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Abstract

A deeper understanding of the conserved molecular mechanisms in different taxa have

been made possible only because of the evolutionary conservation of crucial signaling path-

ways. In the present study, we explored the molecular evolutionary pattern of selection sig-

natures in 51 species for 10 genes which are important components of NAD+/Sirtuin

pathway and have already been directly linked to lifespan extension in worms and mice.

Selection pressure analysis using PAML program revealed that MRPS5 and PPARGC1A

were under significant constraints because of their functional significance. FOXO3a also

displayed strong purifying selection. All three sirtuins, which were SIRT1, SIRT2 and SIRT6,

displayed a great degree of conservation between taxa, which is consistent with the previ-

ous report. A significant evolutionary constraint is seen on the anti-oxidant gene, SOD3. As

expected, TP53 gene was under significant selection pressure in mammals, owing to its

major role in tumor progression. Poly-ADP-ribose polymerase (PARP) genes displayed the

most sites under positive selection. Further 3D structural analysis of PARP1 and PARP2

protein revealed that some of these positively selected sites caused a change in the electro-

static potential of the protein structure, which may allow a change in its interaction with other

proteins and molecules ultimately leading to difference in the function. Although the func-

tional significance of the positively selected sites could not be established in the variants

databases, yet it will be interesting to see if these sites actually affect the function of PARP1

and PARP2.

Introduction

The comparative sequence analysis has been used to examine the relationship between nucleo-

tide sequences of different species and has produced several evidences that support the hypoth-

esis of common descent [1]. Plenty of examples prove that biochemical and molecular

mechanisms are conserved across different taxa. The same biochemical processes operate in all

known living organisms, such as the flow of genetic information, which is DNA to RNA to

protein takes place through highly conserved ribosomes. In developmental biology, the com-

mon morphology is the result of the sharing of same genetic elements [2].
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Many workers have reported that the molecular and biochemical mechanisms behind lon-

gevity assurance pathways are conserved in vertebrates and also in invertebrates up to certain

extent [3–7]. Out of all the molecular pathways responsible for aging, insulin-like growth fac-

tor/insulin signaling (IIS) and target of rapamycin (TOR) pathways are the most conserved

nutrient signaling pathways which alter growth, reproduction and metabolism in response to

energy status, stress and nutrient availability. Genetic alterations that reduces signaling via

these signaling networks have been shown to extend lifespan in yeast, worms, flies and mice,

revealing a key evolutionarily conserved role in aging [8–10]. There have been an extensive

molecular evolutionary analysis of IIS/TOR aging network which has uncovered substantial

variation in IIS/TOR network within and among amniotes and provided a critical step to

unlock information on vertebrate patterns of genetic regulation of metabolism, modes of

reproduction and rates of aging [11].

Recently an interesting candidate longevity pathway which is NAD+/Sirtuin is gaining

major attention because of its interplay with FOXO and mitochondrial UPR signaling [12].

NAD+ pathway have been shown to be present in a vast array of species and the vertebrate

NAD metabolism is constantly undergoing functional diversification [13, 14]. The idea of

NAD+ mediating the lifespan and health span extension by dietary restriction (DR) was put

forward by Lin et al., (2004) [15]. Furthermore, Imai and group [16, 17] did a thorough

research on the role of NAD+ and sirtuins in aging and diseases and documented that the

defect in NAD+ level and consequently declined activity of sirtuins may accelerate the normal

aging process. Also, they found that the NAD+ deficiency related pathologies can be normal-

ized by supplementing with NAD+ precursors and intermediates. The role of NAD+ and sir-

tuins in aging and diseases have been reviewed in detail by Imai and Guarente [18] and they

have highlighted the regulatory mechanisms by which NAD+ and its consuming enzymes sir-

tuins and PARPs regulate aging and disease states. It is well documented that NAD+ regulates

metabolism and circadian rhythms through sirtuins and also NAD+ gets depleted during aging

and diseases affecting the activity of sirtuins.

The NAD+/Sirtuin pathway improves life quality during aging and disease states by regulat-

ing metabolism, stress resistance, cell survival and proliferation, transcription, apoptosis, and

autophagy. Sirtuin enzymes are coming up as competent therapeutic targets in cancer, diabe-

tes, neurodegenerative diseases and inflammatory disorders. Alteration of sirtuin activity has

been shown to affect the process of several aggregate-forming neurodegenerative disorders by

changing the transcription factor activity and deacetylating the proteotoxic species [19].

