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Quantitative PCR analysis shows that the virulence plasmid of Salmonella enterica serovar 
Typhimurium (pSLT) is a low-copy-number plasmid, with 1–2 copies per chromosome. 
However, fluorescence microscopy observation of pSLT labeled with a lacO fluorescent 
tag reveals cell-to-cell differences in the number of foci, which ranges from 1 to 8. As 
each focus must correspond to ≥1 plasmid copy, the number of foci can be expected to 
indicate the minimal number of pSLT copies per cell. A correlation is found between the 
number of foci and the bacterial cell volume. In contrast, heterogeneity in the number of 
foci appears to be independent of the cell volume and may have stochastic origin. As a 
consequence of copy number heterogeneity, expression of a pSLT-bone reporter gene 
shows high levels of cell-to-cell variation, especially in actively dividing cultures. These 
observations support the notion that low-copy-number plasmids can be a source of gene 
expression noise in bacterial populations.
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INTRODUCTION

Plasmid-encoded genes of bacterial pathogens can influence multiple aspects of the pathogen-
host interaction, such as adhesion to host surfaces, invasion of host cells, intracellular survival, 
colonization of organs, and modulation of host immune responses (Pilla and Tang, 2018). In 
Salmonella enterica, plasmids that encode virulence determinants were described several decades 
ago (Gulig et  al., 1993). More recent studies have identified plasmid-borne genes that control 
the expression of chromosomal loci such as the flagellar network and genes encoding efflux 
pumps (Huttener et  al., 2019; Lian et  al., 2019). An unsuspected finding is the existence of 
Salmonella plasmids that harbor essential genes (Canals et al., 2019). The Salmonella plasmidome 
is also a massive reservoir of antimicrobial resistance determinants (Emond-Rheault et al., 2020).

In serovar Typhimurium, most strains carry a plasmid of 50–100 kb known as the Salmonella 
virulence plasmid (Gulig et  al., 1993; Guiney et  al., 1994; Baumler et  al., 1998). This plasmid 
was designated virulence plasmid of S. enterica serovar Typhimurium (pSLT) in strain LT2 
(Jones et  al., 1982), and the acronym was later extended to sibling plasmids of other Salmonella 
Typhimurium strains (Rotger and Casadesus, 1999).

Plasmid pSLT belongs to the MOBF1 group on the basis of relaxase classification (Garcillan-
Barcia et  al., 2009) and harbors genes for conjugal transfer (tra) homologous to those of the F 
sex factor (Garcia-Quintanilla and Casadesus, 2011); however, tra gene deletions are relatively 
common (Rotger and Casadesus, 1999). All Salmonella virulence plasmids share a ~8  kb region, 
Salmonella plasmid virulence (spv), required for bacterial proliferation in the phagocytic system 
of warm-blooded vertebrates (Gulig et  al., 1993; Rotger and Casadesus, 1999). Additional pSLT 
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genes involved in pathogenesis are the pef fimbrial operon 
(Baumler et  al., 1996), the rck gene which confers resistance to 
complement killing (Heffernan et al., 1992) and promotes epithelial 
cell invasion (Cirillo et  al., 1996), and the rsk gene, involved 
in resistance to host complement (Vandenbosch et  al., 1989). 
Hybrid plasmids harboring virulence and antibiotic resistance 
determinants have been described in S. enterica clinical isolates 
(Guerra et  al., 2002; Mendoza et  al., 2009).

Plasmid pSLT has a low (≥1) copy number per cell (Camacho 
et al., 2005), and possesses at least three maintenance mechanisms: 
control of replication and copy number mediated by homologs 
of F plasmid RepB and RepC (Tinge and Curtiss, 1990), a 
canonical partition system, parAB (Tinge and Curtiss, 1990), 
and two toxin-antitoxin systems, ccdABST and vapBC2ST (Lobato-
Marquez et  al., 2015). Co-operative activity of such systems 
may explain the remarkable stability of pSLT, whose frequency 
of spontaneous curing is around 10−7 per cell and generation 
under laboratory conditions (Garcia-Quintanilla et  al., 2006).

