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OBJECTIVE

Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dys-
function and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids
(FAs) have been shown to have various health benefits and may protect against
disease development. In 5,697 participants of the Multi-Ethnic Study of Athero-
sclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of
incident type 2 diabetes and further tested whether plasma n-3 FA levels may
interact with this relation.

RESEARCH DESIGN AND METHODS

NEFAs were measured in fasting serum using an enzymatic colorimetric assay and
phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were deter-
mined in plasma through gas chromatography-flame ionization detection in 5,697
MESA participants. Cox proportional hazards regression evaluated the association
between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs
modified this association adjusting for age, sex, race, education, field center,
smoking, and alcohol use.

RESULTS

Over a mean 11.4 years of the study period, higher diabetes incidence was found
across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35
(1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (Ptrend < 0.001). A
significant interaction of n-3 FAs on the relation between NEFAs and type 2 di-
abetes was also observed (Pinteraction = 0.03). For individuals with lower n-3 levels
(<75th percentile), a higher risk of type 2 diabetes was observed across quartiles
of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65,
2.88) (Ptrend < 0.001). No significant associations were observed in those with n-3
FAs ‡75th percentile (Ptrend = 0.54).

CONCLUSIONS

NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting
risk of its development. The modifying influence of n-3 FAs suggests a protective
effect against disease and/ormetabolic dysfunction related to NEFAs and requires
further study.
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Type 2 diabetes and insulin resistance
(IR) affect some one-third of Americans
(1), and their unabated progression re-
sults in a host of comorbidities, crippling
disability, and premature death (2). De-
spite these long-term health conse-
quences, the nascent stages of type 2
diabetes have been shown to be revers-
ible (3), making early identification vi-
tally important. Elevated fasting levels
of nonesterified fatty acids (NEFAs)
may represent an early type 2 diabetes
risk marker, but few large prospective
studies have examined whether they
predict future disease incidence.
Functionally, NEFAs serve as a key en-

ergy source for skeletal muscle and
myocardium as well as other major or-
gans, but chronically high levels indicate
metabolic dysfunction and have been
associated with obesity and risk of
type 2 diabetes (4–8), though the null
finding has also been reported (9). In
addition to being a potential marker of
pathophysiology, NEFAs have been
shown to directly promote IR in liver
and skeletal muscle across experimental
studies (10–13). Finally, NEFAs have
been shown to induce inflammation
(14,15), a known suppressor of insulin-
mediated glucose uptake and inducer of
IR (16–18). Overall, serumNEFA concen-
trations may not only serve as a marker
of type 2 diabetes, but also promote its
development.
In contrast to NEFAs, the n-3 fatty

acids (FAs) eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) have
been shown to have benefits with re-
spect to metabolic function. n-3 FAs
have been found to both stimulate in-
sulin sensitivity (19–22) and reduce in-
flammation (22–25), which would be
expected to halt or suppress the devel-
opment of type 2 diabetes. Despite such
evidence, a protective influence of n-3
FAs has beenmixed in prospective study
populations with n-3 levels reported to
be inversely related (26), positively re-
lated (27,28), and unrelated to type 2
diabetes incidence (29,30). Such dis-
crepancies among experimental and
prospective studies suggest that high
n-3 FAs may not be a strong suppressor
of type 2 diabetes, but n-3 FAsmay blunt
specific forms of metabolic dysfunction
such as those related to elevated NEFA
levels.
Taken together, there is sufficient ev-

idence showing n-3 FAs and NEFAs have

opposing influences on inflammatory
and IR-inducing pathways. As NEFAs
have been shown to promote IR and in-
flammation, it was hypothesized that
high circulating NEFA levels will predict
type 2 diabetes incidence. In contrast,
n-3 FAs have been shown to suppress
inflammation and promote insulin sen-
sitivity; therefore, it was hypothesized
that high n-3 FAs (EPA + DHA) will modify
(i.e., interact with) the NEFA–diabetes
association by mitigating disease inci-
dence in those with higher NEFA levels.
Given the controversy across studies of
dietary n-3 FAs, an objective, direct mea-
surement of plasma n-3 FAs was used to
more accurately assess their bioavailability.