Some reports have explicitly documented the regulation of longevity and metabolism

through NAD+/sirtuin pathway in mice and worm [20, 12]. Modulation of NAD+ levels have a

powerful metabolic impact because it serves as an obligatory substrate for the deacetylase activ-

ity of the sirtuin proteins [21–23]. The best-characterized mammalian sirtuin is SIRT1, which

controls mitochondrial function through the deacetylation of targets that include PGC-1a and

FOXO [24,7]. The administration of NAD+ precursors, such as nicotinamide mononucleotide

[25] or nicotinamide riboside (NR) [26], has proven to be an efficient method to increase

NAD+ levels and SIRT1 activity, improving metabolic homeostasis in mice. Poly(ADP-ribosyl)

ation is a post-translational modification of proteins which regulates the various cellular path-

ways. This modification is reported to be majorly employed in eukaryotes and poly(ADP-

ribose) polymerase proteins (PARPs) are present in major eukaryotic supergroups, with excep-

tion of few eukaryotic species which lack PARP genes [27]. Furthermore, the NAD+-consum-

ing PARPs, with PARP1 and PARP2 contributing to the main PARP activities in mammals,

were classically described as DNA repair proteins [28, 29], but recent studies have linked these

proteins to metabolism [30–33]. Indeed, genetic or pharmacological inactivation of PARP1
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increased tissue NAD+ levels and activated mitochondrial metabolism [32]. An association

between PARPs and lifespan has been postulated [34, 35], but a causal role remained unclear.

Though there have been few reports about the evolutionary analysis of genes involved in

NAD+ biosynthesis and metabolism, yet the molecular evolutionary analysis of NAD+/Sirtuin

pathway genes in the context of aging is not well explored. Therefore, the present study was

designed to study the evolutionary forces acting on the NAD+/Sirtuin pathway regulated aging

signaling. The present analysis is the first report which has highlighted the positive selection

pressure acting upon all the above mentioned components of NAD+ regulated aging signaling

pathway at one place. This will be useful in understanding how evolutionary forces have made

these genetic components fit in to the bigger picture of aging.

Materials and methods

Sequence data collection

To begin with, a set of 10 genes which are documented to play important roles in NAD+/Sir-

tuin signaling pathway is created, which is as follows: PARP1(Poly (ADP-ribose) polymerase),

PARP2, SIRT1, SIRT2, SIRT6, MRPS5 (mitochondrial ribosomal protein 5), FOXO3a, TP53,

PPARGC1A (peroxisome proliferator activated receptor PPARy co-activator 1α), and SOD3
(Super Oxide Dismutase 3). The CDS sequences were retrieved by extensive searches of NCBI

(http://www.ncbi.nlm.nih.gov/) databases and Ensembl genome browser (http://www.

ensembl.org/index.html).

In order to test whether the evolutionary trend in the phylogeny was affected by taxonomic

sampling used, we sorted the taxonomic samplings into 5 data sets including a total of 51 spe-

cies, which are model organisms, mammals, birds, reptiles, amphibians and fishes. The follow-

ing species were used for analysis: model organisms- Drosophila melanogaster (Fruitfly),

Caenorhabditis elegans (Worm), Saccharomyces cerevisiae (Yeast), Mus musculus (Mouse),

Danio rerio (Zebra fish); Mammals (15 species)- Homo sapiens (Human), Macaca mulatta
(Macaque), Pongo abelii (Orangutan), Heterocephalus glaber (Naked mole rat), Oryctolagus
cuniculus (Rabbit), Ailuropoda melanoleuca (Panda), Canis familiaris (Dog), Equus caballus
(Horse), Bos taurus (Cow), Sus scrofa (Pig), Tursiops truncatus (Dolphin), Loxodonta africana
(Elephant), Dasypus novemcinctus (Armadillo), Monodelphis domestica (Opossum) and

Ornithorhynchus anatinus (Platypus); Birds (10 species)- Gallus gallus (Chicken), Meleagris gal-
lopavo (Turkey), Anas platyrhynchos (Duck), Taeniopygia guttata (Zebra finch), Columba livia
(Rock pigeon), Ficedula albicollis (Flycatcher), Parus major (Great tit), Struthio camelus (Afri-

can ostrich), Pygoscelis adeliae (Adelie penguin), Sturnus vulgaris (Common starling); Reptiles