In this study, we  have used fluorescence microscopy and 
flow cytometry to track pSLT in individual S. enterica cells. 
We provide evidence that the pSLT copy number is heterogeneous, 
especially among dividing cells. Tight control of pSLT replication 
and partition (Lobato-Marquez et  al., 2015) is thus compatible 
with cell-to-cell differences that produce gene expression noise 
at the population level. We  discuss the possibility that copy 
number heterogeneity might be  an adaptive trait.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Growth 
Conditions
Salmonella enterica strains used in this study belong to serovar 
Typhimurium and derive from ATCC 14028 (Table 1). For 
construction of strain SV8214, a lacO cassette consisting of 
48 repeats of the lactose operator was integrated into the tra 
operon of the virulence plasmid. In the initial step of pSLT-
lacO construction, the lacO array was PCR-amplified from 
p48LacO, a derivative of pLAU07 (Lau et  al., 2003) obtained 
from David Sherratt’s laboratory (University of Oxford, England). 
Amplification was achieved using primers lacO1 and lacO2 
(Supplementary Table S1), and the amplified fragment was 
cloned onto pDOC-K (Lee et  al., 2009), generating plasmid 
pIZ2031 (Table 2). The prefix pIZ was registered at the Plasmid 
Reference Center in 1986 (Lederberg, 1986). The lacO array 
and the kanamycin resistance cassette were inserted into pSLT 
using the lambda Red recombination system (Datsenko and 
Wanner, 2000) and primers finO1 and finO2 
(Supplementary Table S1). Plasmid pWX17, obtained also 
from David Sherratt’s laboratory, is a pUC18 derivative that 
carries the yellow fluorescent protein (yfp) gene under the 
control of an arabinose-dependent promoter (Wang et al., 2005). 
Introduction of pWX17 into appropriate strains was achieved 
by transformation. Induction of the arabinose-dependent 
promoter was achieved with 0.02% L-arabinose (Sigma-Aldrich, 
St. Louis, Missouri). Bacterial cultures were grown in Bertani’s 
lysogeny broth (LB) at 37°C with shaking.

Determination of Plasmid Copy Number by 
Quantitative PCR
DNA extraction was performed using a method that does not 
modify the chromosome/plasmid DNA ratio (Brandi et  al., 
2000). Aliquots of crude cell extracts were diluted and subjected 
to quantitative PCR to estimate the relative content of 
chromosomal and plasmid DNA. Approximately, 10  ng total 
DNA were used for each amplification. Quantitative RT-PCR 
reactions were performed in a Light Cycler 480 II apparatus 
(Roche). Real-time cycling conditions were as described elsewhere 
(Camacho et  al., 2005). Primers (Supplementary Table S1) 
were designed with Primer3Plus software.1

In vivo Visualization of pSLT by 
Fluorescence Microscopy
Strains were grown at 37°C in LB and diluted to 1:100  in 
fresh medium. Samples of 1.5 ml were collected by centrifugation 
at 3,400  ×  g for 5  min at different optical densities (OD600) 
along the growth cycle. YFP-LacI was induced for 30  min 
with 0.02% L-arabinose. Cells were stained with 1  μg/ml 
FM4-64 and 5  μg/ml Hoechst 33258  in 10  μl of mounting 
medium (40% glycerol in 0.02  M PBS, pH 7.5) and fixed 
onto a poly-lysine-treated coverslip. Images were obtained by 
using an Olympus IX-70 Delta Vision fluorescence microscope 
equipped with a 100X UPLS Apo Objective. Pictures were 
taken using a CoolSNAP HQ/ICX285 camera and analyzed 
using ImageJ software (Wayne Rasband, Research Services 
Branch, Maryland).

