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Abstract: Polymer foams are an important class of engineering material that are finding diverse
applications, including as structural parts in automotive industry, insulation in construction,
core materials for sandwich composites, and cushioning in mattresses. The vast majority of these
manufactured foams are homogeneous with respect to porosity and structural properties. In contrast,
while cellular materials are also ubiquitous in nature, nature mostly fabricates heterogeneous foams,
e.g., cellulosic plant stems like bamboo, or a human femur bone. Foams with such engineered
porosity distribution (graded density structure) have useful property gradients and are referred
to as functionally graded foams. Functionally graded polymer foams are one of the key emerging
innovations in polymer foam technology. They allow enhancement in properties such as energy
absorption, more efficient use of material, and better design for specific applications, such as helmets
and tissue restorative scaffolds. Here, following an overview of key processing parameters for
polymer foams, we explore recent developments in processing functionally graded polymer foams
and their emerging structures and properties. Processes can be as simple as utilizing different surface
materials from which the foam forms, to as complex as using microfluidics. We also highlight
principal challenges that need addressing in future research, the key one being development of
viable generic processes that allow (complete) control and tailoring of porosity distribution on an
application-by-application basis.

Keywords: porous polymers; cellular materials; microstructure; property gradient; functionally
graded structure

1. Introduction

Polymer foams find a wide range of applications, including in pillows and mattresses,
physical insulation, furniture, engineering materials, housing decoration, and electronic devices,
etc. In comparison to metallic and inorganic (e.g., ceramic and glass) porous materials, polymeric
porous materials are of interest as they are substantially lighter (because of their lower density),
have lower cost, offer a wider range of compressive strengths (from elastic to flexible to semirigid to
rigid), and are producible at considerably lower temperatures using a range of methods, including spray
foaming [1–10]. This review will focus on foams of a polymeric nature only.
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The polymer foams with supercritical fluids are attracting interest, especially for producing
microporous foams. These are cellular polymer foams with approximate 10 µm in pore dimeter and
109 pores per cm3 in pore density. These compact materials present high toughness, high impact
strength, and high stiffness-to-weight ratio. In addition, polymer foams with supercritical CO2 do
not usually require the use of harmful organic solvents. Such an advantage provides the method
suitable for processing porous structures from biocompatible polymers as scaffolds for biomedical
applications [11–13].

From a market perspective, recently reported global market values of exported polymer foam are
presented in the Table 1. The exported values of polymer foam have increased from 2017 to 2018 for all
types of polymer foam (based on data from the International Trade Centre (ITC) [14]).

Table 1. Values of the polymer foam exported to the world during 2017–2018 [14].

Types of Polymer Foam
Exported Value in Million USD (% of Total)

2017 2018

Polystyrene foam 1.276 (10.3%) 1.339 (9.9%)
Polyvinyl chloride foam 1.799 (14.5%) 2.001 (14.9%)
Polyurethanes foam 3.860 (31.1%) 4.167 (30.9%)
Other plastic foams 4.426 (35.7%) 4.852 (36.0%)
Rubber foams 1.053 (8.5%) 1.110 (8.2%)

Generally, polymer foams are porous materials that have two or more phases. In a two-phase
polymer foam, the polymer matrix forms a continuous phase and the gaseous-porosity phase is
composed of gas bubbles. The porous structure is produced by either a chemical or a physical blowing
agent for gas bubble production in a polymer matrix. In the case of chemical blowing agents, a chemical
reaction produces gas bubbles, usually through the decomposition of a chemical. By contrast, physical
blowing agents are inert gases or supercritical fluids (mostly CO2 and N2), which can be dissolved into
the polymer matrix during a saturation process [15–20].

Chemical blowing agents can be used for both liquid and solid polymers. Concerning liquid
polymers, in particular natural latex, chemical blowing agents such as potassium oleate are used in the
“Dunlop process” to manufacture rubber foams for pillows and mattresses, etc. [21–25]. In contrast,
production with a solid polymer is performed by gas diffusion processes (induced by a chemical
blowing agent) between the foam and molten polymer matrix. This type of process can be controlled
by the formulation and process of polymer to be foamed [26].

2. Polymer Foaming Process

Normally, the process of polymer foam production with a physical blowing agent is divided
into two principal steps. First, the polymer matrix is saturated with a physical blowing agent (gas or
supercritical fluid) at constant conditions. Next, the supersaturated state is brought about by phase
separation, induced either by rapidly increasing temperature or reducing pressure, for generating gas
bubbles, and therefore cells, inside the polymer matrix [27–30]. The cells grow to reach the point that
the viscosity of the polymer matrix is increased corresponding to the force opposing the expansion of
the foam until it becomes sufficiently high [31]. The foam density depends on the gas loading or the
gas fraction in the polymer matrix, the cell size and distribution count on the cell nucleation process,
and the expansion process [32].

In the case of plastic foam (or non-rubber foams), there are three basic processing steps:
(1) polymer/blowing agent solution mixing, (2) microcellular nucleation, and (3) cell growth and
density stabilization. The first step of single-phase polymer/blowing agent solution mixing is formed
by saturating the polymer with the blowing agent under certain conditions. The saturation point is
determined by the solubility limit of the blowing agent in the polymer, while the time required for
the solution formation is determined by the rate of diffusion of the blowing agent into the polymer
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matrix. Microcellular nucleation (Figure 1) is controlled by inducing a thermodynamic instability in
the single-phase solution. This is usually succeeded by drastically reducing the solubility of the gas in
solution by operating the pressure and/or temperature of the mixture [33–40]. Since the separation of
the polymer and gas phases is thermodynamically more favorable, the resulting supersaturated mixture
becomes the driving condition for the nucleation of numerous microcells. Continuous microcellular
processing typically utilizes a rapid pressure drop to nucleate bubbles. This stage is very crucial to the
overall process, because it dictates the cell morphology of the material and its resulting properties.
Therefore, solubility as a function of pressure is important for the development of the process. The final
stage in the production of microcellular plastics is cell growth. After cell nucleation has occurred,
any available gas diffuses into the cell and increases its size, thereby reducing the density of the polymer
matrix. Generally, the growth of cell depends on the time allowed for the cells to expand, the system
temperature, the amount of gas available, the processing pressure, and the viscoelastic properties of
the polymer/gas solution [41–45].
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Figure 1. Overview of the microcellular foaming process.

