to multiple prognostic factors such as tumor, nodes,

and metastases (TNM) stage, T stage, and portal vein thrombosis

(149) (188). When using the TNM stage system, miR-21

expression was higher in stages III and IV than in stages I and

II; when using the BCLC staging system, miR-21 expression was

higher in late BCLC stages C-D than in early BCLC stages 0-B

(149). Another study showed that elevated miR-484 in serum

could predict HCV-induced liver lesion progression and is

strongly associated with shorter OS and PFS (189). In

addition, increased levels of miR-122 in serum, predict a

longer survival rate (196). By testing blood samples from 50

each of HCC patients, cirrhotic patients and healthy volunteers,

miR-122 was found to be less expressed in HCC patients, while

miR-21 and miR-96 were opposite. The expression of all three

affected the survival time of patients. Interestingly, the

combination of the three was better than each miRNA alone

in predicting the survival time of patients (153). Unlike the

majority of reports published, miR-21 were measured in whole

blood samples rather than in serum or plasma in Pelizzaro’s

study (191). In a study, a KM survival analysis showed that high

expression of miR-4454 and miR-4530 was significantly
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associated with improved OS (193). The above evidence

confirms that miRNAs are potential prognostic markers of HCC.

LncRNAs
LncRNA MVIH, a microvascular invasion-associated lncRNA,

is highly expressed in HCC. Sheng et al. first identified the

relationship between up-regulated lncRNA MVIH expression and

specific clinicopathological characteristics. Kaplan-Meier’s analyses

of correlations between lncRNAMVIH expression and RFS and OS

of 215 HCC patients after hepatectomy indicated that lncRNA

MVIH is an independent risk factor for RFS and OS (200). The

expression of lncRNA X91348 in patients with HCC was

significantly lower than that in healthy individuals. A total of 107

HCC patients and 82 age- and sex-matched healthy volunteers were

included in this study. Clinicopathological characteristics such as

tumor size, HBsAg, and Child-Pugh could be observed influence

the expression of X91348. The relationship between X91348

expression and survival was assessed after 5 years of follow-up. A

median follow-up rate of 31.02 ± 15.11 months for patients with

HCC was obtained, and the OS of patients with high X91348

expression was longer than that for patients with low expression. In

conclusion, X91348 has a satisfactory prognostic ability (199).

LINC00853 serves not only as a diagnostic biomarker but also as

a prognostic marker in this cohort. High LINC00853 expression

predicted lower OS in modified Union for International Cancer

Control (mUICC) stage II and was independent of other stages of

HCC (170). High expression of HOTTIP in the blood is an

independent prognostic factor for tumor recurrence after liver

transplantation, suggesting a short OS (204). Higher serum levels

of circulating lncRNA-ATB could be associated with OS, PFS, TNM

stage, tumor size, C-reactive protein (CRP), T stage, and portal vein

thrombosis (149, 195). Moreover, a variety of lncRNAs have been

investigated in Table 2.

CircRNAs
Stably expressed in the plasma, hsa_cic_0005397 has an intact

closed-loop structure. According to a survival analysis based on

follow-up data, hsa_cic_0005397 may serve as an independent

prognostic marker for OS, as evidenced by the positive

correlation between tumor size and TNM stage (178). Regarding

circRNAs, the high expression of circUHRF1 in the plasma is

associated with large tumor size and high microvascular invasion,

which indicates the potential of circUHRF1 in predicting poor

prognosis (69). Clinically, high expression of circ-FOXP1 and Circ-

ZEB1.33 in serum is strongly associated with large tumors,

advanced TNM, and poor prognosis (207, 209). In vitro

experiments have also confirmed that circ-ZEB1.33 and circETFA

affect tumor cell proliferation by regulating the cell cycle, likely

serving as a novel prognostic marker (206). Circ_0000437

expression was positively correlated with TNM classification,

differentiation degree, tumor size, and Barcelona Clinic Liver

Cancer (BCLC) stage; hsa_circ_0003998 expression positively

correlated with serum AFP level, tumor diameter, and
Frontiers in Immunology 15
microvascular invasion, whereas hsa_circ_0064428 expression was

negatively correlated with patient’s survival, tumor size and

metastasis. To date, fewer circRNAs derived from plasma or

serum have been used as prognostic markers compared with

those obtained from tissues. In summary, the prognostic

information for circRNAs derived from body fluids remains to

be explored.

In summary, ncRNAs can be valuable biomarkers for the

diagnosis and prognosis of HCC. However, the current problem

is that studies about ncRNAs are scarce as diagnostic and

prognostic biomarkers (especially those derived from blood

and urine) (149). The heterogeneity of tumors in different

populations is a significant challenge for their application.