Flow Cytometry
Strain SV8960 was grown at 37°C in LB. At appropriate 
times, samples of 1.5  ml were collected by centrifugation, 
washed, and re-suspended in phosphate-buffered saline (PBS) 
for flow cytometry analysis. Data acquisition was performed 
using a Cytomics FC500-MPL cytometer (Beckman Coulter, 

1 http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/

TABLE 1 | Salmonella enterica strains constructed for this study.

Strain Relevant traits

SV8214 pSLT 48 × lacO (KmR)
SV8216 pSLT/pWX17 (lacI::YFP)
SV8217 pSLT 48 × lacO (KmR)/pWX17 (lacI::YFP)
SV8398 pSLT 48 × lacO ΔparA::KmR/pWX17 (lacI::YFP)
SV8960 pSLT-GFP (constitutive gfp gene inserted at the traA locus; KmR)

TABLE 2 | Plasmids used in strain constructions.

Name Relevant traits Reference or source

pDOC-K Kanamycin resistance cassette (KmR) Lee et al., 2009
p48LacO 48 lac operator array Lau et al., 2003
pIZ2031 pDOC-K-48xlacO (KmR ApR) This study
pWX17 lacI::YFP (ApR) Garcia-Quintanilla et al., 2006
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Brea, California), and data were analyzed with FlowJo X, 
version 10.0.7r software (Tree Star, Oregon).

Determination of Bacterial Cell Volume
Micrographs of phase-contrast images were used to measure 
the length and the width of the cells using ImageJ software. 
Volumes of bacterial cells were calculated as described elsewhere 
(Volkmer and Heinemann, 2011). For each condition, the 
dimensions of 150–300 individual cells were measured.

Serum Treatment
Overnight cultures grown at 37°C in LB were diluted to 1:100 in 
fresh medium and incubated at 37°C with 200  rpm shaking 
for 1 h. Cultures were split into two and mouse serum (Sigma) 
was added to one of the cultures to reach a final concentration 
of 8%. Samples of 1.5  ml were collected at different optical 
densities (OD600), and treated as described above for visualization 
by fluorescence microscopy.

Statistical Analysis
Averages, medians, SDs, and interquartile ranges in the number 
of pSLT foci were calculated upon examination of 150–300 
cells. The exact numbers of cells are indicated in the figure 
legends. A robust coefficient of variation (rCV) was obtained 
by dividing the interquartile range by the median of green 
fluorescent protein (GFP) fluorescence intensity, a parameter 
calculated with FlowJo X software (Shapiro, 2003).

RESULTS

Determination of Plasmid Copy Number by 
Quantitative PCR
The copy number of plasmid pSLT was determined using a 
quantitative PCR protocol. Oligonucleotide primers were designed 
to amplify a gene located relatively close to the origin of 
replication of the S. enterica chromosome (arcA), a gene located 
near the replication terminus (hisD), and the traJ and ccdB 
genes of pSLT. The PCR efficiency (E) for each primer was 
calculated from amplification slopes. They were found to 
be  similar (−0.44  <  −log E  <  −0.39), thereby allowing the 
comparison of results. Threshold cycles were normalized, 
indicating the relative copy number of pSLT per chromosome. 
DNA samples were obtained at different growth stages in LB 
broth, and amplifications were performed in triplicate.

Amplification of pairwise combinations of chromosomal and 
plasmid-borne genes provided an estimate of the relative number 
of pSLT copies per chromosome. Such numbers ranged from 
0.92 to 1.67 pSLT copies per chromosome (Table  3), with an 
average of 1.35 plasmid copies per chromosome equivalent. 
The SDs obtained with different gene pairs and at different 
growth stages were small, suggesting that the average number 
of pSLT copies per chromosome remained fairly constant 
throughout growth. However, this analysis left open the possibility 
that cells with higher numbers of pSLT copies were overlooked, 
especially if such cells were rare.