Typical foaming processes can be classified into batch foaming, and extrusion and injection
molding. The batch foaming process has lower process temperatures than those needed in other
processes; this causes an increasing of the CO2 solubility in amorphous polymers, resulting in higher
cell densities and smaller cell sizes [46]. Such foam characteristics, i.e., cell size and cell density,
affect directly the mechanical properties of polymer foam [47]. Generally, the batch foaming process
is utilized to amorphous polymers, which starts from the rubbery state at the saturation condition.
On the other hand, the semicrystalline polymers possess the non-uniform cell structure because of the
inability of the polymer/blowing agent formation in the crystalline structure. This type of crystalline
structure of the polymer needs to be destroyed before foaming due to the melting point reduction of
the polymer using a co-solvent [47].

Concerning the process of polymer foaming with a physical blowing agent, the porous structure
of the polymer/gas (fluid) system depends on the important parameters below [48,49]:

(i) the degree of crystallinity of the polymer matrix,
(ii) the amount of the dissolved gas (fluid),
(iii) the degree of saturation of gas in the polymer,
(iv) the interfacial energy of polymer/gas (fluid), and
(v) the plasticization profile of the polymer/gas system (i.e., the melting point and the glass transition

temperature, Tg, of polymer matrix).

Interestingly, among conventional polymer foams, the different cell sizes (graded density
structure) attract far more attention compared with a uniform cell structure, because this type
of functionally graded structure exhibits better mechanical properties compared with conventional
foams [50,51]. However, fabrication of such functionally graded foams is complicated. Generally,
the functionally graded structure of polymer foam can be obtained by foaming process, nanofiller,
blowing agent, or polymer composition, etc. In recent years, various graded cellular materials have
attracted interest [52,53]. The polyethylene foam with density gradient improved the mechanical
properties due to the change of deformation mode [54]. The polyurethane honeycombs with four
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density gradients were modified from the uniform density equivalent using different parameters:
fused filament fabrication 3D printing, density grading, energy absorbing, and damping profiles [55].
Several types of graded foam are produced for functional applications, such as impact strength,
acoustic capabilities, energy absorption, etc. These new graded foams (polyurethane foam, acrylonitrile
butadiene styrene foam, polyethylene foam, polypropylene foam, polylactic acid foam, and polymethyl
methacrylate foam) are investigated in the structure–property relationship [56–61].

The main aims of this review paper focus on the importance of structure-property-processing
relations in polymer foams. In particular, recent polymer foams with cell size gradients or functionally
graded foams are of interest. Functionally graded foams are foams that incorporate various cell sizes in
the same material and therefore possess a structure with a “cell size gradient”. This structure could be
mimicked from structural materials found in nature, such as bones and bamboo. These types of foams
could be useful for tailor-made material products with functional properties ranging from thermal
insulation, to high stiffness or strength at low weight, to buoyancy, and impact resistance [62–65].
Consequently, cellular structure with cell size gradients (different cell sizes) has received interest from
both academic and industrial sectors.

3. Thermodynamic Aspects and Computer Modeling of Polymer Foam Processing

The mechanism of gas bubble nucleation inside the polymer matrix for the relevant foaming
method is very complex, governed by multiple phenomena, including interfacial energy of polymer/gas
system. The creation of gas nuclei can be related to either homogeneous or heterogeneous nucleation
(Figure 2). Homogeneous nucleation possesses the spontaneous generating of gas molecules in the
polymer matrix; on the other hand, heterogeneous nucleation exhibits the gas nuclei on the boundaries
of two phases (polymer and another material like filler) [66–70]. In the case of plastic foaming without
use of a chemical agent, bubble nucleation is often assumed to be homogeneous. However, in the
process of rubber foaming with a chemical agent and filler, both homogeneous and heterogeneous
nucleation occur.
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Nucleation refers to the initial stage of gas bubble formation from the initial polymer matrix.
In this step, a gas bubble has to conquer the Gibb’s free energy before the bubble can grow to an
optimum scale. This step is explained by classical nucleation theory: the difference of Gibb’s free
energy of the polymer/gas system can be expressed as the sum of gain in the Gibb’s free energy related
to the formation of interface. Generally, in an isothermal system at chemical equilibrium, the difference
of Gibb’s free energy (∆G) corresponds to the formation of polymer/gas system, which is expressed by
the equation [31]:

∆G =
(
−4πr3/3

)
∆P + 4πr2γ, (1)

where r is the radius of spherical cluster, γ is the interfacial energy between gas and polymer, and ∆P
is the difference of pressure. The next equation is obtained and relates to homogeneous nucleation,
as ∆G is plotted against cluster size with a maximum at a critical radius, rc, is obtained:
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d∆G/dr = 0 thus rc = 2γ/∆P, (2)

The maximum value of ∆G∗ for homogeneous nucleation is derived by substituting Equation (2)
into Equation (1) as [71]:

∆G∗ = 16πγ3/3∆P2, (3)

Decreasing the interfacial energy, or increasing the difference of pressure, results in increasing the
nucleation rate. However, the interfacial energy of the polymer/gas system is complicated to measure.
Normally, such interfacial energy is calculated corresponding to the surface energy of each material at
equilibrium [31,72]; the limitation of this theory relates rather to the determination of this parameter.

The presence of fillers, suspension of chemical agents, impurities, or another material in the
system is the cause of heterogeneous nucleation. Generally, the presence of particles or impurities
decreases the Gibb’s free energy ∆G and involves a reduction factor f as:

∆Ghet = ∆Ghom
(

f(m,w)/2
)
,

m = cosθ = (γ13 − γ23)/γ12 and w = R/rcr (relative curvature), (4)

where R is the radius of particles; γ13, γ23, and γ12 are the interfacial energies of polymer/particle,
gas/particle, and polymer/gas, respectively; and θ is the contact angle between the cell, polymer,
and particles.