(10 species)- Anolis carolinensis (Anole Lizard), Pogona vitticeps (Central bearded dragon),

Gekko japonicas (Gecko), Protobothrops mucrosquamatus (Taiwan habu), Chrysemys picta bellii
(Western painted turtle), Pelodiscus sinensis (Chinese softshell turtle), Chelonia mydas (Green

sea turtle) Alligator mississippiensis (American alligator), Alligator sinensis (Chinese alligator),

Gavialis gangeticus (Gharial); Amphibians (3 species)- Xenopus tropicalis (Tropical clawed

frog), Xenopus laevis (African clawed frog), Nanorana parkeri (Tibetan frog); Fishes (8 spe-

cies)- Gadus morhua (Cod), Oreochromis niloticus (Tilapia), Oryzias latipes (Medaka), Taki-
fugu rubripes (Fugu), Tetraodon nigroviridis (Tetraodon), Xiphophorus maculatus (Southern

platyfish), Lepisosteus oculatus (Spotted gar), Poecilia reticulate (guppy).

Sequence alignment and editing

The phylogenetic analysis was carried out to infer the relationship among homologous genes,

by creating the multiple sequence alignment for CDS sequence of each gene in different species

using ClustalX tool of BioEdit (ver. 7.2.5) [36] with appropriate manual adjustments. Some
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genes did not have homologues in all species, so the CDS sequences were retrieved for all the

possible species in which the homologues were available. The species topology was generated

by the TimeTree web server (http://www.timetree.org/).

Selection pressure analyses

The selective pressures acting on the NAD+/Sirtuin pathway coding genes were calculated by

CODEML program in PAML package version 4.7, using a phylogenetic-based Maximum Like-

lihood (ML) analysis [37]. The ML estimates of the branch lengths and the ratio of the nonsy-

nonymous (dN) to synonymous substitution rates (dS), ω = dN/dS, were obtained using the

codeml program. The ω parameter was used as a measure of the protein selective constraints

[38]. These analyses were conducted under different competing evolutionary hypothesis.

Alignment was visualized with GeneDoc software [39].

Branch-site models were used to detect positive selection sites among different species line-

ages. The branch #1 is mammal branch, #2-#5 are leading to birds (#2), birds and reptiles (#3),

amphibians (#4) and fishes (#5) were marked as the foreground lineage to analyze whether

positive selection occurred along these branches. Only foreground lineages may have experi-

enced positive selection. The model assumes four classes of sites. Site class 0 includes codons

that are conserved throughout the tree, with 0< ω0 < 1 estimated. Site class 1 includes codons

that are evolving neutrally throughout the tree with ω1 = 1. Site classes 2a and 2b include

codons that are conserved or neutral on the background branches, but came under positive

selection on the foreground branches with ω2 > 1, estimated from the data. Likelihood ratio

tests were carried out to compare branch site null model and branch site model. The bayes

empirical bayes (BEB) approach was used to calculate the posterior probabilities that each site

belongs to the site class of positive selection on the foreground lineages with a significance

threshold of p>95%. Bonferroni correction was used to correct for multiple testing [40].

Protein structural analysis

The protein structural analysis for two genes PARP1 and PARP2 was further carried out, since

PARPs are important candidate genes in NAD+/Sirtuin pathway. We predicted the folding

pattern using SWISS-MODEL web server (http://swissmodel.expasy.org) [41]. Positive selec-

tion sites identified in the branch-site model were marked within the three dimensional struc-

ture map of PARP1 and PARP2. Electrostatic potential were calculated using the PBEQ-Solver

web server (http://www.charmm-gui.org/?doc=input/pbeqsolver). All figures were displayed

and generated with PyMOL software (DeLano Scientific; http://pymol.org).

Results

Gene homologues present in different clades and species topology

The gene homologues for ten NAD+/Sirtuin pathway genes were searched against NCBI and

Ensembl databases in different species (Table 1). Sequences and accession numbers of 10

genes in different species were shown in S1 and S2 Tables. Gene PARP2 was completely absent

in birds. The species topology for all the 51 species was constructed and shown in Fig 1.