Visualization of pSLT in Live Cells
Labeling of plasmid pSLT was performed with the Fluorescent 
Repressor Operator System (FROS; Robinett et  al., 1996; Lau 
et al., 2003), and in vivo visualization was achieved by fluorescence 
microscopy. For this purpose, strain SV8217 was grown overnight 
at 37°C in LB, diluted to 1:100  in fresh medium, and grown 
to an OD600 of 0.1–0.2. Under these conditions, fluorescence 
foci formed by the virulence plasmid were visualized (Figure 1A). 
The majority of cells had either one focus (28%) or two (38%). 
About 22% of cells had three foci and 4% had four foci 
(Figure  1B). Cells containing five or more foci were detected 
at lower frequencies (Figure 1B). As each focus must correspond 
to one or more plasmid copies, the number of foci can be expected 
to indicate the minimal number of pSLT copies per cell.

We also examined the subcellular localization of pSLT in cells 
containing different numbers of foci per cell. In cells containing 
one focus, it was located at or near mid-cell. In cells containing 
two foci, they were located at quarter-cell positions. In cells 
containing three foci, one was located near mid-cell and the 
other two were located at or near ¼ and ¾ positions. When 
cells contained four foci, these were located at 1/8, 3/8, 5/8, and 
7/8 subcellular positions. A visual summary of these observations 
is shown in Figure 1C, plotting the position of each focus against 
the fraction of cell length. We  can thus conclude that pSLT is 
not randomly positioned in the cells, and that its localization 
pattern depends on the number of foci per cell. Similar localization 
patterns have been observed in other low-copy-number plasmids 
(Gordon et  al., 1997; Niki and Hiraga, 1997).

To test whether the subcellular position of pSLT was 
determined by its partition machinery, we  disrupted the parA 
gene, which is known to encode partition functions (Tinge 
and Curtiss, 1990; Cerin and Hackett, 1993). The pSLT derivative 
lacking the parA gene was detected in spaces not occupied 
by nucleoids (e.g., near one cell pole; Figure  2). A pattern of 
this kind is typical upon Par system inactivation in low-copy-
number plasmids (Niki and Hiraga, 1997).

Heterogeneity of pSLT Copy Number Along 
the Growth Cycle
The number of plasmid foci per cell was monitored at different 
stages of the growth cycle. For this purpose, an overnight 
culture of strain SV8217 was diluted to 1:100  in fresh LB and 
grown at 37°C. Samples were periodically taken for cell 
visualization by fluorescence microscopy. The proportion of 
cells containing different numbers of fluorescent foci was found 

TABLE 3 | Number of plasmid of Salmonella enterica serovar Typhimurium 
(pSLT) copies per chromosome, determined by qPCR.

Time traJ/arcAa traJ/hisDb ccdB/arcAa ccdB/hisDb

0 1.12 ± 0.23 1.27 ± 0.32 1.21 ± 0.12 1.39 ± 0.08
60 0.92 ± 0.19 1.06 ± 0.24 1.03 ± 0.31 1.16 ± 0.12
120 1.03 ± 0.28 1.55 ± 0.18 1.17 ± 0.34 1.48 ± 0.32
240 1.29 ± 0.11 1.20 ± 0.35 1.10 ± 0.26 1.67 ± 0.29

aAverages and SDs from five independent experiments.
bAverages and SDs from three independent experiments.
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to vary along the growth curve, and up to eight foci per cell 
were found in actively dividing cultures (Figure  3A; 
Supplementary Figure S1). In contrast, the proportion of cells 
containing only one focus at mid-exponential phase was only 
5% (Figure 3A). Average foci number are shown in Figure 3B, 
together with SDs that provide quantitative assessment of cell-
to-cell heterogeneity in the number of foci.

The number of pSLT foci was also monitored in the 
presence of mouse serum, a laboratory condition that mimics 
conditions encountered by S. enterica inside animals (Murray 
et  al., 2005). Choice of serum to monitor virulence-related 
conditions was also based upon the fact that two pSLT 
genes, rsk and rck, contribute to serum resistance (Vandenbosch 
et  al., 1989; Heffernan et  al., 1992). Cell-to-cell variation 
in the number of pSLT foci was detected, with numbers 
ranging from 1 to 5 foci during early and late exponential 
growth, and from 1 to 8 foci in mid exponential phase 
(Supplementary Table S2). These reductionist trials provide 
evidence that cell-to-cell variation in pSLT copy number 
may occur during infection.