The type of nucleating agents affects the nucleation process of polymer foam, which can
be explained by continuum conservation models. Concerning the polymer melt, thermodynamic
fluctuations allow nucleus growth due to the surface and viscous forces. When the pressure inside the
cell decreases, the gas concentration at the cell surface also decreases [15,66]. In the batch foaming
process, the cell growth certainly depends on the temperature process. Based on classical nucleation
theory, when the foaming nucleation temperature (Tnuc) decreases, the formation of smaller cells
can occur. If Tnuc is below the glass transition temperature (Tg) of high viscosity polymer matrix,
nanocell structures can appear. On the other hand, microcell structures appear when the Tnuc closes to
the Tg of the polymer matrix (Figure 3).
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Recently, flexible polymers like compressible elastomers with different densities (graded materials)
have been described by a worm-like chain model [74]. A self-consistent field theory (SCFT) was
developed using thermodynamic calculations of the system based on Helmholtz free energy. There were
two types of length scales relevant for a flexible polymer chain: polymer length L and persistence Lp.
The ratio of polymer length/persistence (L/Lp) ratio was found to be L/Lp << 1 for rod-like elastomer
structures, while L/Lp >> 1 was proposed for coil-like elastomer structures. This combination of
thermodynamic and computational modeling paves the way for a new foam material.

Foam processing computational models are useful to predict and estimate the properties of
polymer foams. These models are often related to a finite element (FE) method. These empirical models
employ time- or temperature-dependent density related to the nucleation and growth of bubbles in the
polymer foam. The continuum-level model applies a description of homogeneous nucleation through
the density model but does not include the gas model; this type of model has been developed to explore
optimum properties of liquid phase/gas bubbles during the self-expansion process [75,76].

Foam rheological property measurements are complicated to carry out, since the foam
microstructure usually changes. Thus, the viscosity is separated into two parts dependent on (1)
continuous-phase polymer properties and (2) gas bubble volume fraction: these two phases are
quite different [77]. The component mass fractions and densities can be utilized to determine the
gas volume fraction using the density model of polymer foam. Moreover, the gas volume fraction
components of foam heat capacity and thermal conductivity, which can be utilized for the energy
equation. The foam heat capacity is calculated by the mixture theory for polymer/gas system [78].
The effect of liquid vaporization can be defined from the density evolution and the mass fraction of
polymer/gas system [76,79].

There has been increasing recent interest in applying the concept of graded cellular materials to
polymers in order to improve their mechanical properties. Such cellular polymers exhibit a gradient in
their properties, for example, cell size/cell density, cell distribution, mechanical properties, etc. [54,62].
Therefore, it is worthy to explore the processing and mechanisms of graded cellular polymers,
which can be used to control desirable properties and behaviors. For example, researchers investigated
the behaviors of voronoi-type density gradient foams using the finite element (FE) method [80].
The results obtained show that the energy absorption is linked to the profiles of graded cell distribution.
The FE simulation can be also utilized to study the effect of temperature gradient on the properties of
graded foam [81]. Moreover, the density-graded models can be investigated for the deformation pattern
and energy absorption capacity of the resulting materials produced using a temperature gradient.
The latest advances of energy absorption (or impact resistance) for functionally graded foams relate to
density and temperature gradients during foam processing. For example, an increasing temperature
gradient leads to the reducing of energy absorption capacity in functionally graded foam [80,81].

4. Recent Processes to Produce Functionally Graded Foams

New processes have been developed to produce polymer foams with gradients in cell size
(gradient density) and properties (functionally graded) [82–85]. A gradient structure imparts
the foam with an asymmetric structure of cell size (Figure 4), with cell size at one end being
smaller (and denser). This structure provides superior properties, such as mechanical properties,
and proposes new functionalities for various applications, including in sound absorption and protective
equipment (helmets).

An example process of foaming with cell size gradient was presented in [86], where polymethyl
methacrylate (PMMA) absorbed CO2 at 28 MPa and 50 ◦C for 1 h in order to form the PMMA foam.
Figure 4 shows that the cell size at the near surface is smaller than the cell size faraway from surface.
The effect of high CO2 concentration in the surface increases cell density and reduces cell size.
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foams produced by Yuan et al. [86] (b), in which cell size and density are correlated to the location (b,c),
much like in bamboo (a). (d) The foam gradients are a result of gas concentration gradients during
processing. Images (b–d) by Yuan et al. [86].

Yet another process that produces gradient density polymer foams is when aluminum oxide
(AAO) film is used as a surface material for foam preparation [82]. Silane fluoride is used as an agent
to change the surface of the substrate. Polystyrene, polymethyl methacrylate, and polyacrylate may be
used as the polymer and CO2 as the blowing agent. For the method of foam preparation (Figure 5),
AAO film is modified by fluorinated silane using an impregnation method. The polymer plate is
placed on the AAO film and compressed to form a composite structure. The foaming process uses
supercritical CO2 as a blowing agent at 13.8 MPa and 100 ◦C for 12 h, permitting CO2 diffusion and
reaching an equilibrium state. Figure 6 presents the morphology of polystyrene (PS) foam on anodized
aluminum oxide (AAO) film from an SEM image. This method is also successful in producing foam
with cell size gradients. The results (Figure 6d) show that near AAO film surface, the cell size is small,
while cell density is high. Further away from AAO surface, the cell size is bigger, while cell density is
decreased [82].

Gradient density foams with low-density polyethylene (LDPE) have also been reported in
literature. Azodicarbonamide is used as a chemical blowing agent, and silicone rubber sheet
(SRS) is used as a contact material during the foaming of the polymer. ZnO is used to reduce
high-temperature decomposition of azodicarbonamide, and stearic acid is used as an extrusion
processing aid. All materials were mixed using a twin-screw extruder, and then LDPE foams were
injected inside a mold at temperatures during 200 and 240 ◦C [26]. The construction of outer solid skin
is formed by gas diffusion from the matrix to the surface of mold. The results show that the internal
pressure of foam increases when the amount of azodicarbonamide is increased; this consequently
affects final density by inducing significant gas absorption in silicone at the surface. X–ray visualization
revealed that the properties of foams produced with or without SRS were the same results. However,
foams produced with SRS showed the construction of a dense skin of SRS between 1800 and 2990 s,
whereas the conventional foam appears to remain free of a solid skin. Increasing foaming temperature
and maximum internal pressure induce an increase in the solid skin thickness.
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LDPE foams produced without SRS presented pores reaching right to the surface of the foam.
By contrast, a solid skin at the foam surface with significant thickness is observed when SRS is applied
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into the mold at the foaming preparation. Based on this new process, two types of foam structure are
found: solid skin and porous core. The tensile stress–strain behavior of the skin, core, and structural
foam are distinct. From a mechanical properties point of view, the core has the lowest modulus and
strength, and the solid skin has the highest modulus and strength, whereas values of the structural
foam remain intermediate to the skin and core. The presented process allows the design of gradient
density foam structure and related properties [26].

