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Abstract: In this work we report solvatochromic and luminescent properties of ethyl N-salicylideneg-
lycinate (1), ethyl N-(5-methoxysalicylidene)glycinate (2), ethyl N-(5-bromosalicylidene)glycinate
(3), and ethyl N-(5-nitrosalicylidene)glycinate (4) dyes. 1–4 correspond to a class of N-salicylidene
aniline derivatives, whose photophysical properties are dictated by the intramolecular proton transfer
between the OH-function and the imine N-atom, affording tautomerization between the enol-imine
and keto-enamine forms. Photophysical properties of 1–4 were studied in different pure non-polar
and (a)protic polar solvents as well as upon gradual addition of NEt3, NaOH, and CH3SO3H. The
DFT calculations were performed to verify the structures of 1–4 as well as their electronic and
optical properties.

Keywords: Schiff base; N-salicylidene aniline derivative; photophysical properties; solvatochromism;
Hirshfeld surface analysis; DFT

1. Introduction

Schiff base is a condensation product of aldehyde and primary amine. When sal-
icylaldehyde derivative is used as an aldehyde and amine is a monoamine derivative,
the condensation yields a NO-Schiff base compound that may produce complexes with
a great variety of metal ions upon deprotonation. Thus, Schiff bases are still of great im-
portance in coordination chemistry, although more than a century has passed since their
discovery [1–3]. Schiff bases have been known to be the most actively used ligands thanks
to their ease of synthesis, availability, structural versatility, and solubility in common
solvents. Moreover, Schiff bases are not only efficient ligands to coordinate/chelate many
elements but can stabilize elements in various and specific oxidation states. It is also note-
worthy that Schiff bases, as well as their corresponding complexes, can possess pronounced
bioactivity [4–6], including against coronavirus [7]. The latter is becoming even more
important since these days humanity is in dire need of drugs for COVID-19 treatment.

Schiff bases fabricated from salicylaldehyde derivatives (N-salicylidene aniline deriva-
tives) have been the main focus of our extensive studies due to their chromic properties
and a broad color palette [8–18]. Particularly, these compounds are known to a possible
intramolecular transfer of the OH proton to the imine N-atom affording tautomerization
between the enol-imine and keto-enamine forms [19–28]. This phenomenon is usually
responsible for the fascinating optical properties of these compounds. Notably, the enol-
imine and keto-enamine forms can adopt either the trans- or cis-isomers, yielding a rich
color palette from colorless to red through yellow (Scheme 1) [29,30]. These colors can be
called by different external stimuli (light irradiation, temperature, solvent, pH, etc.). Thus,

Molecules 2021, 26, 3112. https://doi.org/10.3390/molecules26113112 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6571-6526
https://www.mdpi.com/article/10.3390/molecules26113112?type=check_update&version=1
https://doi.org/10.3390/molecules26113112
https://doi.org/10.3390/molecules26113112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26113112
https://www.mdpi.com/journal/molecules


Molecules 2021, 26, 3112 2 of 19

chromic properties are one of the main features of N-salicylidene aniline derivatives and
are important for many practical applications [31–35].
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It should be noticed that we have recently initiated comprehensive studies of closely 
related N-salicylidene aniline derivatives 1–4, derived from the ethyl ester of glycine 
(Chart 1) [17,18]. We found that 1–4 in the solid state each exhibits an enol-imine form. 
Notably, the electron-withdrawing NO2 substituent in 4 is mainly responsible for the for-
mation of the cis-keto form isomer in EtOH, while dyes 1–3 adopt the enol-imine form in 
the same solvent. Additionally, only 4 is emissive under ambient conditions in the solid 
state, while 2 is emissive in EtOH. 

 
Chart 1. Diagrams of the discussed dyes 1 (X = H), 2 (X = OMe), 3 (X = Br) and 4 (X = NO2). 

Intrigued by the obtained results, herein, we continue our comprehensive studies of 
the dyes 1–4. Particularly, to probe solvatochromism, we focused on the optical properties 
of these compounds in different solvents, as well as shedding more light on their crystal 
structures using the Hirshfeld surface analysis to examine in-depth the non-covalent in-
teractions responsible for crystal packing, which might be responsible for the observed 
photophysical properties of 1–4 in the solid state. 

Scheme 1. Isomeric forms and the corresponding color palette of N-salicylidene aniline derivatives.

Notably, due to the abovementioned tautomerization, N-salicylidene aniline deriva-
tives can also possess the so-called ESIPT (excited state intramolecular proton transfer) [36],
which can afford an equilibrium between the excited keto-enamine* and enol-imine*
forms [29,30,37,38]. The keto-enamine form usually, emits at a lower energy than the
enol-imine tautomer leading to dual fluorescence, which can be observed as two (or more)
emission bands [29,30,37,38]. The ratio of these bands can be influenced by the nature of a
solvent, which allows tuning the resulting emission color.

It should be noticed that we have recently initiated comprehensive studies of closely
related N-salicylidene aniline derivatives 1–4, derived from the ethyl ester of glycine
(Chart 1) [17,18]. We found that 1–4 in the solid state each exhibits an enol-imine form.
Notably, the electron-withdrawing NO2 substituent in 4 is mainly responsible for the
formation of the cis-keto form isomer in EtOH, while dyes 1–3 adopt the enol-imine form
in the same solvent. Additionally, only 4 is emissive under ambient conditions in the solid
state, while 2 is emissive in EtOH.
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Intrigued by the obtained results, herein, we continue our comprehensive studies of
the dyes 1–4. Particularly, to probe solvatochromism, we focused on the optical properties
of these compounds in different solvents, as well as shedding more light on their crystal
structures using the Hirshfeld surface analysis to examine in-depth the non-covalent
interactions responsible for crystal packing, which might be responsible for the observed
photophysical properties of 1–4 in the solid state.