Therefore, future multicenter and large-scale diagnostic/

prognostic nested case–control studies are required to validate

their utility. Fortunately, institutions have begun to validate the

potential of certain ncRNAs as markers clinically, such as miR-

21, miR-221, lncRNA UCA1, and lncRNA WRAP53 in the

clinical trials NCT05449847, NCT02928627, NCT05088811

mentioned above. Although some trials are not yet completed,

these are “milestones” for ncRNAs as clinical biomarkers for

HCC. It is also believed that more hospitals, research institutions

and companies will be involved in the exploration and

development of clinical biomarkers.
Methods for detecting ncRNAs in
clinical samples

Detecting tumors in their early stage is a long-standing goal of

researchers. In the past few years, the study of ncRNAs in body

fluids as potential biomarkers has grown exponentially. However,

no ncRNAs have yet been able to be used clinically to detect

hepatocellular carcinogenesis and predict prognosis. The limitations

of circulating ncRNAmeasurement techniques are the main reason

for this dilemma. There are several main assays available,

corresponding to different advantages and limitations, to detect

miRNA as an example: (1) qRT-RCR has the advantage of being

widely available and highly sensitive, but has the disadvantage of

having several biological and technical limitations. First, it is limited

to quantifying only a defined set of miRNAs and cannot be used for

high-throughput analysis. Second, because of the low abundance in

biofluids, genomic DNA contamination needs to be removed prior

to the reverse transcription step (210, 211). (2) Assessing the relative

number of miRNAs by comparing the fluorescence intensity

emitted by microarrays with hundreds of thousands of probes

with labeled miRNAs has the advantage of high throughput, but the

resulting disadvantage of a fixed range and the inability to detect

new unannotated miRNAs. Therefore, this is only suitable for

preliminary screening (212, 213). (3) Next Generation Sequencing

(NGS) based on deep sequencing to detect circulating miRNAs not

only overcomes the shortcomings of microarrays that can only

detect known miRNAs, but also greatly increases in the detection
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TABLE 2 Prognostic biomarkers of ncRNAs for HCC.

Types ncRNA Sample Expression Patients enrolled Associated factors and clinicopathological
characteristics

References

miRNA miR-484 serum ↑ / OS, PFS (149, 188,
189)

miRNA miR-34a serum ↓ 60 HCC, 60 HC OS, differentiation degrees, TNM stage, tumor invasion depth,
lymph node metastasis, and vascular invasion

(189, 190)

miRNA miR-21 serum ↑ / OS, PFS, TNM stage, T stage and portal vein thrombosis (149, 188)

miRNA miR-122 whole
blood

↑ 54 HCC, 28 LC, 12 HC PFS (191)

miRNA miR-497 serum ↓ 50 HCC, 50 HC differentiation degrees, TNM stage, and metastasis (192)

miRNA miR-1246 serum ↑ 50 HCC, 50 HC differentiation degrees, TNM stage, and metastasis (192)

miRNA miR-92a-3p plasma ↑ 42 HCC OS, DFS (107)

miRNA miR-4454 serum ↓ 86 HCC (40 curative
treatment, 46 TACE)

OS, DFS (193)

miRNA miR-4530 serum ↓ 86 HCC (40 curative
treatment, 46 TACE)

OS, DFS (193)

miRNA miR-122 plasma ↑ 112 HCC tumor number, tumor size, TFS (194)

miRNA miR-122 plasma ↑ 120 HCC OS, DFS, TNM stage (195)

miRNA miR-122 serum ↑ 122 HCC OS (191, 196)

miRNA miR-139 plasma ↓ 31 HCC, 31 HC OS (193, 197)

lncRNA lncRNA
SCARNA10

serum ↑ 182 HCC, 105 BLD, 149 HC tumor size, differentiation degrees, TNM stage, vascular
invasion, and metastasis

(167, 190)

lncRNA lncRNA CRNDE serum ↑ 166 HCC, 100 HC tumor size, tumor differentiation, and TNM stage (192, 198)

lncRNA LINC00853 serum ↑ 90 HCC, 35 LC, 28 CHB,
29 HC

OS in mUICC stage II (170, 192)

lncRNA lncRNA-ATB serum ↑ 79 HCC OS, PFS, TNM stage, tumor size, CRP, T stage,
portal vein thrombosis

(107, 149)

lncRNA lncRNA-D16366 serum ↓ 107 HCC, 28 HBV, 18 ALD,
12 fatty liver disease, 85 HC

tumor size, HbsAg, portal vein tumor thrombus,
Child-Pugh score

(172, 197)

lncRNA lncRNA X91348 serum ↓ 107 HCC, 82 HC OS, tumor size, HBsAg, and Child-Pugh (199)

lncRNA lncRNA LRB1 serum ↑ 326 HCC, 73 HC OS, AFP expression, tumor size, tumor stage, and venous
invasion