Another interesting example of graded foam is a monodisperse polystyrene (PS) foam [87]:
this type of foam can program the pore size and density using different pressures during the foaming
process. Concerning this method, one can represent a cell size gradient in the PS foam using the gas
pressure variation, in particular, the big cell size of PS foam can be obtained by increasing the gas
pressure in the preparation method.

So far we have reviewed functionally graded polymer foams based on PMMA, LDPE, and PS.
A range of other thermoplastic polymers have been utilized to produce foams with a controlled
structure, including polypropylene (PP) and polycaprolactone (PCL). In a study by Yang et al.,
hollow molecular-sieve (MS) particles were used as a nucleating agent in supercritical carbon dioxide
(scCO2) for polypropylene (PP) foams. In this study, the PP pellets and MS particles were mixed using
a twin-screw extruder before they were pressed into sheets with a thickness of 1 mm. They were then
foamed inside an autoclave using CO2 as a blowing agent under pressure of 20 MPa and temperature
of 154 ◦C for 2 h [88]. Yang et al. [88] found that addition of MS particles substantially decreased
the distribution in cell sizes of the PP foam, with the foam cell density increasing by an order of
magnitude, and doubled the tensile strength. In another study, Llewelyn et al. used a hybrid foaming
method by utilizing a physical blowing agent (super critical nitrogen) and a chemical blowing agent
to produce polypropylene (PP) foam, with and without talc filler, by low-pressure foam-injection
molding (FIM). Through a hybrid foaming method with low pressure (FIM), foams with high cell
density and superior homogeneous cell structure were produced [89]. To produce inhomogeneous
foams, using chemical blowing was most effective, as a larger skin wall thickness was obtained. Using a
thermally induced phase-separation method, Onder et al. produced polycaprolactone (PCL) foams [90].
The PCL solutions were prepared in the tetrahydrofuran/methanol (THF/MeOH) solvent system by
slowly heating to 55 ◦C in a water bath. The homogeneous polymer solutions were quenched at low
temperature for 12 h. The PCL foams were warmed up to room temperature and thereafter dried by
vacuum drying. PCL foams with larger pores were obtained at lower PCL concentration, lower THF
content, and a higher quench temperature [90].

Apart from foams based on thermoplastic polymers, thermoset polymers and elastomers have
also been successfully used to produce foams with controlled structure (and therefore properties).
Song et al. [89] mixed a biobased epoxy resin (Greenpoxy 56) and an amine-based hardener using a
hand-held mixer for 20 min in order to produce an air-in-resin liquid foam. The biobased polymer
foams were formed in self-standing tubes. The porosity of biobased polymer foams was increased
from 71% to 85% by heating the air-in-resin liquid foam during the curing step [91]. The compressive
modulus and compressive strength of the polymer foams were significantly reduced as a result of
an increase in porosity. Vahidifar et al. mixed natural rubber (NR) compounds at room temperature
using a two-roll mill to produce an elastomeric foam. The one-step foaming process for the natural
rubber/carbon black (NR/CB) foam production was performed by compression molding using an
electrically heated press at temperature of 160 ◦C and pressure of 50 kPa for 30 min. Cell density of
NR/CB foam was increased around 14 times by increasing the CB content at the same foam density.
The morphology of NR/CB foams was divided into three layers: outer (no cells), middle (indeterminate
cells), and inner (circular cells) [92].

5. Conclusions and Future Research Outlook

Functionally graded polymer foams are an emerging innovation in polymer foam technology.
Their combination of light weight with efficient use of material and enhanced functional properties
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help the design of multifunctional products. For example, the graded structure may enable efficient
performance in low-energy impact as well as high-energy impact applications. Such functionally
graded polymer foams may find diverse applications, such as in tissue bioengineering, protective
gear (helmets), engineering structures (construction core materials and automotive car bumpers),
and filtration and insulation.

A variety of approaches have been employed by scientists to produce functionally graded polymer
foams, synthesized in Figure 7. A number of researchers have explored molding processes, such as
(reaction) injection or compression molding, and have employed the use of specific contact surface
materials (such as aluminum oxide film or silicone rubber sheet) or ingredients (such as supercritical
CO2 as a blowing agent). These have enabled the production of foams with gradients in porosity,
cell size, and properties, sometimes with a skin-core structure. Additive processes, such as 3D printing
and, more commonly, layer-by-layer lamination techniques (e.g., with thermal bonding), have also
been developed to produce functionally graded polymer foams. Each layer may have a distinct pore
and cell size, and the layers can range from nano- to micro- to macroscale. However, in such additive
manufactured foams, the presence of interlayer interfaces, which are regions of stress transfer and
stress concentration, increases issues with delamination and crack propagation. Templating routes
have also been examined using solid, liquid, and emulsion foam templates. Solvent-based approaches
(including particulate leaching and freeze drying) have also been explored. Mixed success has been
achieved using these for functionally graded polymer foam manufacture. While some approaches may
enable achieving versatile structures, producing nanoporous to macroporous structures, the processes
may hinder the formation of continuously graded structures and pore interconnectivity (open cell and
closed cell structures). A number of other processes have been also developed in literature, including
those based on microfluidics and the use of ultrasound to produce heterogeneous polymer foams.

The overarching and biggest challenge is control on microstructure. This includes control on
porosity and cell size, the gradient (qualitative such as continuously graded or discretely graded
structure or skin-core structures, but also more tailored quantitative), and pore interconnectivity
(open-cell or closed-cell or mixed and the extent to which they are tailorable). There is still some
way to go in understanding these processing-structure-property relations, let alone controlling them,
and developing viable generic processes for tailorable functionally graded polymeric foams.
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Figure 7. Synthesis of various approaches to process functionally graded polymer foams, and their
associated advantages and challenges.

Indeed, better understanding of processing-structure-property relations will require multidisciplinary
approaches, including empirical process science and polymer foam technology, but also the physical
thermodynamics and chemical kinetics behind the formation of functionally graded polymer foam
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microstructures, as well as process simulation and computer modeling. The latter may offer more
time-saving, cost-effective methods for obtaining insights and optimized routes to fabrication and
rapid prototyping for bespoke products (particularly in bioengineering, such as scaffold design and 3D
printing for individual patients).