2. Results and Discussion

Dyes 1–4 were produced according to the described synthetic procedure [18]. We
first applied a Hirshfeld surface analysis [39] to study the intermolecular interactions in
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the reported crystal structures of 1–4 [17]. As a result, a set of 2D fingerprint plots [40]
were generated using CrystalExplorer 3.1 [41]. In order to estimate the propensity of two
chemical species being in contact, we also calculated the enrichment ratios (E) [42] of the
intermolecular contacts.

The intermolecular H···H, H···C and H···O contacts occupy a majority of a molecular
surface of 1 (Table 1). There is a barely observed splitting of the shortest H···H fingerprint
at de + di ≈ 2.4 Å, which is due to the shortest contact being between three atoms, rather
than for direct two-atom contact (Figure S1 in Supplementary Materials) [40]. The H···C
and H···O shortest contacts are shown at de + di ≈ 2.7 and 2.3 Å, respectively (Figure S1).
The latter contacts in the corresponding fingerprint plot are shown as two spikes and
mainly correspond to the contacts formed by the carbonyl oxygen atom. The molecular
surface of 1 is also characterized by a negligible proportion of the H···N, C···O and O···O
contacts, ranging from 0.6% to 2.4% (Table 1).

Table 1. Hirshfeld contact surfaces and derived “random contacts” and “enrichment ratios” for the crystal structures of 1–4.
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H 48.3 – – – 45.5 – – – 35.4 – – – – 30.0 – – – 
C 22.6 0.0 – – 20.9 0.6 – – 13.7 4.1 – – – 11.5 4.9 – – 
N 2.4 0.0 0.0 – 2.4 0.0 0.0 – 1.9 0.4 0.0 – – 3.3 0.6 0.0 – 
O 24.9 1.2 0.0 0.6 30.1 0.3 0.0 0.3 23.4 1.6 0.5 0.2 – 44.1 1.8 1.7 2.1 
Br – – – – – – – – 17.4 0.5 0.0 0.0 0.9 – – – – 

Surface (S, %) 
 73.3 11.9 1.2 13.7 72.2 11.2 1.2 15.5 63.6 12.2 1.4 13.0 9.9 59.5 11.9 2.8 25.9 

Random contacts (R, %) 
H 53.7 – – – 52.1 – – – 40.4 – – – – 35.4 – – – 
C 17.4 1.4 – – 16.2 1.3 – – 15.5 1.5 – – – 14.2 1.4 – – 
N 1.8 0.0 0.0 – 1.7 0.0 0.0 – 1.8 0.3 0.0 – – 3.3 0.0 0.1 – 
O 20.1 3.3 0.3 1.9 22.4 3.5 0.4 2.4 16.5 3.2 0.4 1.7 – 30.8 6.2 1.5 6.7 
Br – – – – – – – – 12.6 2.4 0.3 2.6 1.0 – – – – 
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N 1.33 – – – 1.41 – – – 1.06 – – – – 1.00 – – – 
O 1.24 0.36 – 0.32 1.34 0.09 – 0.13 1.42 0.50 – 0.12 – 1.43 0.29 1.13 0.31 
Br – – – – – – – – 1.38 0.21 – 0.0 0.90 – – – – 

1 Values are obtained from CrystalExplorer 3.1 [41]. 2 The “enrichment ratios” were not computed when the “random contacts” were 
lower than 0.9%, as they are not meaningful [42]. 
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lower than 0.9%, as they are not meaningful [42]. 

H C N O H C N O H C N O Br H C N O

Contacts (C, %) 1

H 48.3 – – – 45.5 – – – 35.4 – – – – 30.0 – – –

C 22.6 0.0 – – 20.9 0.6 – – 13.7 4.1 – – – 11.5 4.9 – –

N 2.4 0.0 0.0 – 2.4 0.0 0.0 – 1.9 0.4 0.0 – – 3.3 0.6 0.0 –

O 24.9 1.2 0.0 0.6 30.1 0.3 0.0 0.3 23.4 1.6 0.5 0.2 – 44.1 1.8 1.7 2.1

Br – – – – – – – – 17.4 0.5 0.0 0.0 0.9 – – – –

Surface (S, %)

73.3 11.9 1.2 13.7 72.2 11.2 1.2 15.5 63.6 12.2 1.4 13.0 9.9 59.5 11.9 2.8 25.9

Random contacts (R, %)