Selection pressure analysis for NAD+/Sirtuin pathway genes

Selection pressure on each branch was calculated using branch-site model in PAML package

(S3 Table). The posterior probabilities of each site belonging to the site class of the positive

selection on the foreground lineages were calculated using BEB approach. The sites under pos-

itive selection for each gene are shown in Table 2.
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Table 1. Gene homologues information for 10 genes in different species.

Taxon Species PARP1 PARP2 SIRT1 SIRT2 SIRT6 MRPS5 FOXO3a TP53 PPARGC1A SOD3

Model

species

Fruitfly Drosophila melanogaster
p

×
p p p p p p p p

Worm Caenorhabditis elegans
p p

×
p

×
p p

× ×
p

Yeast Saccharomyces

cerevisiae

× × ×
p

×
p

× × × ×

Mouse Mus musculus
p p p p p p p p p p

Zebrafish Danio rerio
p p p p p p p p p p

Mammal Human Homo sapiens
p p p p p p p p p p

Macaque Macaca mulatta
p p p p p p p p p p

Orangutan Pongo abelii
p p p p p p p p p p

Naked mole rat Heterocephalus glaber
p p p p p p p p p p

Rabbit Oryctolagus cuniculus
p p p p

×
p p p p p

Panda Ailuropoda melanoleuca
p p p p p p p p p p

Dog Canis lupus familiaris
p p p p p p p p p p

Horse Equus caballus
p p p p p p p p p p

Cow Bos taurus
p p p p p p p p p p

Pig Sus scrofa
p p p p p p p p p p

Dolphin Tursiops truncatus
p p p p p p p p p p

Elephant Loxodonta africana
p p p p p p p p p p

Armadillo Dasypus novemcinctus
p p p p p p p p p p

Opossum Monodelphis domestica
p p p p p p p p p p

Platypus Ornithorhynchus

anatinus

p p p
×

p p p p p p

Aves Chicken Gallus gallus
p

×
p p p p p p p p

Turkey Meleagris gallopavo
p

×
p

×
p p p

×
p p

Duck Anas platyrhynchos
p

×
p

×
p p p

×
p p

Zebra finch Taeniopygia guttata
p

×
p

×
p p p

×
p p

Rock pigeon Columba livia
p

×
p

×
p p p

×
p p

Flycatcher Ficedula albicollis
p

×
p

×
p p p

×
p p

Great tit Parus major
p

×
p p p p p

×
p p

African ostrich Struthio camelus
p

×
p

×
p p p

×
p p

Adelie penguin Pygoscelis adeliae
p

×
p

×
p p p

×
p p

Common starling Sturnus vulgaris
p

×
p p p p p p p p

Reptile Anole lizard Anolis carolinensis
p p p p p p p p p p

Central bearded

dragon

Pogona vitticeps
p p p p p p p p p p

Gecko Gekko japonicus
p p p p p p p p p p

Taiwan habu Protobothrops

mucrosquamatus

p p p p p p p
×

p p

Western painted

turtle

Chrysemys picta bellii
p p p p p p p p p p

Chinese softshell

turtle

Pelodiscus sinensis
p

×
p p p p p p p p

Green sea turtle Chelonia mydas
p p p p p p p

×
p p

American

alligator

Alligator mississippiensis
p p p p p p p p p p

Chinese alligator Alligator sinensis
p p p p p p p p p p

Gharial Gavialis gangeticus
p p p

×
p p p

×
p p

(Continued )
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The likelihood ratio tests of positive selection based on ML method of [33], was applied.

The values of likelihood ratio tests of positive selection operating on the genes in present study

have been provided as S4 Table. The Bonferroni correction for multiple testing was applied fol-

lowing LRT tests. The correction p value used 0.001 as the significance level (S4 Table). PARP2
gene is missing in birds that’s why the lineage has been defined exclusively for reptiles in the

Table 2 for the birds/reptile lineage.

Protein structural analysis

The functional protein of PARP1 consists of five conserved domain: one PAPR-like domain,

one WGR PARP1-like domain, two zf-PARP domains, one PADR1 domain and one BRCT1

domain (Fig 2). Poly(ADP-ribose) polymerase (parp)-like catalytic domain catalyzes the cova-

lent attachment of ADP-ribose units from NAD+ to itself and to a limited number of other

DNA binding proteins, which decreases their affinity for DNA. For gene PARP1, Two sites

(P146 and V563) were found under positive selection in Amphibian. Seven positively selected

sites were found in fish branch. Six potentially functional sites (D72, L293, N392, S606, D807

and D830) were found to be present in five conserved domains in fishes (Fig 2).