(175)

lncRNA LINC00635 serum ↑ 60 HCC, 85 LC, 96 CHB,
HC 60

OS, lymph node metastasis, and TNM stage (200, 201)

lncRNA lncRNA RP11-
466I1.1

serum ↑ 83 HCC tumor size, cirrhosis, and histological grade (199, 202)

lncRNA lncRNA UCA1 serum ↑ 70 HCC RFS, median follow up period (170, 203)

lncRNA lncRNA c-JUN serum ↑ 70 HCC RFS, median follow up period (203, 204)

lncRNA lncRNA MVIH serum ↑ 215 HCC OS, RFS (149, 200)

circRNA circ_0000437 serum ↑ 100 HCC, 100 HC TNM stage, differentiation degree, tumor size,
and BCLC stage

(175, 205)

circRNA hsa_cic_0005397 plasma ↑ 89 HCC, 40 benign liver
diseases, 79 HC

OS, tumor size, and TNM stage (178, 198)

circRNA circETFA plasma ↑ 56 HCC OS, cell cycle arrest (201, 206)

circRNA circUHRF1 plasma ↑ / tumor size, microvascular invasion (69, 167)

circRNA circ-FOXP1 serum ↑ 30 HCC, 16 HC TNM stage, and microvascular invasion (202, 207)

circRNA hsa_circ_0003998 plasma ↑ 100 HCC, 50 CHB, 50 HC OS, tumor size, vascular invasion, differentiation degree, (185, 203)

circRNA hsa_circ_0064428 plasma ↑ 120 HCC OS, tumor size (203, 208)

circRNA circ-ZEB1.33 serum ↑ 64 HCC, 30 HC OS, tumor size, TNM stage (69, 209)
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order of magnitude. The cost of sequencing is reduced, while more

information can be harvested. However, bioinformatics expertise is

required for interpretation, and the technology is expensive with

long turnaround time (214, 215). For ncRNAs, firstly their short

sequences, showing higher levels of homology pose a significant

challenge for accurate identification. Secondly, the low abundance

predicts that the detection needs to span four orders of magnitude

dynamic range with high sensitivity and accuracy requirements.

Then, different detection methods correspond to different strengths

and weaknesses, requiring researchers to break through and validate

with newer studies. Notably, further efforts are required in this field.
Therapeutic potential of
ncRNAs in HCC

Protein-like targets with stable structures and conformations

have occupied an absolute leadership position in human diseases

as mainstream targets for drug development (216). However,

less than 2% of RNAs are translated into proteins, and most

proteins are “non-druggable” (217, 218). With the elucidation of

the mechanisms by which ncRNAs affect diseases, the feasibility

of targeting RNA continues to be demonstrated. ncRNA can

regulate signaling pathways and affect different enzymes and

genes. Having such a large and fine regulatory mechanism,
Frontiers in Immunology 17
ncRNAs are therefore at the core of a multi-target regulatory

network. Data show that representative small-molecule drugs,

such as Bisphenol-A, Mitoxantrone, and Enoxacin, act against

different cancers by targeting ncRNAs, thus providing new

insights for drug development (216).

As shadow pioneers of ncRNAs, many small-molecule

modulators that target miRNAs have been found to exhibit

therapeutic activity against HCC (shown in Figure 7). Several

small-molecule modulators that block miRNA biogenesis by

directly binding to Drosha/Dicer-binding sites in pri/pre-

miRNAs have been identified. For example, Douglas reported

the first small-molecule modulator of miR-122 (the most

abundant miRNA in the liver), demonstrating that small-

molecule modulators of miRNA function have therapeutic

potential. They found that two small-molecule inhibitors (NSC

158959 and NSC 5476) accelerated the processing and

maturation of pri-miR-122 to miR-122 and were able to

reduce hepatitis C virus replication (219). miR-525 confers

invasive properties to HCC cells, while 5′-azido-neomycin B

binds the Drosha processing site in pre-miR-525 to inhibit the

production of mature miR-525 and salvage the expression of

ZNF395 (220). Shi et al. screened AC1MMYR2, a small-

molecule inhibitor of miR-21, using a high-throughput

approach. They found that it blocks miR-21 maturation.

AC1MMYR2 can reverse EMT and inhibit tumor growth,
FIGURE 7

Small-molecule modulators exhibiting therapeutic activity against HCC that target miRNAs.
FIGURE 6

Procedure of ncRNAs as non-invasive biomarkers.
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invasion, and metastasis without causing significant tissue

cytotoxicity (221). Similarly, phenyl oxazole derivatives CIB-

3b, a regulator of miR-21 biogenesis, interferes with TRBP2 to

induce dissociation from Ago2 and Dicer (222).