H 53.7 – – – 52.1 – – – 40.4 – – – – 35.4 – – –

C 17.4 1.4 – – 16.2 1.3 – – 15.5 1.5 – – – 14.2 1.4 – –

N 1.8 0.0 0.0 – 1.7 0.0 0.0 – 1.8 0.3 0.0 – – 3.3 0.0 0.1 –

O 20.1 3.3 0.3 1.9 22.4 3.5 0.4 2.4 16.5 3.2 0.4 1.7 – 30.8 6.2 1.5 6.7

Br – – – – – – – – 12.6 2.4 0.3 2.6 1.0 – – – –

Enrichment (E) 2

H 0.90 – – – 0.87 – – – 0.88 – – – – 0.85 – – –

C 1.30 0.0 – – 1.29 0.46 – – 0.88 2.73 – – – 0.81 3.50 – –

N 1.33 – – – 1.41 – – – 1.06 – – – – 1.00 – – –

O 1.24 0.36 – 0.32 1.34 0.09 – 0.13 1.42 0.50 – 0.12 – 1.43 0.29 1.13 0.31

Br – – – – – – – – 1.38 0.21 – 0.0 0.90 – – – –
1 Values are obtained from CrystalExplorer 3.1 [41]. 2 The “enrichment ratios” were not computed when the “random contacts” were lower
than 0.9%, as they are not meaningful [42].
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Substitution of the 5-hydrogen atom by the MeO function in 2 decreases a proportion
of the H···H and H···C contacts by 2.8 and 1.7%, respectively, with the simultaneous
increase of a proportion of the H···O contacts up to 30.1% (Table 1). The H···H and H···C
shortest contacts are now shown at de + di ≈ 2.2 and 2.9 Å, respectively (Figure S2). The
H···O contacts in the corresponding 2D fingerprint plot are also shown as two spikes with
the shortest contacts at de + di ≈ 2.3 Å, also being formed by the carbonyl oxygen atom
(Figure S2). The Hirshfeld molecular surface of 2 is further described by a very minor
proportion of the H···N, C···C, C···O and O···O contacts, varying from 0.3 to 2.4% (Table 1).

In 3, incorporation of the bromine instead of the hydrogen in 1 or the methoxy group
in 2 significantly decreases a proportion of the H· · ·H and H· · ·C intermolecular contacts
down to 35.4 and 13.7%, respectively. A proportion of the H· · ·O contact remains almost
the same as in 1 (Table 1). The H···H, H···C and H···O shortest contacts are shown in the
corresponding 2D fingerprint plots at de + di ≈ 2.2, 2.8, and 2.3 Å, respectively (Figure S3).
The molecular surface of 3 is additionally characterized by a remarkable proportion of
the H···Br intermolecular contacts of 17.4%, with the shortest contacts at de + di ≈ 3.0 Å
(Figure S3). Notably, the molecular surface of 3 is further described by a distinct proportion
of the C···C contacts of 4.1%, which is due to intermolecular π· · ·π stacking interactions
between the phenylene rings [17]. These contacts are shown on the 2D plot as a typical
area at de = di ≈ 1.7–2.0 Å (Figure S3). Insignificant contributions from H···N, C···N, C···O,
C···Br, N···O, O···O, and Br···Br contacts in 3 have also been revealed (Table 1).

Dye 4 contains the NO2 group in the same position as the corresponding substituent
in 2 and 3 (Chart 1). The molecular surface of 4 is characterized by a dominant contribution
from the H···O contacts of 44.1% with the shortest contacts, shown in the corresponding
2D fingerprint plot at de + di ≈ 2.3 Å mainly formed by both the NO2 and carbonyl oxygen
atoms (Figure S4). The H···H and H···C contacts occupy 30.0 and 11.5%, respectively.
Notably, the structure of 4, similar to 3, also exhibits a distinct proportion of the C···C
contacts of 4.9% due to the formation of intermolecular π· · ·π stacking interactions between
the phenylene rings [17]. These contacts are also shown on the 2D plot as a typical area at
de = di ≈ 1.7–2.0 Å (Figure S4). Remaining contacts, namely H···N, C···N, C···O, N···O and
O···O contacts, occupy a negligible proportion of the molecular surface of 4 (Table 1).

All the H···X (X = C, N, O) contacts are highly favored in 1 and 2 since the correspond-
ing enrichment ratios EHX are significantly higher than unity (Table 1). This is explained
by a relatively higher proportion of these contacts on the total Hirshfeld surface area over
a corresponding proportion of random contacts RHX (Table 1). However, only H· · ·N
and H· · ·O intermolecular contacts are favored in 3 and 4, while the H· · ·C contacts on
the surface of molecules are much less favored, which is related to a remarkably high
enrichment of C· · ·C contacts in 3 and 4 (Table 1), formed in aromatic stacking. Notably,
both 3 and 4 are additionally characterized by highly favored H· · ·Br and N· · ·O contacts,
respectively, and 3 is also described by less favored Br· · ·Br contacts (Table 1). The H· · ·H
intermolecular contacts on the molecular surfaces of all compounds are less favored since
the corresponding enrichment ratios EHH are less than unity ranging from 0.85 to 0.90
(Table 1). The remaining contacts are significantly impoverished with the corresponding
enrichment ratios less than 0.50 (Table 1).

We have also examined the optical properties of 1–4 in different solvents. We first
probed such solvents as cyclohexane (non-polar), THF (polar aprotic), CH3CN (polar
aprotic), and EtOH (polar protic) to study the enol-imine and keto-enamine tautomerization
in the applied solvents. It is known that the dipole moments for the enol-imine isomers
are smaller than those for the keto-enamine derivatives [43,44], which means that the
keto-enamine tautomer is more prevalent in polar solvents.

The absorption spectra of 1–3 each contain bands corresponding to n→π* and π→π*
transitions only in the UV region, regardless of the solvent (Figures S5–S7). Interestingly,
the longest wavelength band in the spectra of 2 is remarkably red-shifted (Figures S5–S7).
This is due to the electron-donating properties of the MeO fragment in comparison to the
H and Br substituents in 1 and 3, respectively. Furthermore, the spectra of 1–3 in EtOH
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exhibit an additional low-intense band, centered at about 400–420 nm (Figures S5–S7),
which corresponds to the traces of the cis-keto-enamine form.

The absorption spectra of 4 in the same solvents, except cyclohexane, contain an
intense band in the visible region, which arises from the cis-keto-enamine form (Figure 1).
Notably, in 4, the electron-donating OH is involved in a through-resonance effect with
the electron-withdrawing NO2 fragment. This leads to nitro–aci-nitro tautomerization,
yielding an additional quinoid form [45].
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Figure 1. UV-vis spectra of 4 in the applied solvents.