PARP2 gene has two functional domains which are WGR-PARP2-like domain and PARP-

like catalytic domain (Fig 3). For the gene PARP2, two sites (M241 and Q319) in PARP-like

catalytic domain were found to be positively selected in fishes (Fig 3).

PARP genes, which have been predicted to have the most sites under positive selection in

the present study, were further used to infer structural changes in the 3D structure of the pro-

tein. For gene PARP1, 11 positively selected sites, which are D72, P146, K269, L293, N392,

V563, S606, D807, D830, T1011, S1012 were present in different lineages, with fishes having

the most sites under positive selection (Table 2, Fig 4A). Some of the positively selected sites

caused a change in electrostatic potential of the protein structure in mammals, birds, reptiles

and fishes (Fig 4B).

For the gene PARP2, three positively selected sites which are S69, M241, Q319 are seen and

two positively selected sites M241 and Q319 in fishes caused a change in the electrostatic

potential when mapped on to the 3D protein structure of PARP2 in fishes (Fig 5).

Table 1. (Continued)

Taxon Species PARP1 PARP2 SIRT1 SIRT2 SIRT6 MRPS5 FOXO3a TP53 PPARGC1A SOD3

Amphibian Tropical clawed

frog

Xenopus tropicalis
p p p p p p p p p p

African clawed

frog

Xenopus laevis
p p p p p

×
p p p

×

Tibetan frog Nanorana parkeri
p p p p p p p p p

×
Fish Cod Gadus morhua

p p p p p p p p p
×

Tilapia Oreochromis niloticus
p p p p p p p p p p

Medaka Oryzias latipes
p p p p p p p p p p

Fugu Takifugu rubripes
p p p p p p p p p p

Tetraodon Tetraodon nigroviridis
p p p p p p p p p p

Southern

platyfish

Xiphophorus maculatus
p p p p p p p p p p

Spotted gar Lepisosteus oculatus
p p p p

×
p p p p p

Guppy Poecilia reticulata
p p p p

×
p p p p p

https://doi.org/10.1371/journal.pone.0182306.t001
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Discussion

The present study analyzed the molecular evolution of ten genes involved in NAD+/Sirtuin

pathway in 51 species that represented all of the major animal eukaryotic taxa. Most of the

components of NAD+/Sirtuin pathway were present in all the taxa except PARP2, which was

absent from birds. SIRT2 and TP53 were also under-represented in this clade. This is

Fig 1. A rooted cladogram showing the phylogenetic relationships among the species included in present study. The branch

leading to the mammal (#1), birds (#2), birds and reptiles (#3), amphibians (#4) and fishes (#5), were marked as the foreground lineage to

analyze selection sites.

https://doi.org/10.1371/journal.pone.0182306.g001

Evolution of NAD+/Sirtuin signaling pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0182306 August 2, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0182306.g001
https://doi.org/10.1371/journal.pone.0182306


particularly noteworthy since birds represent an independent evolutionary origin [11]. In this

present study, the branch leading to the mammals, birds, birds and reptiles, amphibians and

fishes were designed as the foreground branches in branch-site models to examine positive

selection. We found that PARP1 and PARP2 had the most sites under positive selection. These

positively selected sites in PARP1 and PARP2 are worthy of further investigation.

NAD+/Sirtuin pathway lies at the intersection of important aging pathways, such as FOXO

and mitochondrial UPR, which makes it difficult to understand its independent role [12].

However, a couple of reports have clearly established NAD+/Sirtuin pathway as an important

aging regulator [20,42,43,44]. It is very important to understand a genetic mechanism from

evolutionary point of view, to gain a clear picture of the natural selection acting on each com-

ponent of the involved pathways. There have been an exhaustive molecular evolutionary analy-

sis of IIS/TOR aging network which uncovered substantial variation in IIS/TOR network

within and among amniotes and provided a critical step to unlock information on vertebrate

patterns of genetic regulation of metabolism, modes of reproduction and rates of aging [11].