RESEARCH DESIGN AND METHODS

Population
The primary aim of MESA is to investi-
gate clinical and subclinical coronary
heart disease development and progres-
sion. The study design has been previ-
ously described (31), and information
about MESA is also available at http://
www.mesa-nhlbi.org. MESA is com-
posed of 6,814 men and women be-
tween the ages of 45 and 84 years and
without evidence of clinical coronary
heart disease at baseline. The popula-
tion of 38.6% white, 27.6% black,
11.8% Chinese, and 22.0% Hispanic sub-
jects was recruited from six commu-
nities in the U.S. (Baltimore, MD;
Chicago, IL; Forsyth County, NC; Los An-
geles County, CA; New York, NY; and
St. Paul, MN). Institutional Review Board
approval was obtained at all MESA sites,
and all participants gave informed con-
sent. Recruitment and baseline examina-
tions began in July 2000 and were
conducted over a 24-month period. Ex-
clusions for this analysis include partici-
pants with prevalent diabetes (n = 680),
those with baseline fasting glucose
$126 mg/dL (n = 179), or missing data
for plasma phospholipid FAs (n = 241) or
serum NEFAs (n = 91), leaving a total
5,697 participants in this subcohort.

Plasma and Serum Measurements
Twelve-hour fasting blood was drawn,
and serum and EDTA-anticoagulant
tubes were collected and stored at
2708C using a standardized protocol
(31). Serum insulin was measured by
the Linco Human Insulin Specific RIA
Kit (Linco Research, Inc., St. Charles, MO)
and serum glucose by rate reflectance

spectrophotometry using thin-film adap-
tation of the glucose oxidase method on
the Vitros analyzer (Johnson & Johnson
Clinical Diagnostics, Inc., Rochester, NY)
in a central laboratory (Collaborative
Studies Clinical Laboratory at Fairview-
University Medical Center, Minneapolis,
MN) using Centers for Disease Control
and Prevention–standardized methods.
C-reactive protein was measured using
the BNII nephelometer (N High Sensitiv-
ity CRP; Dade Behring Inc, Deerfield, IL).
NEFA levels (mmol/L) were determined
in serum using a colorimetric assay (HR
Series NEFA-HR [2]; Wako Diagnostics,
Richmond, VA).

Phospholipid FAs were extracted from
EDTA plasma using the chloroform/
methanol method previously described
by Cao et al. (32). Briefly, lipids are ex-
tracted with a mixture of chloroform/
methanol (2:1, volume for volume) and
subclasses separated using thin-layer
chromatography. The phospholipid
band is harvested and derivatized to
methyl esters. The final product is dis-
solved in heptane and injected onto a
capillary Varian CP7420 100-m column
with a Hewlet Packard 5890 gas chro-
matograph. The gas chromatograph is
configured for a single capillary column
with a flame ionization detector and in-
terphased with HP chemstation soft-
ware. FAs were expressed as a percent
of the total phospholipid FAs. The follow-
ing representative coefficients of varia-
tion were obtained (n = 20): EPA, 7.2%;
and DHA, 3.2%.

Demographic and Anthropometric
Characteristics
Information regarding age, sex, race/
ethnicity, education, and lifestyle fac-
tors was obtained by questionnaires.
Height (m), weight (kg), andwaist circum-
ference were measured according to
standard procedures (31).

Incidence of Type 2 Diabetes
Type 2 diabetes incidence was deter-
mined across 5 exams and 12 follow-up
contacts over an average of 11.4 years
and was defined by one of the following
criteria: reported physician diagnosis, use
of antidiabetes medications, or fasting
(12-h) glucose .126 mg/dL.

Statistical Methods
SAS version 9.3 (SAS Institute; Cary, NC)
was used to analyze the data. Baseline
characteristics are presented as means
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(SE) for continuous variables and fre-
quencies (%) for categorical variables
according to quartiles of NEFAs. In addi-
tion, baseline characteristics were also
presented by n-3 (EPA + DHA) FA cate-
gory (,75th percentile and $75th per-
centile). Cox proportional hazards
regression analysis evaluated the rela-
tion of quartiles of NEFAs with the de-
velopment of type 2 diabetes. Two
statistical models were developed:
model 1 was adjusted for age, sex,
race, education, field center, current
smoking, current alcohol intake, and
plasma n-3 FAs. As adiposity and inflam-
mation are likely in the pathway(s) of
interest, model 2 was adjusted for
model 1 plus waist circumference and
C-reactive protein. Effect modification
of n-3 FAs on this relation was sus-
pected, so an interaction term for n-3
FA levels was included in the statistical
models. Plasma n-3 FAs were examined
as an interaction variable, dichotomiz-
ing levels by ,75th percentile of the
distribution versus $75th percentile of
the distribution. Statistical tests were
considered significant at P , 0.05.