To investigate a potential correlation between the number of 
plasmid foci and the bacterial cell volume, we  measured the 
volume of S. enterica cells containing different numbers of foci. 
Volume measurements were done at different growth stages, and 
the results are shown in Figure 4 and Supplementary Figure S2. 
A clear-cut correlation was found between the average number 
of foci and the volume of the bacterial cell. In contrast, a correlation 
between the degree of heterogeneity in the number of foci and 
the cell volume was not detected, suggesting that plasmid copy 
number heterogeneity may be  independent of the cell volume.

Effect of pSLT Copy Number Variation on 
Gene Expression Heterogeneity
Differences in gene dosage caused by copy number heterogeneity 
can be expected to produce cell-to-cell differences in the expression 
of plasmid-borne genes. To test this prediction, we  cloned a 
constitutive green fluorescent protein (gfp) gene on pSLT and 
monitored cell-to-cell variation in the GFP level using flow 
cytometry. Cell-to-cell variations in GFP fluorescence were higher 
upon active growth (Figures  5A,B). To obtain a quantitative 

A C

B

FIGURE 1 | Visualization of the pSLT plasmid tagged with YFP-LacO. (A) Fluorescence micrographs of selected cells containing pSLT-LacO plasmids.  
Cell membranes were stained with FM4-64 (red). YFP-tagged plasmids are visualized as green foci. (B) Graphs show cells containing one (28.8%), two (38.5%), 
three (22.0%), four (9.2%), and five (1.3%). pSLT-LacO fluorescence foci per cell. The number of cells analyzed was 550. (C) Subcellular distribution of YFP-tagged 
pSLT-LacO as a function of cell length in cells containing 1–4 foci. A total of 444 cells were analyzed. Scale bars indicate 1 μm.
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estimation of the noise generated by copy number variation, 
rCVs were calculated. Heterogeneity in the number of foci during 
active growth correlates with higher noise (Figure  5C), and the 
higher the variation in plasmid copy number, the higher the 
coefficient of variation in GFP expression. This study thus suggests 
that pSLT-borne genes can be  a source of gene expression noise 
due to variation in the plasmid copy number.

DISCUSSION

Quantitative PCR amplification of plasmid-borne and 
chromosomal DNA sequences reveals that the virulence plasmid 

of Salmonella enterica serovar Typhimurium, pSLT, has ~1 
copy per chromosome like other F-like plasmids (Table  3). 
However, PCR-based calculation provides a copy number 
average and does not detect copy number variations among 
bacterial cells, especially if such cells are rare. In this study, 
we  have exploited the FROS method (Robinett et  al., 1996; 
Lau et  al., 2003) to label the pSLT virulence plasmid with 
the aim of visualizing pSLT foci in individual Salmonella 
cells. The number of fluorescent foci indicates the minimal 
number of pSLT copies as partially replicated plasmids  
cannot be detected, and formation of plasmid aggregates is 
also possible.

Despite the possession of active partition systems that promote 
faithful distribution of one or few pSLT copies to daughter cells 
(Tinge and Curtiss, 1990; Lobato-Marquez et al., 2015), remarkable 
levels of copy number heterogeneity were detected both in LB 
and in the presence of mouse serum, especially in actively 
dividing cultures (Figures 1, 3; Supplementary Table S2). Hence, 
copy number heterogeneity does not seem to depend on specific 
growth conditions.

A correlation was found between the number of foci and 
the cell volume, in agreement with the classical view that 
plasmid replication control responds to cell volume (Chattoraj, 
2000; Paulsson, 2002). In contrast, the degree of heterogeneity 
in the number of foci was found to be  independent of the 
cell volume, suggesting that copy number heterogeneity may 
have stochastic origin. In support of this view, an analogy 
can be drawn between stochastic variation in the copy number 
of low-copy-number plasmids and other cellular processes 
involving low numbers of molecules (Elowitz et  al., 2002; 
Raser and O’Shea, 2005).