Optical properties of 4 were also studied in a series of alcohols, namely MeOH,
EtOH, nPrOH, iPrOH, and nBuOH. Interestingly, in the absorption spectra of 4 in all
alcohols, except nPrOH, the band of the cis-keto-enamine form was observed with the most
remarkable one in MeOH (Figure 2), which is the most polar and acidic within the applied
alcohols. The most striking observation is the absence of the band of the cis-keto-enamine
form in the spectrum of 4 in nPrOH (Figure 2). This might be explained by possible specific
solute–solvent interactions.
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Recently, we established that 2 was emissive in EtOH [17]. The resulting emission
of 2 in EtOH was due to two emission bands arising from two conformers of the cis-
keto-enamine* form. Herein we report the emission properties of 4 in different alcohols.
Interestingly, 4 was found to be emissive in iPrOH and nPrOH, while almost no emission
was found in EtOH and MeOH (Figure 3).
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Figure 3. Emission (solid line) and excitation (dashed line) spectra of 4 in MeOH (λexc = 395 nm,
λem = 480 nm), EtOH (λexc = 350 nm, λem = 440 nm), nPrOH (λexc = 360 nm, λem = 460 nm) and
iPrOH (λexc = 400 nm, λem = 475 nm).

The emission spectra of 4 in iPrOH and nPrOH exhibit an intense band at 475 and
460 nm, respectively. Notably, the former band is accompanied with an intense low-energy
shoulder (Figure 3). The deconvolution process of the spectrum in iPrOH has allowed
revealing three single bands at 463, 493, and 526 nm, and a ratio of these bands is 26.4, 30.0,
and 43.6%, respectively (Figure S8). The same deconvolution of the emission spectrum of 4
in nPrOH also revealed three bands, but with the maxima remarkably shifted to higher
energies (444, 466, and 496 nm) and with a ratio of 17.2, 46.2, and 36.6%, respectively
(Figure S8). Based on the absorption and excitation spectra of 4 in iPrOH we were able to
conclude that these three emission bands corresponded to two cis-keto-enamine* and trans-
keto-enamine* conformers [8–18]. Contrarily, all three bands in the emission spectrum of 4
in nPrOH arose exclusively from the emission of different cis-keto-enamine* conformers.

We next studied the solution of 4 upon the gradual addition of two different bases,
namely NEt3 and NaOH, to probe the influence of the nature of bases (electronic properties
and steric demands). Upon addition of both bases, the absorption band at 313 nm disap-
peared and two new bands, centered at about 360 and 390 nm, appeared (Figure 4 and
Figure S9). Notably, the ratio of intensities of the new bands was in favor of the low-energy
band when NaOH was used.

The gradual addition of the methanesulfonic acid into a solution of 4 in EtOH de-
creased the intensity of the band of the cis-keto-enamine form, which was due to proto-
nation of the imine N-atom, while the NO2 group remained unchanged, as seen from the
high-energy band, which remained constant during the titration process (Figure 5). Protona-
tion of the imine N-atom prevented the formation of the intramolecular O–H···N bonding.
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Since compound 3 also tends to clearly exhibit the cis-keto-enamine form in EtOH
(Figure S7), although less pronounced than 4, but more pronounced that 1 and 2, its optical
properties were further studied upon gradual addition of NaOH and CH3SO3H. In general,
the behavior of a solution of 3 in EtOH in the presence of NaOH and CH3SO3H was
similar to a solution of 4 but much less pronounced; however, emission spectra of 3 differed
significantly from those of 4.

After the addition of NaOH, the absorption band at 330 nm disappeared with the
simultaneous increase of a low-intense band in the visible region (Figure 6). However, the
addition of CH3SO3H to a solution of 3 in EtOH vanished the same band, arising from the
cis-keto-enamine tautomer (Figure 7).
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of 0.5 eqv.

Upon the addition of NaOH to a solution of 3 in EtOH, an emission band appeared
(Figure 8), which deconvolution revealed two bands at 480 and 505 nm and with an
area ratio of 30.1 and 69.9%, respectively (Figure S10). Based on the comparison of the
absorption (Figure 6) and excitation (Figure 8) spectra, the emission band was assigned to
two conformers of the deprotonated form of 3. Solutions of 3 in EtOH were found to be
non-emissive regardless of the added amount of CH3SO3H.
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We have further applied the density functional theory (DFT) calculations to examine
the fine features of 1–4. It was established that the calculated values of bond lengths, bond
angles, and dihedral angles (Table 2) were in good agreement with the values recently
obtained from single-crystal X-ray diffraction [17]. The observed differences between the
calculated and experimental geometrical parameters are obviously explained by the fact
that the DFT computations were performed in the gas phase.

Table 2. Selected bond lengths (Å) and angles (◦) in the structures of 1–4, obtained by using the
B3LYP/6-311++G(d,p) method 1.

1 2 3 4

Bond lengths

C=N 1.2816 1.2821 1.2800 1.2787
C–O(H) 1.3410 1.3448 1.3390 1.3298

C=O 1.2034 1.2036 1.2030 1.2031
C–O(Et) 1.3462 1.3461 1.8529 1.3440

Bond angles

C=N–C 119.04 118.98 119.17 119.43

Dihedral angles 2

N–C–C=O 29.12 −31.15 24.53 21.83
O=C–O–C 1.54 −1.44 1.53 1.46
C–O–C–C −179.86 179.95 −0.21 179.87

Hydrogen bonds

O–H 0.9927 0.9913 0.9933 0.9985
H···N 1.7472 1.7546 1.7464 1.7200
O···N 5.6362 2.6395 2.6342 2.6160

∠(O–H···N) 147.05 146.66 146.79 147.22
1 The computational results have been compared according to the crystallographic data [17]. 2 The corresponding
dihedral angles must be compared by their magnitudes.