RESULTS

Excluding patients with diabetes at
baseline, 657 individuals developed
type 2 diabetes over an average 11.4
years of follow-up. Adjusted baseline
characteristics stratified by quartiles of
NEFAs for 5,697 MESA participants are
shown in Table 1. Characteristics across
dichotomized plasma n-3 FA categories
are shown in Table 2, and significant dif-
ferences were observed between those
with low (,75th percentile) and high
($75th percentile) n-3 FA levels. A
greater proportion of those with ele-
vated n-3 FA levels were older, female,
and nonsmokers; had lower BMI and
waist circumferences; and had lower
levels of fasting insulin and hs-CRP.

For the main effect, hazard ratios
(HRs) and 95% CIs for the association
between NEFAs and incident type 2 di-
abetes are reported in Table 3. Signifi-
cantly higher risks for developing type 2
diabetes were observed across succes-
sive NEFA quartiles after adjusting for
age, sex, race, education, site, smoking,
and alcohol use. The HRs (95% CIs)
across quartiles 1–4 were 1.0; 1.35

(1.07, 1.71); 1.58 (1.24, 2.00); and 1.86
(1.45, 2.38), respectively (Ptrend ,
0.001). Further adjustment for waist cir-
cumference and hs-CRP attenuated the
effect sizes, but associations between
NEFAs and incident type 2 diabetes re-
mained significant (Ptrend = 0.006).

A significant interaction of plasma n-3
FAs (high vs. low levels) on the relation
between NEFAs and incident type 2 di-
abetes (Pinteraction = 0.03) was found,
shown in Table 4. For individuals with
n-3 FAs $75th percentile of the distri-
bution, no statistically significant rela-
tionship between NEFAs and incident
type 2 diabetes was found. For indivi-
duals with n-3 FAs ,75th percentile,
their risk of developing type 2 diabetes
was significantly greater across succes-
sive NEFA quartiles. Further adjustment
for waist circumference and hs-CRP
attenuated the associations between
NEFAs and type 2 diabetes, but the asso-
ciation remained significant across quar-
tiles (Ptrend , 0.001).

A separate Cox proportional hazards
model examining the association be-
tween plasma n-3 FAs and risk of type

Table 1—Mean (SE) and frequency (%) of baseline characteristics stratified across quartiles of NEFAs, MESA, N = 5,697

Characteristic Quartiles of NEFAs Ptrend

Quartile, n 1 (n = 1,380) 2 (n = 1,461) 3 (n = 1,455) 4 (n = 1,401)

NEFA range 0.13–0.39 0.40–0.52 0.53–0.67 0.68–2.11

Age, years, mean (SE) 58.9 (0.28) 60.8 (0.26) 62.8 (0.26) 64.3 (0.27) ,0.001

Sex, % women 28.3 45.3 61.4 79.3 ,0.001

Race, n (%)
Black 370 (26.8) 387 (26.5) 380 (26.1) 324 (23.1) 0.11
Chinese 131 (9.5) 164 (11.2) 204 (14.0) 188 (13.4) ,0.001
Hispanic 301 (21.8) 330 (22.6) 298 (20.5) 262 (18.7) 0.06
White 578 (41.9) 580 (39.7) 573 (39.4) 627 (44.8) 0.007

Education, n (%)
Less than HS 233 (16.9) 247 (16.9) 246 (16.9) 212 (15.1) 0.46
HS graduate 237 (17.2) 251 (17.2) 262 (18.0) 269 (19.2) 0.53
Some college 381 (27.6) 395 (27.0) 447 (30.7) 403 (28.8) 0.16
College graduate 237 (17.2) 267 (18.2) 247 (17.0) 269 (19.2) 0.42
Graduate school 292 (21.1) 301 (20.6) 252 (17.4) 248 (17.7) 0.03