As a consequence of pSLT copy number heterogeneity, 
the expression of a plasmid-borne gfp gene showed large 
differences from cell to cell (Figure  5). This observation 
suggests that noisy gene expression of plasmid-borne genes 
may occur as a consequence of copy number heterogeneity. 
Due to a finite number effect, low-copy-number plasmids 
with a partitioning system may actually produce more cellular 
noise than random partitioning of high-copy-number plasmids 
(Wong et  al., 2010).

At this stage, we  do not know whether variation in pSLT 
copy number occurs also in natural environments. If that 
is the case, pSLT copy number heterogeneity could be expected 
to be frequent in animal niches in which Salmonella replicates 
actively such as the small intestine (Sanchez-Romero and 
Casadesus, 2018) and the gall bladder (Urdaneta et al., 2019). 
Potential advantages of phenotypic heterogeneity and 
concomitant noisy gene expression during Salmonella infection 
are thus conceivable. For instance, formation of Salmonella 
cells with increased dosage of conjugation proteins might 
contribute to the high rates of pSLT transfer detected in 
the murine ileum (Garcia-Quintanilla et  al., 2008). High 
production of invasion factor Rck by a subpopulation of 
cells might in turn permit division of labor in a manner 
analogous to bistable expression of Salmonella pathogenicity 
island 1 (Diard et  al., 2013). It is likewise conceivable that 
production of Pef fimbriae by a subset of cells might produce 

FIGURE 2 | Subcellular localization of the Salmonella virulence plasmid in a 
strain with a defective pSLT partitioning system. Cell membranes were stained 
with FM4-64 (red), DNA was stained with Hoechst 33258 (blue) and green 
foci revealed YFP-tagged pSLT. Scale bars indicate 1 μm.
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FIGURE 4 | Evolution of the number of foci per cell volume unit along the growth cycle, represented using violin plots. The number of cells analyzed at each time 
was 150–300. Medians and interquartile ranges are shown. The proportions of cells that fell in tails at 0, 30, 60, 90, 120, and 180 were 21.26, 22.56, 17.65, 16.10, 
22.02, and 20.39%, respectively.

A

B

FIGURE 3 | Analysis of the number of pSLT-LacO fluorescent foci during Salmonella growth. (A) Number of pSLT foci per cell along cell growth. The proportion of 
cells containing different numbers of foci per cell is shown with a color code. A total of 247, 381, 272, 302, 325, 234, and 206 cells were measured at times 0, 30, 
60, 90, 120, 180, and 240 min, respectively. (B) Averages and SDs in the number pSLT foci per cell during active growth. Optical density at 600 nm is represented 
at the right axis in logarithmic scale.
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a bacterial subpopulation able to colonize specific eukaryotic 
surfaces, a strategy described for fimbrial systems with 
heterogeneous expression (Suwandi et  al., 2019). Whatever the 
case, speculations on the adaptive value of copy number variation 
may be  justified by the evidence that phenotypic heterogeneity 
is often an adaptive trait in bacterial populations (Veening 
et al., 2008; Casadesus and Low, 2013; Weigel and Dersch, 2018).
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FIGURE 5 | Flow cytometry analysis of pSLT-GFP expression during growth. (A) GFP fluorescence intensity distribution in strain SV8960 (pSLT-GFP) grown in LB at 
37°C. Robust coefficients of variation (rCVs) are indicated inside graphs. (B) Analysis of the degree of heterogeneity in GFP expression along the growth cycle. The 
left axis displays rCVs of GFP fluorescence histograms, and the right axis represents the optical density at 600 nm. (C) Comparative analysis of the degree of 
heterogeneity in GFP expression and the level of variability in the number of plasmid foci along the growth cycle. The left axis represents the robust coefficient of 
variation (rCV) of GFP fluorescence histograms, and the right axis represents the SD of the number of pSLT-LacO fluorescence foci per cell.
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