Many natural products and their derivatives act as novel

pathways for cancer therapy by specifically targeting ncRNAs

(223). Gomisin M1 is a natural dibenzocyclooctadiene lignan

isolated from Schisandra chinensis. Its derivatives are thought to

be novel TRBP2 modulators that promote the binding of TRBP

to Dicer and regulate miR-497-5p, miR-146a-5p, and miR-10b-

5p maturation, thereby inhibiting HCC cell proliferation,

migration, and invasion (224). Solamargine, a natural alkaloid

extracted from Solanaceae plants, downregulates the expression

of lncRNA HOTTIP and lncRNA TUG1 and subsequently

upregulates the expression of miR-4726-5p that directly targets

MUC1. The combination of Solamargine and Sorafenib

significantly showed a significantly synergetic effect on MUC1

protein expression, providing a potential strategy for HCC

treatment (225). Moreover, Solamargine can induce apoptosis

and autophagy in HCC cells through the LIF/miR-192-5p/

CYR61/Akt signaling pathway or by stimulating the TIME

(226). Sanguinarine is a potent activator of miR-16 expressing

wild-type or mutated p53. In Zhang’s research, Sanguinarine

activated miR-16-2 expression by increasing p53 occupancy on

the miR-16-2 promoter and decreased the expression of miR-16

target genes Bcl-2 and cyclin D1. This effect was validated by

anti-miR-16 inhibitor treatment silencing (223).

In addition, we aimed to elucidate the potential mechanisms

underlying the anti-cancer properties of various natural active

compounds derived from traditional Chinese herbal medicines

from the perspective of epigenetic modifications. Notoginsenoside

R1 reduces miR-21 expression and subsequently inhibits the PI3K/

Akt pathway, thereby exerting anti-HCC activity (227). Oroxin B, a

flavonoid monomer compound in the traditional Chinese medicine

Oroxylum indicum (L.) Vent has a same role (228). Tanshinone IIA

may induce hepatoma cell death by downregulating miR-30b

transcription and subsequently upregulating PTPN11 levels,

which in turn stimulates the SHP2 pathway (229).

In conclusion, RNA-targeted small-molecule modulators have

been emerging for almost 20 years, but the FDA has not yet

approved miRNA therapies for HCC (230). It is true that

miRNAs, which are the pioneers of ncRNAs, still less for

lncRNAs and circRNAs. For small-molecule modulators targeting

ncRNAs, the feasibility of their therapeutic application in HCC has

been proven, but there is still a long way to go before they can

become drugs. Their development is facing several hurdles, such as,

first, identify specific RNA targets and binding sites and elucidating

their mechanisms of action. These challenges all require the

development of new design strategies (high-throughput screening,

small-molecule microarray screening, structure-based designing,

phenotype-based screening, etc.) to screen ncRNAs (216). Second,

multi-targeting of endogenous RNAs may be risky for a therapeutic

process, and the resulting off-target effects need to be addressed
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(231). Third, appropriate in vivo and in vitro models need to be

established to confirm the structure-function relationships, potency,

and specificity. In conclusion, small-molecule modulators targeting

ncRNAs can greatly broaden the range of druggable targets, thus

representing a new frontier for drug development. Continued

research may lead to breakthrough discoveries while addressing

the above-mentioned issues.
Conclusion

HCC is a multifactorial, multistage malignancy for which it

is difficult to obtain satisfactory survival with current treatment

options. ncRNAs play an important role in the initiation and

progression of HCC and are associated with clinical diagnostic

and prognostic properties. This review article focuses on the

oncogenic or tumor-suppressive properties of ncRNAs, detailing

how ncRNAs regulate key processes (TIME, angiogenesis, EMT,

invasion, metastasis, metabolism, and drug resistance) in HCC

and their specific mechanisms. Further, we discuss the

promising approaches and potential roles of ncRNAs in the

field of cancer diagnosis and therapy. Although ncRNAs have

shown unique advantages as biomarkers and potential

therapeutic targets, they still face challenges. For instance,

there remains a vast uncharted territory in ncRNA research,

and exploring the emerging role requires advances in next-

generation sequencing technologies. Standardized and efficient

techniques for rapid and large-scale extraction of ncRNAs have

not yet been established. Meanwhile, improved targeting

methods and delivery systems are needed to detect and reduce

off-target effects. In terms of experimental techniques, off-target

effects in knockdown, FISH, and pull-down technologies are

difficult to avoid or eliminate completely. Moreover, while the

current research on ncRNAs is still carried out at the cellular or

animal level, research in clinical settings needs to be advanced to

validate key ncRNA functions. Finally, ncRNA-based therapies

require interdisciplinary cooperation among various fields,

including immunology, molecular biology, pharmacology, and

nanotechnology. These findings and challenges reveal the

unexpected complexity of ncRNA regulatory mechanisms,

which provides many answers but raises more questions. It is

believed that, in the near future, ncRNAs can be developed as

promising tools for targeted therapies alone or in combination

with other therapies.
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