Current smoking, % (SE) 14.8 (0.01) 12.4 (0.01) 13.2 (0.01) 12.0 (0.01) 0.17

Current alcohol use, % (SE) 42.5 (0.01) 43.9 (0.01) 41.0 (0.01) 41.1 (0.01) 0.31

BMI, kg/m2 27.0 (0.14) 27.9 (0.13) 28.4 (0.13) 28.6 (0.14) ,0.001

Waist circumference, cm 94.5 (0.38) 97.1 (0.35) 97.69 (0.35) 98.8 (0.37) ,0.001

hs-CRP, mg/L 3.08 (0.16) 3.79 (0.15) 3.77 (0.15) 4.01 (0.16) ,0.001

Glucose, mg/dL 88.0 (0.28) 89.2 (0.26) 89.8 (0.26) 91.4 (0.28) ,0.001

Insulin, mU/L 8.5 (0.15) 9.5 (0.14) 9.7 (0.14) 10.3 (0.15) ,0.001

n-3, % of total* 5.79 (0.06) 5.59 (0.05) 5.61 (0.05) 5.58 (0.06) 0.03

EPA, % of total 0.99 (0.02) 0.88 (0.02) 0.87 (0.02) 0.86 (0.02) ,0.001

DHA, % of total 3.86 (0.04) 3.79 (0.03) 3.80 (0.03) 3.80 (0.04) 0.56

Adjusted for age, sex, race, education, and field center. n-3 FAs = EPA + DHA. *Low n-3 FA category,75th percentile; high n-3 FA category$75th
percentile. HS, high school.
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2 diabetes incidencewas also conducted.
Compared with those with lower plasma
n-3 FA levels (,75th percentile), individ-
uals with higher plasma n-3 FAs ($75th
percentile) showed amarginal 17% lower
risk of developing type 2 diabetes (HR
0.83 [95% CI 0.68, 1.01]).

CONCLUSIONS

In a MESA subcohort of 5,697 partici-
pants over an 11-year follow-up period,
we confirm previous findings that higher
circulating NEFA levels increase risk for
type 2 diabetes incidence. We extend

these findings by demonstrating a mod-
ifying influence of plasma n-3 FA levels
on this association. Notably, no associa-
tion between NEFAs and incident type 2
diabetes was observed for individuals
with high levels of n-3 FAs, whereas
those with lower n-3 FA levels have an
increasing risk of type 2 diabetes across
successive quartiles of NEFAs.

Though its interaction with n-3 FAs
was previously unrecognized, the asso-
ciation of NEFAs with metabolic dys-
function and/or type 2 diabetes has
been examined in a number of previous

studies. A cross-sectional study of Pima
Indians (5) revealed that high NEFA lev-
els was associated with type 2 diabetes
after controlling for potential confound-
ing factors including waist/thigh ratio
and insulin-mediated glucose uptake
(relative risk 2.3 [CI 1.1, 4.7]). A subse-
quent longitudinal study in the Paris
Prospective cohort reported that higher
fasting plasma NEFA concentrations
conveyed a 30% higher risk for deterio-
ration of glucose tolerance over a 2-year
period (6). A more recent nested case-
control study in the Atherosclerosis Risk
in Communities study showed a 63%
greater risk of type 2 diabetes develop-
ment among middle-aged adults who
had NEFA levels in the top quartile com-
pared with those in the bottom quartile
over a 9-year follow-up period (4).

In contrast to the above, early results
from the prospective Medical Research
Council Ely study showed that NEFA lev-
els were not elevated in those with type
2 diabetes and were not associated with
future type 2 diabetes (9). However,
these null findings may have stemmed
from power limitations, as only 21 indi-
viduals developed diabetes during the ini-
tial 4.5-year study period. A subsequent
study in the same cohort was conducted
in 2012 and showed that elevated NEFAs
were associated with an approximate
threefold increase in risk of type 2 dia-
betes or impaired fasting glucose over a
5–8-year period (7). Coupled with the
above evidence from the Atherosclerosis
Risk in Communities and Paris Prospec-
tive studies, elevations in NEFAs are a
marker of disease risk independent of
other risk factors including obesity and
inflammation. However, there is also
compelling evidence to suggest that ele-
vated NEFA levels directly contribute to
type 2 diabetes pathogenesis.

Despite the relatively few prospective
studies of NEFAs and type 2 diabetes,
experimental studies in cell culture, an-
imal models, and humans have shown
that NEFAs activate pathways known
to promote disease development. Spe-
cifically, it has been demonstrated that
elevated NEFAs increase lipid mediators
such as diacylglycerol and ceramide
(33–36) and induce inflammation (13–
15), all of which may disrupt peripheral
insulin-mediated signaling (13–18,36).
Further illustrating their deleterious
effects, pharmacological intervention
to reduce NEFA levels was found to

Table 2—Mean (SE) and frequency (%) of baseline characteristics by plasma
phospholipid n-3 FA category,* MESA, N = 5,697