Yet another discipline that may offer insights is the life/biological sciences. An architectural
engineering marvel is the Eiffel Tower, which was designed by Gustave Eiffel on the principles of
material minimization, through inspirations from the femur bone: a natural, functionally graded cellular
structure. Biomimetics and bioinspiration are important sources of design concepts. The intelligent
design of functionally graded polymer foams following designs in nature can unveil important insights
on structure–property relations. For example, the selection of the polymers—based on their chain
length and molecular weight, functional groups and species, and so on)—and how the polymer chains
interact with each other will have a notable impact on the morphologies and properties of the foams
produced. For instance, in wood and plant stems, other natural functionally graded foam structures,
the complex self-assembly and interaction of various polymer species (cellulose, hemicellulose, lignin,
pectin, and so on) lead to a beautiful hierarchical cellular structure, making it a model functionally
graded material [93–100]. Indeed, the minute changes in the polymer species, and their interactions
and formations, lead to a wide variety of wood species in nature with a range of functional properties,
including densities, strengths, and hardness [93,101–108].

Moreover, bioinspiration can help produce multifunctional products for specific applications,
such as scaffolds for interfacial tissue engineering (e.g., cartilage-bone scaffolds with an order of
magnitude difference in modulus between the cartilage and the bone), and protective foam shell of
helmets inspired from the functionally graded structures of sheep horn and horn core trabecular bone
of bighorn sheep rams. Such studies may also later fuel the design of hierarchical (multiscale porosity
distribution) functionally graded polymer foams and composite, fiber-reinforced or polymer-blended,
functionally graded polymer foams, taking bamboo as an inspiration, for instance. Furthermore,
rather than being based on petrochemical-derivative polymers, exploration of bio-derivative polymers
for the fabrication of functionally graded polymer foams may enable improvement in biocompatibility
(for bioengineering) and biodegradability (for better end-of-life options) [109–115].

There have been important technological, process-related advancements in functionally graded
foams over the past couple of decades, and further understanding and control of the process is key to
their inevitable utilization in functional products.

Author Contributions: S.S. wrote the manuscript; D.U.S. wrote and reviewed the manuscript; W.S. provided the
original idea to this work, wrote, and reviewed the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by Specialized Center of Rubber and Polymer Materials in
Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University.

Conflicts of Interest: All authors declare no conflict of interest.

References

1. CES EduPack 2019; Ansys (Granta Design Limited): Cambridge, UK, 2020.
2. Fan, D.; Li, M.; Qiu, J.; Xing, H.; Jiang, Z.; Tang, T. Novel method for preparing auxetic foam from closed–cell

polymer foam based on the steam penetration and condensation process. ACS Appl. Mater. Interfaces 2018,
10, 22669–22677. [CrossRef]

3. De Luca Bossa, F.; Verdolotti, L.; Russo, V.; Campaner, P.; Minigher, A.; Lama, G.C.; Boggioni, L.; Tesser, R.;
Lavorgna, M. Upgrading sustainable polyurethane foam based on greener polyols: Succinic–based polyol
and mannich–based polyol. Materials 2020, 13, 3170. [CrossRef]

4. Chen, Y.; Luo, Y.; Guo, X.; Chen, L.; Jia, D. The synergistic effect of ionic liquid–modified expandable graphite
and intumescent flame–retardant on flame–retardant rigid polyurethane foams. Materials 2020, 13, 3095.
[CrossRef]

http://dx.doi.org/10.1021/acsami.8b02332
http://dx.doi.org/10.3390/ma13143170
http://dx.doi.org/10.3390/ma13143095


Materials 2020, 13, 4060 12 of 16

5. Suresh, K.I. Rigid polyurethane foams from cardanol: Synthesis, structural characterization, and evaluation
of polyol and foam properties. ACS Sustain. Chem. Eng. 2013, 1, 232–242. [CrossRef]

6. Abbes, B.; Lacoste, C.; Bliard, C.; Maalouf, C.; Simescu-Lazar, F.; Bogard, F.; Polidori, G. Novel extruded
starch–beet pulp composites for packaging foams. Materials 2020, 13, 1571. [CrossRef]

7. Dugad, R.; Radhakrishna, G.; Gandhi, A. Recent advancements in manufacturing technologies of microcellular
polymers: A review. J. Polym. Res. 2020, 27, 182. [CrossRef]

8. Zhang, N.; Cao, H. Enhancement of the antibacterial activity of natural rubber latex foam by blending It with
chitin. Materials 2020, 13, 1039. [CrossRef]

9. Walter, M.; Friess, F.; Krus, M.; Zolanvari, S.M.H.; Grun, G.; Krober, H.; Pretsch, T. Shape memory polymer
foam with programmable apertures. Polymers 2020, 12, 1914. [CrossRef] [PubMed]

10. Jin, F.L.; Zhao, M.; Park, M.; Park, S.J. Recent trends of foaming in polymer processing: A review. Polymers
2019, 11, 953. [CrossRef] [PubMed]

11. Nalawade, S.P.; Picchioni, F.; Janssen, L.P.B.M. Supercritical carbon dioxide as a green solvent for processing
polymer melts: Processing aspects and applications. Prog. Polym. Sci. 2006, 31, 19–43. [CrossRef]

12. Caballe-Serrano, J.; Zhang, S.; Sculean, A.; Staehli, A.; Bosshardt, D.D. Tissue integration and degradation
of a porous collagen–based scaffold used for soft tissue augmentation. Materials 2020, 13, 2420. [CrossRef]
[PubMed]

13. Donnaloja, F.; Jacchetti, E.; Soncini, M.; Raimondi, M.T. Natural and synthetic polymers for bone scaffolds
optimization. Polymers 2020, 12, 905. [CrossRef] [PubMed]

14. Trade Map. List of Exporters for the Selected Product: Product: 4008 Plates, Sheets, Strip, Rods and Profile Shapes,
of Vulcanised Rubber (Excluding Hard Rubber); International Trade Centre: Geneva, Switzerland, 2019.