According to the DFT calculations, the dipole moments of the fully optimized ground
state geometry of the enol-imine forms were 3.279813 Debye for 1, 4.290475 Debye for
2, 4.070018 Debye for 3, and 6.97922 Debye for 4. Notably, the transformation from the
enol-imine to the trans-keto-enamine through the cis-keto-enamine tautomers was followed
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by a remarkable increase in the dipole moments for all the structures (Table 3). Significantly
higher dipole moments of different tautomers of 4 in comparison to the corresponding
values of tautomers of 1–3 were obviously explained by the presence of the highly polar
NO2 substituent. The energies of the frontier molecular orbitals for the highest occupied
molecular orbital (HOMO) and lowest-lying unoccupied molecular orbital (LUMO) are
shown in Table 3. Both orbitals were mainly delocalized over the 2-OH(5-X)C6H3CH=N–
CH2C(=O) fragment for all the structures except for the LUMO of 4, where the orbital was
mainly spread over the 2-OH(5-X)C6H3 fragment (Figure 9).

Table 3. Total energy, dipole moment, frontier molecular HOMO and LUMO orbitals, gap value, and descriptors for 1–4 in
gas phase, obtained by using the B3LYP/6-311++G(d,p) method.

1 2 3 4

enol-imine tautomer

Total energy (eV) −19,255.75967 −22,372.91079 −89,285.41965 −24,822.27922
Dipole moment (Debye) 3.279813 4.290475 4.070018 6.97922

EHOMO (eV) −0.23040 −0.21087 −0.23196 −0.26088
ELUMO (eV) −0.06421 −0.06388 −0.07426 −0.09961

∆ELUOMO–HOMO = ELUMO−EHOMO (eV) 0.16619 0.14699 0.15770 0.16127
Ionization energy, I = −EHOMO (eV) 0.23040 0.21087 0.23196 0.26088
Electron affinity, A = −ELUMO (eV) 0.06421 0.06388 0.07426 0.09961
Electronegativity, χ = (I + A)/2 (eV) 0.14731 0.13738 0.15311 0.18025

Chemical potential, µ = −χ (eV) −0.14731 −0.13738 −0.15311 −0.18025
Global chemical hardness, η = (I−A)/2 (eV) 0.08310 0.07350 0.07885 0.08064
Global chemical softness, S = 1/(2η) (eV−1) 6.01721 6.80318 6.34115 6.20078

Global electrophilicity index, ω = µ2/(2η) (eV) 0.13057 0.12839 0.14865 0.20145
Global nucleophilicity index, E = µ × η (eV2) −0.01224 −0.01010 −0.01207 −0.01453

Maximum additional electric charge, ∆Nmax = −µ/η 1.77273 1.86917 1.94179 2.23532

cis-keto-enamine tautomer

Total energy (eV) −19,255.55920 −22,372.72632 −89,285.24115 −24,822.17304
Dipole moment (Debye) 5.623354 6.171161 6.678792 10.089039

EHOMO (eV) −0.20510 −0.19161 −0.20980 −0.23553
ELUMO (eV) −0.07356 −0.07108 −0.08356 −0.10179

∆ELUOMO–HOMO = ELUMO−EHOMO (eV) 0.13154 0.12053 0.12624 0.13374
Ionization energy, I = −EHOMO (eV) 0.20510 0.19161 0.20980 0.23553
Electron affinity, A = −ELUMO (eV) 0.07356 0.07108 0.08356 0.10179
Electronegativity, χ = (I + A)/2 (eV) 0.13933 0.13135 0.14668 0.16866

Chemical potential, µ = −χ (eV) −0.13933 −0.13135 −0.14668 −0.16866
Global chemical hardness, η = (I−A)/2 (eV) 0.06577 0.06027 0.06312 0.06687
Global chemical softness, S = 1/(2η) (eV−1) 7.60225 8.29669 7.92142 7.47719

Global electrophilicity index, ω = µ2/(2η) (eV) 0.14758 0.14313 0.17043 0.21270
Global nucleophilicity index, E = µ × η (eV2) −0.00916 −0.00792 −0.00926 −0.01128

Maximum additional electric charge, ∆Nmax = −µ/η 2.11844 2.17946 2.32383 2.52221

trans-keto-enamine tautomer

Total energy (eV) −19,255.22025 −22,372.44811 −89,284.91121 −24,821.82359
Dipole moment (Debye) 7.396322 7.781535 7.644000 10.221661

EHOMO (eV) −0.20158 −0.19035 −0.20722 −0.23080
ELUMO (eV) −0.07988 −0.07497 −0.08963 −0.11216

∆ELUOMO–HOMO = ELUMO−EHOMO (eV) 0.12170 0.11538 0.11759 0.11864
Ionization energy, I = −EHOMO (eV) 0.20158 0.19035 0.20722 0.23080
Electron affinity, A = −ELUMO (eV) 0.07988 0.07497 0.08963 0.11216
Electronegativity, χ = (I + A)/2 (eV) 0.14073 0.13266 0.14843 0.17148

Chemical potential, µ = −χ (eV) −0.14073 −0.13266 −0.14843 −0.17148
Global chemical hardness, η = (I−A)/2 (eV) 0.06085 0.05769 0.05880 0.05932
Global chemical softness, S = 1/(2η) (eV−1) 8.21693 8.66701 8.50412 8.42886

Global electrophilicity index, ω = µ2/(2η) (eV) 0.16274 0.15253 0.18735 0.24785
Global nucleophilicity index, E = µ × η (eV2) −0.00856 −0.00765 −0.00873 −0.01017

Maximum additional electric charge, ∆Nmax = –µ/η 2.31274 2.29953 2.52445 2.89076
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The so-called ionization potential (I) and the electron affinity (A) value of the molecules
were established as follows: I =−EHOMO and A =−ELUMO (Table 3) [46], which determined
the electron-donating ability and the ability to accept an electron, respectively. As such,
as lower values of I as better donation of an electron, while as higher values of A as
better ability to accept electrons. Both the I and A values for all the tautomers of 1–4 are
remarkably lower than unity (Table 3), indicating that the reported dyes each exhibit high
electron-donating and low electron-accepting properties. Notably, the corresponding cis-
keto-enamine and trans-keto-enamine tautomers of 1–4 are slightly better electron donors
and electron acceptors in comparison to their enol-imine derivatives (Table 3).