Characteristic
Low n-3 category**

(n = 4,399)
High n-3 category**

(n = 1,304) P value

n-3 FAs, mean (SE)* 3.9 (0.02) 7.5 (0.03) ,0.001

EPA, % total 0.64 (0.01) 1.79 (0.02) ,0.001

DHA, % total 3.25 (0.01) 5.71 (0.03) ,0.001

Age, years, mean (SE) 61.3 (0.2) 63.0 (0.3) ,0.001

Sex, n (% women) 2,313 (53) 744 (59) 0.005

Race, n (%)
Black 1,056 (24) 405 (31) ,0.001
Chinese 352 (8) 352 (27) ,0.001
Hispanic 1,012 (23) 156 (12) ,0.001
White 1,979 (45) 391 (30) ,0.001

Education, n (%)
Less than HS 763 (17) 174 (14) 0.002
HS graduate 818 (19) 204 (15) 0.003
Some college 1,292 (29) 333 (26) 0.04
College graduate 770 (18) 250 (18) 0.83
Graduate school 750 (17) 343 (27) ,0.001

Current smoking, n (%) 653 (15) 92 (8) ,0.001

Current alcohol use, n (%) 1,820 (43) 573 (38) ,0.001

BMI, kg/m2 28.2 (0.1) 27.3 (0.1) ,0.001

Waist circumference, cm 97.8 (0.2) 94.9 (0.4) ,0.001

hs-CRP, mg/dL 3.8 (0.1) 3.1 (0.1) ,0.001

Glucose, mg/dL 89.7 (0.2) 89.5 (0.3) 0.59

Insulin, mU/L 9.7 (0.1) 8.9 (0.2) ,0.001

Adjusted for age, sex, race, education, and field center. *n-3 FAs = EPA + DHA. **Low n-3 FA
category ,75th percentile; high n-3 FA category $75th percentile. HS, high school.

Table 3—HRs (95% CIs) for the main effect associations of incident type 2 diabetes
across quartiles of serum NEFAs, MESA, N = 5,697

Quartiles of NEFAs Ptrend

Quartile, n 1 (n = 1,380) 2 (n = 1,461) 3 (n = 1,455) 4 (n = 1,401)

Range 0.13–0.39 0.40–0.52 0.53–0.67 0.68–2.11

Cases, n 124 166 181 186

Model 1, HR
(95% CI) 1.0 1.35 (1.07, 1.71) 1.58 (1.24, 2.00) 1.86 (1.45, 2.38) ,0.001

Model 2, HR
(95% CI) 1.0 1.23 (0.97, 1.56) 1.35 (1.06, 1.72) 1.56 (1.21, 2.00) 0.006

Model 1 adjusted for age, sex, race, education, field center, smoking, and alcohol use. Model 2
adjusted for model 1 plus waist circumference and hs-CRP.
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suppress inflammatory signaling and
concomitantly increase insulin sensitiv-
ity in human subjects with type 2 diabe-
tes (14). Taken together, high levels of
NEFAs likely promote IR through multi-
ple pathways including the accumula-
tion of intracellular lipids and induction
of inflammation. Whether these phe-
nomena occur in individuals with chron-
ically elevated NEFAs continues to be
researched, but a pathophysiological
role of NEFAs in type 2 diabetes is sup-
ported by the present findings.
The significant modifying influence of

n-3 FAs on the relation between NEFAs
and incident type 2 diabetes is a novel
observation, and any number of mech-
anisms may account for this result (22–
24,37). First, n-3 FAs and their metabo-
lites, including the protectins and resolvins,
may serve as direct antagonists to IR at
systemic and local levels. In the case of
the former, the DHA metabolite resolvin
D1 has been shown to reduce IR by in-
ducing expression of adiponectin (24), a
systemic hormone well-documented for
promoting insulin sensitivity (37). n-3
FAs have further been reported to act
directly on peripheral tissues to reduce
IR via the GPR120 receptor (22). n-3–
stimulated activation of the GPR120 re-
ceptor has been shown to enhance
GLUT4 translocation in adipocytes, facil-
itating glucose transport. Apart from
their putative direct effects on IR, n-3
FAs may also actively suppress local in-
flammation. More specifically, n-3 FAs
havebeen shown to reduce:1) inflamma-
tory markers C-reactive protein, inter-
leukin-6, and tumor necrosis factor-a
and associated signaling cascades; 2) ac-
tivation of inflammatory immune cells;

3) macrophage accumulation in tissue;
and 4) Toll-like receptor recruitment and
activation (22–24). Taken together, n-3 FAs
and their metabolites have been shown
to activate mediators known to promote
insulin sensitivity and suppress inflamma-
tion, both of which may counter type 2
diabetes development and/or progres-
sion. Importantly, the efficacy of n-3 FAs
appears partially dependent on the study
population, andhealth benefitsmay not be
apparent without an underlying pathology,
such as IR or inflammatory phenotype.