15. Mohebbi, A.; Mighri, F.; Ajji, A.; Rodrigue, D. Current issues and challenges in polypropylene foaming:
A review. Cell. Polym. 2015, 34, 299–338. [CrossRef]

16. Liao, X.; Nawaby, A.V. The sorption behaviors in PLLA–CO2 system and its effect on foam morphology.
J. Polym. Res. 2012, 19, 9827. [CrossRef]

17. Galakhova, A.; Santiago-Calvo, M.; Tirado-Mediavilla, J.; Villafane, F.; Rodriguez-Perez, M.A.; Riess, G.
Identification and quantification of cell gas evolution in rigid polyurethane foams by novel GCMS
methodology. Polymers 2019, 11, 1192. [CrossRef]

18. Zhao, S.; Pan, C.; Xin, Z.; Li, Y.; Qin, W.; Zhou, S. 13X zeolite as difunctional nucleating agent regulating the
crystal form and improving the Foamability of blocked copolymerized polypropylene in supercritical CO2

foaming process. J. Polym. Res. 2019, 26, 58. [CrossRef]
19. Abbasi, H.; Antunes, M.; Velasco, J.I. Polyetherimide foams filled with low content of graphene nanoplatelets

prepared by scCO2 dissolution. Polymers 2019, 11, 328. [CrossRef]
20. Wang, L.; Jiang, J.; Jiang, P.; Yu, J. Synthesis, characteristic of a novel flame retardant containing phosphorus,

silicon and its application in ethylene vinyl–acetate copolymer (EVM) rubber. J. Polym. Res. 2010, 17, 891–902.
[CrossRef]

21. Suksup, R.; Sun, Y.; Sukatta, U.; Smitthipong, W. Foam rubber from centrifuged and creamed latex. J. Polym.
Eng. 2019, 39, 336–342. [CrossRef]

22. Phomrak, S.; Nimpaiboon, A.; Newby, B.Z.; Phisalaphong, M. Natural rubber latex foam reinforced with
micro and nanofibrillated cellulose via Dunlop method. Polymers 2020, 12, 1959. [CrossRef]

23. Lang, X.H.; Wang, D.; Prakashan, K.; Zhang, X.; Zhang, Z.X. Microcellular chlorinated polyethylene (CM)
rubber foam by using N2 as blowing agent. J. Polym. Res. 2017, 24, 175. [CrossRef]

24. Karim, A.F.A.; Ismail, H.; Ari, Z.M. Properties and characterization of Kenaf–Filled natural rubber latex
foam. Bioresources 2016, 11, 1080–1091.

25. Rathnayake, W.G.I.U.; Ismail, H.; Baharin, A.; Bandara, C.D.; Rajapakse, S. Enhancement of the antibacterial
activity of natural rubber latex foam by the incorporation of zinc oxide nanoparticles. J. Appl. Polym. Sci.
2013, 131, 131. [CrossRef]

26. Pinto, J.; Escudero, J.; Solórzano, E.; Rodriguez-Perez, M.A. A novel route to produce structural polymer
foams with a controlled solid skin–porous core structure based on gas diffusion mechanisms. J. Sandw.
Struct. Mater. 2020, 22, 822–832. [CrossRef]

27. Kumar, V.; Suh, N.P. A process for making microcellular thermoplastic parts. Polym. Eng. Sci. 1990, 30,
1323–1329. [CrossRef]

http://dx.doi.org/10.1021/sc300079z
http://dx.doi.org/10.3390/ma13071571
http://dx.doi.org/10.1007/s10965-020-02157-7
http://dx.doi.org/10.3390/ma13051039
http://dx.doi.org/10.3390/polym12091914
http://www.ncbi.nlm.nih.gov/pubmed/32854329
http://dx.doi.org/10.3390/polym11060953
http://www.ncbi.nlm.nih.gov/pubmed/31159423
http://dx.doi.org/10.1016/j.progpolymsci.2005.08.002
http://dx.doi.org/10.3390/ma13102420
http://www.ncbi.nlm.nih.gov/pubmed/32466244
http://dx.doi.org/10.3390/polym12040905
http://www.ncbi.nlm.nih.gov/pubmed/32295115
http://dx.doi.org/10.1177/026248931503400602
http://dx.doi.org/10.1007/s10965-012-9827-3
http://dx.doi.org/10.3390/polym11071192
http://dx.doi.org/10.1007/s10965-019-1719-3
http://dx.doi.org/10.3390/polym11020328
http://dx.doi.org/10.1007/s10965-009-9381-9
http://dx.doi.org/10.1515/polyeng-2018-0219
http://dx.doi.org/10.3390/polym12091959
http://dx.doi.org/10.1007/s10965-017-1340-2
http://dx.doi.org/10.1002/app.39601
http://dx.doi.org/10.1177/1099636218777434
http://dx.doi.org/10.1002/pen.760302010


Materials 2020, 13, 4060 13 of 16

28. Goel, S.K.; Beckman, E.J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I:
Effect of pressure and temperature on nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147. [CrossRef]

29. Ratcha, A.; Samart, C.; Yoosuk, B.; Sawada, H.; Reubroycharoen, P.; Kongparakul, S. Polyisoprene modified
poly(alkyl acrylate) foam as oil sorbent material. J. Appl. Polym. Sci. 2015, 132. [CrossRef]

30. Ratcha, A.; Yoosuk, B.; Kongparakul, S. Grafted methyl methacrylate and butyl methacrylate onto natural
rubber foam for oil sorbent. Adv. Mater. Res. 2014, 844, 385–390. [CrossRef]

31. Tsivintzelis, I.; Sanxaridou, G.; Pavlidou, E.; Panayiotou, C. Foaming of polymers with supercritical fluids:
A thermodynamic investigation. J. Supercrit. Fluids 2016, 110, 240–250. [CrossRef]

32. Reglero Ruiz, J.A.; Vincent, M.; Agassant, J.-F.; Sadik, T.; Pillon, C.; Carrot, C. Polymer foaming with chemical
blowing agents: Experiment and modeling. Polym. Eng. Sci. 2015, 55, 2018–2029. [CrossRef]

33. Thompson, R.B.; Park, C.B.; Chen, P. Reduction of polymer surface tension by crystallized polymer
nanoparticles. J. Chem. Phys. 2010, 133, 144913. [CrossRef] [PubMed]

34. Huang, D.; Zhang, M.; Guo, C.; Shi, L.; Lin, P. Experimental investigations on the effects of bottom ventilation
on the fire behavior of natural rubber latex foam. Appl. Therm. Eng. 2018, 133, 201–210. [CrossRef]

35. Klempner, D.; Frisch, K.C. Handbook of Polymeric Foams and Foam Technology; Hanser Munich etc.: Birmingham,
UK, 1991; p. 404.