To estimate the relative reactivity of molecules of 1–4, we have further established val-
ues of the so-called global chemical reactivity descriptors derived from the HOMO–LUMO
energy gap (Table 3). The values of chemical potential (µ) for 1–4 were in the range from
−0.13135 eV to−0.18025 eV for all tautomers, indicating the poor electron-accepting ability
and the strong donating ability, which was further supported with low values of electroneg-
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ativity, χ (Table 3). Notably, the values of electronegativity for all the cis-keto-enamine
tautomers were lower than those for the enol-imine and trans-keto-enamine forms of 1–4
(Table 3). Chemical hardness (η) describes the resistance towards deformation/polarization
of the electron cloud of the molecule upon a chemical reaction, while softness (S) is a re-
verse of chemical hardness [46]. Compounds 1–4 are characterized by low values of η and
high values of S, respectively, indicating a remarkable tendency to exchange their electron
clouds with the surrounding environment for all the structures (Table 3). It should be noted
that the trans-keto-enamine tautomers are more pronounced to exchange their electron
clouds with the surrounding environment in comparison to the corresponding cis-keto-
enamine tautomers, and even much more pronounced in comparison to the enol-imine
tautomers (Table 3). The electrophilicity index (ω) describes the energy of stabilization to
accept electrons [46]. The ω values for all forms of 1–4 were found in the range from about
0.12 eV to 0.25 eV (Table 3). These values are low, indicating the strong nucleophilic nature
of 1–4. Finally, compounds 1–4 can accept about 1.77–2.24 electrons for the enol-imine
forms, 2.12–2.52 electrons for the cis-keto-enamine forms, and 2.30–2.89 electrons for the
trans-keto-enamine forms, respectively, as evidenced from the ∆Nmax values, of which the
highest values correspond to 4 (Table 3).

The electrophilic and nucleophilic sites in 1–4 were examined using the molecular elec-
trostatic potential (MEP) analysis. The red and blue colors of the MEP surface correspond
to electron-rich (nucleophilic) and electron-deficient (electrophilic) regions, respectively.
On the MEP surfaces of the enol-imine tautomers of 1–4 the most pronounced nucleophilic
centers are located on the carbonyl and hydroxyl oxygen atoms, while the other negative
electrostatic potential sites in the enol-imine form of 4 are located on the oxygen atoms
of the NO2 group (Figure 10). In the cis-keto-enamine and trans-keto-enamine tautomers
of 1–4 the carbonyl oxygen atom attached to the aromatic ring is the most remarkable
nucleophilic center, alongside with both oxygen atoms of the NO2 group in 4, while the
carbonyl oxygen atom of the carboxyl group becomes a less pronounced nucleophilic center
(Figure 10). As the most electrophilic region the CH=N–CH2 fragment for the enol-imine
tautomers and the CH–NH–CH2 fragment for the cis-keto-enamine and trans-keto-enamine
tautomers can be highlighted for the structures of 1–4 (Figure 10).

The calculated absorption spectra of the fully optimized ground state geometry of all
the three tautomers of 1–4 (Figures S11–S13) are in agreement with experimental spectra.
In particular, the experimental UV-vis spectra for the enol-imine tautomers exhibited bands
at 215–260 and 331–353 nm, and the calculated spectra for the same tautomers contained
bands at 225–250 and 302–351 nm (Table S1). The cis-keto-enamine tautomers are shown as
a band centered at 382–418 nm in both the experimental and calculated absorption spectra
(Table S1). The calculated UV-vis spectra for the trans-keto-enamine tautomers of 1–4 each
exhibited a low-energy band at 407–428 nm, while no similar bands were observed in
the corresponding experimental spectra (Table S1), thus, testifying to the absence of the
trans-keto-enamine tautomers of 1–4 in the applied solvents.
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The calculated UV-vis spectra of the enol-imine forms of 1–4 exhibit absorption bands
with three (for 1) or two (for 2–4) maxima exclusively in the UV region centered at about
220–255 nm and 300–350 nm (Figure S11). These bands mostly corresponded to the HOMO–
1→ LUMO, HOMO→ LUMO, and HOMO→ LUMO+3 transitions (Table 4, Figure S11).
The absorption bands in the spectra of 3 and 4 were additionally supported by the HOMO
→ LUMO+1 transition and further described by the HOMO–4→ LUMO transition in the
spectrum of 3, and by the HOMO–3→ LUMO+1 and HOMO–1→ LUMO+1 transitions in
the spectrum of 4, respectively (Table 4, Figure S11). As for the calculated UV-vis spectra
of the cis-keto-enamine and trans-keto-enamine tautomers of 1–4, absorption bands are
observed in both the UV and visible regions up to about 500–550 nm (Figure S12) and
600 nm (Figure S13), respectively. These bands are characterized by two maxima centered
at about 250–290 nm and 380–430 nm (Figures S12 and S13). Notably, the calculated UV-vis
spectrum of the cis-keto-enamine form of 4 contained an additional maxima at 320 nm
(Figure S12). The corresponding transitions, responsible for the observed bands in the
calculated UV-vis spectra of the cis-keto-enamine and trans-keto-enamine tautomers of 1–4,
are shown in Figures S14–S17 and collected in Tables S2 and S3.