The current study has clinical, dietary,
and future study implications. From a
clinical perspective, serum NEFAs are
not regularly assessed, and a standard-
ized method with recognized physiolog-
ical and pathophysiological ranges has
yet to be established. It also remains
unknown whether the risk information
derived from assessing NEFA levels war-
rants the cost in the general population
(,$1.00/sample in the Wako assay, ap-
proved for diagnostic use). By compari-
son, assessing plasma n-3 FAs is likely
cost-ineffective for the general popula-
tion; however, recommendations to in-
crease dietary n-3 FAs for those with
high NEFA levels may be warranted
and require further research. With re-
spect to future studies of n-3 FA and
type 2 diabetes incidence, it is impor-
tant to recognize that IR and type 2 di-
abetes are conditions that often take
years to develop, and short-term n-3
FA interventions may not be sufficient
to detect improvements in affected
individuals. It must further be acknowl-
edged that dietary n-3 intake moderately
correlateswith levels of bioavailable n-3 FA
in plasma and cell membranes (38), and

food preparation methods have a signifi-
cant impact on their incorporation (39);
thus, increased levels of n-3 FA intake
may not necessarily translate to equivalent
levels in bioavailable n-3 FAs. Taken to-
gether, long-term trials of n-3 FAs with di-
rect assessments of FA and NEFA levels as
well as multiple secondary end point
markers for IR, insulin sensitivity, and/or
inflammation may be better suited for
evaluating a protective effect(s) of n-3 FAs.

The current study has a number of
strengths as well as limitations. It is
the first prospective study with a large
multiethnic cohort showing that n-3 FAs
modify the association between NEFAs
and risk of incident type 2 diabetes. This
association remained significant despite
adjusting for multiple confounding fac-
tors, including those for adiposity and
inflammation that are likely in the path-
way of interest. In terms of limitations,
NEFA levels have been reported to be
highly variable, even in fasting subjects
(40). Such volatility of NEFA measures
can neither be confirmed nor refuted as
they were not measured across multiple
time points. In addition, plasma phospho-
lipid FA levels were used as a proxy of
bioavailable n-3 FAs, but represent only
one pool of total plasma n-3 levels.

NEFA measurement may represent a
tool for assessing type 2 diabetes risk in-
dependent of other risk factors including
adiposity and inflammation. Further stud-
ies are warranted to establish NEFA
ranges that identify moderate- and high-
risk reference ranges for type 2 diabetes.
The significant modifying influence of n-3
FAs (i.e., higher levels of plasma n-3 FAs)
suggests a protective influence from dis-
ease development, but long-term trials or

Table 4—Plasma phospholipid n-3 FAs modify the association between incident type 2 diabetes and serum NEFAs, presented
as HRs (95% CIs), MESA, N = 5,697

Quartiles of NEFAs Ptrend

Quartile, n 1 (n = 1,380) 2 (n = 1,461) 3 (n = 1,455) 4 (n = 1,401)

Range 0.13–0.39 0.40–0.52 0.53–0.67 0.68–2.11

Pinteraction = 0.03

Low n-3 (,75th percentile)*
Cases, n 92 127 147 157
Model 1, HR (95% CI) 1.0 1.41 (1.07, 1.84) 1.77 (1.35, 2.31) 2.18 (1.65, 2.88) ,0.001
Model 2, HR (95% CI) 1.0 1.30 (1.00, 1.70) 1.51 (1.15, 1.98) 1.83 (1.39, 2.43) ,0.001

High n-3 ($75th percentile)*
Cases, n 32 39 34 29
Model 1, HR (95% CI) 1.0 1.17 (0.72, 1.89) 1.01 (0.60, 1.70) 0.96 (0.55, 1.66) 0.85
Model 2, HR (95% CI) 1.0 1.00 (0.61, 1.63) 0.89 (0.53, 1.51) 0.80 (0.46, 1.40) 0.83

Model 1 adjusted for age, sex, race, education, field center, smoking, and alcohol use. Model 2 adjusted for model 1 plus waist circumference and
hs-CRP. *Low n-3 FA category ,75th percentile; high n-3 FA category $75th percentile.
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intervention studies are needed to con-
clusively demonstratewhether higher n-3
FAs abrogate the risk conferred by NEFAs
in the development of type 2 diabetes.
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