36. Kudori, S.N.I.; Ismail, H.; Shuib, R.K. Kenaf core and bast loading vs. properties of natural rubber latex foam
(NRLF). BioResources 2019, 14, 1765–1780.

37. Surya, I.; Kudori, S.N.I.; Ismail, H. Effect of partial replacement of kenaf by empty fruit bunch (EFB) on the
properties of natural rubber latex foam (NRLF). BioResources 2019, 14, 9375–9391.

38. Panploo, K.; Chalermsinsuwan, B.; Poompradub, S. Natural rubber latex foam with particulate fillers for
carbon dioxide adsorption and regeneration. RSC Adv. 2019, 9, 28916–28923. [CrossRef]

39. Rathnayake, I.U.; Ismail, H.; De Silva, C.R.; Darsanasiri, N.D.; Bose, I. Antibacterial effect of Ag–doped TiO2

nanoparticles incorporated natural rubber latex foam under visible light conditions. Iran. Polym. J. 2015, 24,
1057–1068. [CrossRef]

40. Rathnayake, W.G.I.U.; Ismail, H.; Baharin, A.; Darsanasiri, A.G.N.D.; Rajapakse, S. Synthesis and
characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti–fungal
properties. Polym. Test. 2012, 31, 586–592. [CrossRef]

41. Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low–bond axisymmetric drop shape
analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A 2010, 364,
72–81. [CrossRef]

42. Wulf, M.; Michel, S.; Grungke, K.; Del Rio, O.I.; Kwok, D.Y.; Neumann, A.W. Simultaneous determination of
surface tension and density of polymer melts using axisymmetric drop shape analysis. J. Colloid Interface Sci.
1999, 210, 172–181. [CrossRef]

43. Ramasamy, S.; Ismail, H.; Munusamy, Y. Tensile and morphological properties of rice husk powder filled
natural rubber latex foam. Polym. Technol. Eng. 2012, 51, 1524–1529. [CrossRef]

44. Oliveira-Salmazo, L.; Lopez-Gil, A.; Silva-Bellucci, F.; Job, A.E.; Rodriguez-Perez, M. A Natural rubber foams
with anisotropic cellular structures: Mechanical properties and modeling. Ind. Ind. Crop. Prod. 2016, 80,
26–35. [CrossRef]

45. Sandhu, I.; Kala, M.; Thangadurai, M.; Singh, M.; Alegaonkar, P.; Saroha, D.R. Experimental study of blast
wave mitigation in open cell foams. Mater. Today Proc. 2018, 5, 28170–28179. [CrossRef]

46. Tomasko, D.L.; Burley, A.; Feng, L.; Yeh, S.-K.; Miyazono, K.; Nirmal-Kumar, S.; Kusaka, I.; Koelling, K.
Development of CO2 for polymer foam applications. J. Supercrit. Fluids 2009, 47, 493–499. [CrossRef]

47. Frerich, S.C. Biopolymer foaming with supercritical CO2—Thermodynamics, foaming behaviour and
mechanical characteristics. J. Supercrit. Fluids 2015, 96, 349–358. [CrossRef]

48. Tsioptsias, C.; Panayiotou, C. Foaming of chitin hydrogels processed by supercritical carbon dioxide.
J. Supercrit. Fluids 2008, 47, 302–308. [CrossRef]

49. Tsivintzelis, I.; Panayiotou, C. Designing Issues in Polymer Foaming with Supercritical Fluids. Macromol. Symp.
2013, 331–332, 109–114. [CrossRef]

50. Ma, Z.; Zhang, G.; Yang, Q.; Shi, X.; Shi, A. Fabrication of microcellular polycarbonate foams with unimodal
or bimodal cell–size distributions using supercritical carbon dioxide as a blowing agent. J. Cell. Plast. 2014,
50, 55–79. [CrossRef]

http://dx.doi.org/10.1002/pen.760341407
http://dx.doi.org/10.1002/app.42688
http://dx.doi.org/10.4028/www.scientific.net/AMR.844.385
http://dx.doi.org/10.1016/j.supflu.2015.11.025
http://dx.doi.org/10.1002/pen.24044
http://dx.doi.org/10.1063/1.3493334
http://www.ncbi.nlm.nih.gov/pubmed/20950047
http://dx.doi.org/10.1016/j.applthermaleng.2018.01.044
http://dx.doi.org/10.1039/C9RA06000F
http://dx.doi.org/10.1007/s13726-015-0393-5
http://dx.doi.org/10.1016/j.polymertesting.2012.01.010
http://dx.doi.org/10.1016/j.colsurfa.2010.04.040
http://dx.doi.org/10.1006/jcis.1998.5942
http://dx.doi.org/10.1080/03602559.2012.715361
http://dx.doi.org/10.1016/j.indcrop.2015.10.050
http://dx.doi.org/10.1016/j.matpr.2018.10.060
http://dx.doi.org/10.1016/j.supflu.2008.10.018
http://dx.doi.org/10.1016/j.supflu.2014.09.043
http://dx.doi.org/10.1016/j.supflu.2008.07.009
http://dx.doi.org/10.1002/masy.201300064
http://dx.doi.org/10.1177/0021955X13503849


Materials 2020, 13, 4060 14 of 16

51. Yeh, S.-K.; Liu, W.-H.; Huang, Y.-M. Carbon dioxide–blown expanded polyamide bead foams with bimodal
cell structure. Ind. Eng. Chem. Res. 2019, 58, 2958–2969. [CrossRef]

52. Trofa, M.; Di Maio, E.; Maffettone, P.L. Multi–graded foams upon time–dependent exposition to blowing
agent. Chem. Eng. J. 2019, 362, 812–817. [CrossRef]

53. Sumey, J.L.; Sarver, J.A.; Kiran, E. Foaming of polystyrene and poly(methyl methacrylate) multilayered thin
films with supercritical carbon dioxide. J. Supercrit. Fluids 2019, 145, 243–252. [CrossRef]

54. Cusson, E.; Akbarzadeh, A.H.; Therriault, D.; Rodrigue, D. Density graded polyethylene foams: Effect of
processing conditions on mechanical properties. Cell. Polym. 2019, 38, 3–14. [CrossRef]