Molecules 2021, 26, 3112 14 of 19

Table 4. Values for the calculated UV-vis spectra of the ground state of the enol-imine tautomers of 1–4, obtained by using
the TD-DFT/B3LYP/6-311++G(d,p) method.

1 2

λmax (nm) Oscillator
strength Transitions λmax (nm) Oscillator

strength Transitions

220.6 0.1419 HOMO–3→ LUMO (14.0%) 239.1 0.2994 HOMO–3→ LUMO (9.0%)

HOMO–1→ LUMO (8.1%) HOMO–1→ LUMO (26.8%)

HOMO–1→ LUMO+3 (2.5%) HOMO→ LUMO+3 (50.2%)

HOMO–1→ LUMO+9 (2.0%) HOMO→ LUMO+10 (3.4%)

HOMO→ LUMO+1 (2.7%) HOMO→ LUMO+13 (2.3%)

HOMO→ LUMO+2 (10.7%)

HOMO→ LUMO+3 (44.7%)

HOMO→ LUMO+9 (7.2%)

222.6 0.0311 HOMO→ LUMO+1 (5.6%) 244.3 0.0188 HOMO–1→ LUMO (2.8%)

HOMO→ LUMO+2 (45.0%) HOMO→ LUMO+1 (3.7%)

HOMO→ LUMO+3 (24.2%) HOMO→ LUMO+2 (85.9%)

HOMO→ LUMO+4 (8.6%) HOMO→ LUMO+5 (3.9%)

HOMO→ LUMO+5 (7.5%)

228.5 0.0315 HOMO–3→ LUMO (70.8%) 251.2 0.0720 HOMO–1→ LUMO (21.3%)

HOMO–3→ LUMO+1 (4.0%) HOMO→ LUMO+1 (7.1%)

HOMO–3→ LUMO+3 (2.4%) HOMO→ LUMO+3 (45.5%)

HOMO→ LUMO+2 (12.3%) HOMO→ LUMO+4 (23.2%)

HOMO→ LUMO+3 (3.5%)

252.8 0.2896 HOMO–1→ LUMO (76.5%) 256.6 0.0742 HOMO–1→ LUMO (33.4%)

HOMO→ LUMO (3.2%) HOMO→ LUMO+3 (49.0%)

HOMO→ LUMO+1 (4.7%) HOMO→ LUMO+4 (10.9%)

HOMO→ LUMO+2 (9.8%)

312.1 0.1055 HOMO–1→ LUMO (2.3%) 350.5 0.1086 HOMO→ LUMO (96.9%)

HOMO→ LUMO (93.9%)

3 4

λmax (nm) Oscillator
strength Transitions λmax (nm) Oscillator

strength Transitions

224.7 0.0487 HOMO–5→ LUMO (10.6%) 240.4 0.0556 HOMO–3→ LUMO (85.4%)

HOMO→ LUMO+4 (57.1%) HOMO–1→ LUMO+1 (9.6%)

HOMO→ LUMO+5 (23.2%)

228.4 0.2498 HOMO–5→ LUMO (3.1%) 244.8 0.2633 HOMO–3→ LUMO (8.1%)

HOMO–4→ LUMO (32.2%) HOMO–3→ LUMO+1 (29.7%)

HOMO–1→ LUMO (16.9%) HOMO–1→ LUMO+1 (55.7%)

HOMO→ LUMO+1 (17.2%)

HOMO→ LUMO+2 (6.0%)

HOMO→ LUMO+3 (7.5%)
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Table 4. Cont.

HOMO→ LUMO+5 (2.3%)

HOMO→ LUMO+8 (3.9%)

237.8 0.2157 HOMO–4→ LUMO (28.8%) 273.4 0.1054 HOMO–1→ LUMO (77.0%)

HOMO–3→ LUMO (2.9%) HOMO→ LUMO+1 (18.3%)

HOMO–1→ LUMO (16.3%)

HOMO→ LUMO+1 (32.7%)

HOMO→ LUMO+2 (2.6%)

HOMO→ LUMO+3 (9.3%)

HOMO→ LUMO+4 (2.1%)

252.7 0.1308 HOMO–1→ LUMO (57.9%) 299.4 0.0744 HOMO–1→ LUMO (13.6%)

HOMO→ LUMO+1 (35.1%) HOMO→ LUMO (34.4%)

HOMO→ LUMO+1 (48.9%)

329.3 0.0858 HOMO→ LUMO (95.7%) 308.7 0.2162 HOMO–1→ LUMO (5.1%)

HOMO–1→ LUMO+1 (3.1%)

HOMO→ LUMO (61.8%)

HOMO→ LUMO+1 (28.9%)

3. Materials and Methods
3.1. Materials

All reagents and solvents were commercially available and used without further
purification. Dyes 1–4 were obtained according to the described synthetic procedure [18].

3.2. Physical Measurements

Absorption and fluorescent spectra from the freshly prepared solutions (10−4 M) in
freshly distilled solvents were recorded on an Agilent 8453 instrument.

3.3. Computational Details

The ground state geometry of 1–4 was fully optimized without symmetry restrictions.
The calculations were performed by means of the GaussView 6.0 molecular visualization
program [47] and Gaussian 09, Revision D.01 program package [48] using the density
functional theory (DFT) method with Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid
functional [49,50] and 6-311++G(d,p) [49,51] basis set. The crystal structure geometry
was used as a starting model for structural optimization. The vibration frequencies were
calculated for the optimized structures in the gas phase and no imaginary frequencies
were obtained. The Cartesian atomic coordinates for the optimized structures are gathered
in Tables S4–S7. The electronic isosurfaces of the HOMO and LUMO orbitals and MEP
surfaces of all tautomers of 1–4 were generated from the fully optimized ground state
geometry obtained by using the B3LYP/6-311++G(d,p) method. The absorption spectra of
the fully optimized ground state geometry of all the three tautomers of 1–4 were simulated
at the TD-DFT/B3LYP/6-311++G(d,p) level.