Also, the evolutionary relationships of sirtuins have been searched for all seven sirtuins present

in 77 representative species of animals, plants, bacteria and archaea [45]. Molecular evolution-

ary patterns of Insulin/FOXO signaling pathway have also been explored in metazoan

Table 2. Positively selected sites under branch-site model for foreground lineages Prob(w>1).

Gene Lineages

Mammals Birds Birds/Reptiles Amphibian Fish

MRPS5 - - - - -

FOXO3a - - - 435 F 0.983* 442 S 0.983*

436 G 0.987* 591 S 0.956*

437 P 0.979*

463 S 0.984*

655 N 0.982*

PARP1 - - - 146 P 0.991** 72 D 0.966*

563 V 0.967* 269 K 0.995**

1011 T 0.987* 293 L 0.978*

1012 S 0.997** 392 N 0.970*

606 S 0.965*

807 D 0.965*

830 D 0.996**

PARP2 - - -(Reptiles) 69 S 0.967* 241 M 0.963*

319 Q 0.977*

PPARGC1A - - - - -

SIRT1 - - - - -

SIRT2 - - 216 E 0.997** - 162 L 0.994**

246 C 0.976* 249 S 0.958*

253 K 0.960*

SOD3 - - - - 197 E 0.979*

TP53 - - - - 101 K 0.969*

SIRT6 - - - - -

Lineages corresponded to branches depicted in Fig 1; “-” indicates no positively selected sites were detected in that branch;

*: P < 0.05;

**: P < 0.001.

Numbers of positively selected sites were amino acid residues at the position of each gene in Human.

https://doi.org/10.1371/journal.pone.0182306.t002
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genomes. It has been found that most of the enzymes associated with vertebrate NAD metabo-

lism are subjected to different levels of purifying selection [14]. No significant evidence of posi-

tive selection was found for MRPS5, PPARGC1A, SIRT1 and SIRT6 in any of the clades,

indicating significant constraints on these genes, which was probably because of the basic

requirement for their function in all clades. In contrast, a series of positively selected sites in

PARPs, pointed out the regulatory role of DNA repair mechanisms. FOXO3a displayed no pos-

itive selection among mammals, birds and reptiles, yet multiple positively selected sites were

present in amphibians and fishes, which is consistent with the previous reports where most

members of FOXO gene family are found to be under strong purifying selection [46].

All three sirtuins (SIRT1, SIRT2 and SIRT6), displayed great degree of conservation between

taxa, which is consistent with a previous comprehensive evolutionary analysis [45]. A signifi-

cant evolutionary constraint is seen on the anti-oxidant gene, SOD3, which is a member of the

superoxide dismutase protein family. SODs are antioxidant enzymes that catalyze the dismuta-

tion of two superoxide radicals into hydrogen peroxide and oxygen. The product of this gene

is thought to protect the brain, lungs, and other tissues from oxidative stress. A previous report

has also revealed great deal of evolutionary conservation among the members of SOD gene

family [47], which is pertinent to the functional significance of this gene family. TP53, which is

a transcription factor involved in maintaining genomic integrity by regulating genes involved

Fig 2. Functional conserved domains of poly ADP- ribosomal protein 1. Red star represents positively selected sites in different branches.

Highlighted nucleotide alignments represent the positively selected amino acid. Numbers corresponded to amino acid residues at the position of

Human PARP1 gene.

https://doi.org/10.1371/journal.pone.0182306.g002
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in cell cycle arrest, DNA repair, and programmed cell death, has got a celebrity status in mam-

mals, owing to its function in promoting adaptive responses to stress [48]. The branches repre-

senting bird, reptile and amphibian, and mammals did not display any sign of positive

selection, whereas one site was positively selected in fishes. The reason for the greater conser-

vation of this gene could be its importance in maintaining the cell cycle, DNA repair and cell

death.

What attracted our particular attention was the PARPs gene family, which has already been

suggested to be evolving under strong recurrent selection pressure [49] and displayed multiple

positively selected amino acid sites in the functional protein domains in the present study.

PARPs are the NAD+ consuming poly ADP-ribose polymerase proteins which exerts a direct

powerful metabolic impact by altering the NAD+ levels, since it competes with sirtuins pro-

teins which also uses NAD+ as a mandatory substrate for deacetylase activity [12]. PARP1 is

Fig 3. Functional conserved domains of poly ADP- ribosomal protein 2. Red star represents positively selected sites in different branches.