55. Bates, S.R.G.; Farrow, I.R.; Trask, R.S. Compressive behaviour of 3D printed thermoplastic polyurethane
honeycombs with graded densities. Mater. Des. 2019, 162, 130–142. [CrossRef]

56. Esmailzadeh, M.; Manesh, H.D.; Zebarjad, S.M. Fabrication and characterization of functional graded
polyurethane foam (FGPUF). Polym. Adv. Technol. 2018, 29, 182–189. [CrossRef]

57. Jahwari, F.A.l.; Huang, Y.; Naguib, H.E.; Lo, J. Relation of impact strength to the microstructure of functionally
graded porous structures of acrylonitrile butadiene styrene (ABS) foamed by thermally activated microspheres.
Polymer 2016, 98, 270–281. [CrossRef]

58. Heim, H.-P.; Tromm, M. Injection molded components with functionally graded foam structures–Procedure
and essential results. J. Cell. Plast. 2016, 52, 299–319. [CrossRef]

59. Ghaffari, S.; Naguib, H.E.; Park, C.B.; Atalla, N. Design and development of novel bio–based functionally
graded foams for enhanced acoustic capabilities. J. Mater. Sci. 2015, 50.

60. Zhou, C.; Wang, P.; Li, W. Fabrication of functionally graded porous polymer via supercritical CO2 foaming.
Compos. B Eng. 2011, 42, 318–325. [CrossRef]

61. Yao, J.; Rodrigue, D. Density graded polyethylene foams produced by compression moulding using a
chemical blowing agent. Cell. Polym. 2012, 31, 189–206. [CrossRef]

62. Stubenrauch, C.; Menner, A.; Bismarck, A.; Drenckhan, W. Emulsion and foam templating—Promising routes
to tailor–made porous polymers. Angew. Chem. Int. Ed. 2018, 57, 10024–10032. [CrossRef]

63. Andrieux, S.; Quell, A.; Stubenrauch, C.; Drenckhan, W. Liquid foam templating—A route to tailor–made
polymer foams. Adv. Colloid Interface 2018, 256, 276–290. [CrossRef]

64. Lee, J.J.; Cho, M.Y.; Kim, B.H.; Lee, S. Development of eco–friendly polymer foam using overcoat technology
of deodorant. Materials 2018, 11, 1898. [CrossRef] [PubMed]

65. Obradovic, J.; Voutilainen, M.; Virtanen, P.; Lassila, L.; Fardim, P. Cellulose fibre–reinforced biofoam for
structural applications. Materials 2017, 10, 619. [CrossRef] [PubMed]

66. Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. Polymer nano–foams for insulating
applications prepared from CO2 foaming. Prog. Polym. Sci. 2015, 41, 122–145. [CrossRef]

67. Chollakup, R.; Smitthipong, W.; Chworos, A. Specific interaction of DNA–functionalized polymer colloid.
Polym. Chem. 2010, 1, 658–662. [CrossRef]

68. Chollakup, R.; Smitthipong, W.; Chworos, A. DNA–functionalized polystyrene particles and their controlled
self–assembly. RSC Adv. 2014, 4, 30648–30653. [CrossRef]

69. Strachota, B.; Morand, A.; Dybal, J.; Matejka, L. Control of gelation and properties of reversible Diels–Alder
networks: Design of a self–healing network. Polymers 2019, 11, 930. [CrossRef]

70. Stephanou, P.S.; Tsimouri, I.C.; Mavrantzas, V.G. Simple, Accurate and user–friendly differential constitutive
model for the rheology of entangled polymer melts and solutions from nonequilibrium thermodynamics.
Materials 2020, 13, 2867. [CrossRef]

71. Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of
extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [CrossRef]

72. Pakornpadungsit, P.; Smitthipong, W.; Chworos, A. Self–assembly nucleic acid–based biopolymers: Learn
from the nature. J. Polym. Res. 2018, 25, 45. [CrossRef]

73. Yokoyama, H.; Sugiyama, K. Nanocellular structures in block copolymers with CO2–philic blocks using CO2

as a blowing agent: Crossover from micro- to nanocellular structures with depressurization temperature.
Macromolecules 2005, 38, 10516–10522. [CrossRef]

74. Jiang, Y.; Greco, C.; Daoulas, K.h.; Chen, J.Z.Y. Thermodynamics of a compressible Maier–Saupe model based
on the self–consistent field theory of wormlike polymer. Polymers 2017, 9, 48. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acs.iecr.8b05195
http://dx.doi.org/10.1016/j.cej.2019.01.077
http://dx.doi.org/10.1016/j.supflu.2018.12.001
http://dx.doi.org/10.1177/0262489319839632
http://dx.doi.org/10.1016/j.matdes.2018.11.019
http://dx.doi.org/10.1002/pat.4100
http://dx.doi.org/10.1016/j.polymer.2016.06.045
http://dx.doi.org/10.1177/0021955X15570077
http://dx.doi.org/10.1016/j.compositesb.2010.11.001
http://dx.doi.org/10.1177/026248931203100401
http://dx.doi.org/10.1002/anie.201801466
http://dx.doi.org/10.1016/j.cis.2018.03.010
http://dx.doi.org/10.3390/ma11101898
http://www.ncbi.nlm.nih.gov/pubmed/30287749
http://dx.doi.org/10.3390/ma10060619
http://www.ncbi.nlm.nih.gov/pubmed/28772981
http://dx.doi.org/10.1016/j.progpolymsci.2014.07.001
http://dx.doi.org/10.1039/b9py00290a
http://dx.doi.org/10.1039/C4RA03825H
http://dx.doi.org/10.3390/polym11060930
http://dx.doi.org/10.3390/ma13122867
http://dx.doi.org/10.1016/j.progpolymsci.2010.12.004
http://dx.doi.org/10.1007/s10965-018-1441-6
http://dx.doi.org/10.1021/ma051757j
http://dx.doi.org/10.3390/polym9020048
http://www.ncbi.nlm.nih.gov/pubmed/30970727


Materials 2020, 13, 4060 15 of 16

75. Mondy, L.; Rao, R.; Grillet, A.; Adolf, D.; Brotherton, C.; Russick, E.; Cote, R.; Castaňeda, J.; Thompson, K.;
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