4. Conclusions

In summary, herein we discuss structural studies using the Hirshfeld molecular surface
approach, as well as photophysical properties of four dyes: ethyl N-salicylideneglycinate
(1), ethyl N-(5-methoxysalicylidene)glycinate (2), ethyl N-(5-bromosalicylidene)glycinate
(3), and ethyl N-(5-nitrosalicylidene)glycinate (4).
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The intermolecular H···H, H···C, and H···O contacts are the dominant contributors to
the molecular surface of all the reported compounds. 3 is further described by a remarkable
proportion of the intermolecular H···Br contacts. Furthermore, a distinct proportion of
the C···C contacts was found in the molecular surface of 3 and 4, which is explained by
intermolecular π· · ·π stacking interactions between the phenylene rings.

The absorption spectra of 4 in THF and CH3CN exhibit a band for the cis-keto-enamine
form, while only the enol-imine tautomer was found in the absorption spectrum of 4
in cyclohexane and in the absorption spectra of 1–3 in cyclohexane, THF, and CH3CN.
Furthermore, in the absorption spectra of 4 in MeOH, EtOH, iPrOH, and nBuOH the
cis-keto-enamine form is clearly observed, with the most remarkable one in MeOH, while
the same band is absent in the spectrum of 4 in nPrOH, that might be explained by possible
specific solute-solvent interactions. Dye 4 is emissive in iPrOH and nPrOH, arising from
two conformers of the cis-keto-enamine* form and from the trans-keto-enamine* form,
while the origin of emission in nPrOH is exclusively from different cis-keto-enamine*
conformers. Titration of the solutions of 3 and 4 in EtOH by NaOH leads to the gradual
increasing of the band in the visible region of the corresponding UV-vis spectra. The same
band gradually decreases and finally vanishes upon titration of the solutions of 3 and 4 in
EtOH by CH3SO3H due to the protonation of the imine N-atom. Notably, upon addition
of NaOH to the solution of 3 in EtOH, an emission band appeared and increased with
increasing NaOH concentration.

We have also demonstrated that photophysical properties of a reported series of closely
related compounds 1–4 can efficiently be tuned not only by changing the corresponding
substituent in the phenolic ring, thus changing electronic properties, but also by the
nature of a solvent (non-polar vs. polar aprotic vs. polar protic) and pH (NEt3 or NaOH,
and CH3SO3H). All these factors allow to fine influence to the keto-enamine–enol-imine
tautomerization both in the ground and excited states, yielding two or even three emission
bands with a certain ratio and, as a result, different resulting emission color. No doubt, all
these findings are of potential interest for molecular optics. Furthermore, the presence of
the ethyl glycinate fragment in 1–4 might play a pivotal role for the application of these
compounds, e.g., as luminescent sensors, in biological systems.

According to the DFT calculation results, it was established that all the tautomers of
1–4 each exhibit high electron-donating and low electron-accepting properties. The most
pronounced nucleophilic centers of the enol-imine tautomers are located on the carbonyl
and hydroxyl oxygen atoms, while the other negative electrostatic potential sites in the
enol-imine form of 4 are located on the oxygen atoms of the NO2 group. In the cis-keto-
enamine and trans-keto-enamine tautomers of 1–4, the carbonyl oxygen atom attached to
the aromatic ring is the most remarkable nucleophilic center, alongside both oxygen atoms
of the NO2 group in 4, while the carbonyl oxygen atom of the carboxyl group becomes
a less pronounced nucleophilic center. As the most electrophilic region, the CH=N–CH2
fragment for the enol-imine tautomers and the CH–NH–CH2 fragment for the cis-keto-
enamine and trans-keto-enamine tautomers are highlighted for the structures of 1–4. The
calculated absorption spectra of the fully optimized ground state geometry of all the three
tautomers of 1–4 are in good agreement with experimental spectra.

Supplementary Materials: The following are available online, Figures S1–S4: 2D and decomposed
2D fingerprint plots of observed contacts for the crystal structure of 1–4, Figures S5–S7: UV-vis spectra
of 1–3 in the applied solvents, Figure S8: Emission and excitation spectra of 4 in nPrOH and iPrOH,
Figure S9: UV-vis spectra of 4 in EtOH upon gradual addition of NEt3, Figure S10: Emission and
excitation spectra of 3 in EtOH after addition of 5 eqv. of NaOH, Figure S11: The calculated UV-vis
spectra of the ground states of the enol-imine tautomers of 1–4, Figure S12: The calculated UV-vis
spectra of the ground states of the cis-keto-enamine tautomers of 1–4, Figure S13: The calculated UV-
vis spectra of the ground states of the trans-keto-enamine tautomers of 1–3, Figures S14–S17: Energy
levels and views on the electronic isosurfaces of the selected molecular orbitals of the ground state
of 1–4, Table S1: Values for the main maxima in the experimental UV-vis spectra of 1–4 in different
solvents, and in the calculated UV-vis spectra for different tautomers of 1–4, Table S2: Values for the
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calculated UV-vis spectra of the ground state for the cis-keto-enamine tautomers of 1–4, Table S3:
Values for the calculated UV-vis spectra of the ground state for the trans-keto-enamine tautomers of
1–4, Tables S4–S7: Cartesian atomic coordinates for optimized structures of 1–4, obtained by using
the DFT/B3LYP/6–311++G(d,p) method.
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