Highlighted nucleotide alignments represent the positively selected amino acid. Numbers corresponded to amino acid residues at the position of

Human PARP2 gene.

https://doi.org/10.1371/journal.pone.0182306.g003
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Fig 4. 3D structural analysis for poly ADP- ribosomal protein 1. (A). Eleven positively selected sites in PARP1. (B). The

folding pattern were predicted using SWISS-MODEL and electrostatic potential were calculated using the PBEQ-Solver web

server. The figures were generated in PyMOL software. Numbers corresponded to positively selected amino acid sites at the

position of Human PARP1 gene.

https://doi.org/10.1371/journal.pone.0182306.g004

Evolution of NAD+/Sirtuin signaling pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0182306 August 2, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0182306.g004
https://doi.org/10.1371/journal.pone.0182306


Fig 5. 3D structural analysis for poly ADP- ribosomal protein 2. (A). Two positively selected sites in fishes for PARP2.

(B). The folding pattern were predicted using SWISS-MODEL and electrostatic potential were calculated using the

PBEQ-Solver web server. The figures were generated in PyMOL software. Numbers corresponded to positively selected

amino acid sites at the position of Human PARP2 gene.

https://doi.org/10.1371/journal.pone.0182306.g005
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the most abundant of all the parp’s and contributes to neuronal survival and death under dif-

ferent stress conditions [50]. Ex-vivo supplementation of human peripheral blood mononu-

clear cells with NAD+ precursor nicotinic acid resulted in enhanced levels of cellular NAD+

levels which boosted the cellular poly(ADP-ribosyl)ation response to genotoxic treatment, and

protected from DNA-damage-induced cell death [51]. Inhibition of PARP has resulted in pro-

tection against mitochondrial dysfunction and neurodegeneration in Parkinson fruit fly model

[52]. Recent reports suggest that PARP1 and PARP2 stand at the crossroad of metabolic stress

and inflammation and play important role in longevity and aging [31,32,43,53,54].

In present study, the branch leading to fish displayed greater adaptive evolutionary pressure

acting on PARP1, since this had the most sites under positive selection (Table 2). In contrast,

PARP1 seems to be more conserved in bird, reptile, amphibian, and mammalian branches. As

the basic function of PARP1 is the maintenance of nucleolus structure and function, it comes

as no surprise that this gene has been under greater constraints during evolution [55]. The pos-

itively selected sites in PARP1 caused a change in the electrostatic potential of the protein (Fig

4).

Interestingly, PARP2 gene also displayed the similar evolutionary trend where the branch

leading to fishes had two positively selected sites which is further supported by the fact that the

evolution of fish proteins is faster than mammalian orthologs [56]. Furthermore, a change in

electrostatic potential in 3D protein structure for PARP2 protein was found for positively

selected sites M241 and Q319. Whether these amino acid changes had some adaptive advan-

tage need further experimental evidences. The change in electrostatic potential of PARP1 and

PARP2 may allow a change in their interaction with other proteins and molecules, which

might ultimately lead to difference in the function.

Looking at the importance of PARP1 and PARP2 genes in hematopoiesis, embryonic devel-

opment, spermatogenesis, T-cell maturation and adipogenesis in mammals, it becomes evi-

dent that evolutionary forces have maintained the greater constraints on these genes for all the

good reasons [57,58].

Conclusion

This is the first comprehensive analysis of the molecular evolution of 10 NAD+/Sirtuin path-

way related genes in mammals, birds, reptiles, amphibians and fishes. All of these genes have

been under strong constraints in mammals. FOXO3a, PARP1, PARP2, SIRT2, TP53, and SOD3
genes had been under stronger evolutionary pressures in fishes. However, birds and reptiles

have not been under much evolutionary selection forces for these genes, owing to their own

independent evolutionary origin. PARP1 and PARP2 had the most sites under positive selec-

tion. Looking at the 3D structure of these proteins in different taxa, a clear change in electro-

static potential is observed which could be one of the ways by which the protein interaction

with other proteins and molecules might have evolved. The current evolutionary analysis

poses PARPs as an important component of the NAD+/Sirtuin pathway, which should be

explored further experimentally.
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