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Abstract

An effective method for evaluating the efficiency of peer decision-making units (DMUs) is

data envelope analysis (DEA). In engineering sciences and real-world management prob-

lems, uncertainty in input and output data always exists. To achieve reliable results, uncer-

tainties must be taken into account. In this research, a General Fuzzy (GF) approach is

designed to cope with uncertainty in the presence of fuzzy observations for categorizing and

specifying stability radius and alterations ranges of efficient and inefficient DMUs, which is

applicable to real-world decision-making problems. For this purpose, a DEA sensitivity anal-

ysis model is presented, which will be modeled by fuzzy sets. Then, by applying the General

Fuzzy (GF) approach, the fuzzy DEA sensitivity analysis model is transformed into the

equivalent crisp form of fuzzy chance constraints according to specific confidence levels.

Finally, a numerical example and a case study of branches of the social security organiza-

tion are presented to illustrate sensitivity and stability analysis in the presence of fuzzy data.

The obtained results provide the input and output changes of the evaluated units according

to the attitude and preference of the decision maker with different confidence levels so that

the data changes in the fuzzy environment do not change the units’ classification from effi-

cient to inefficient and vice versa.

1. Introduction

Scrutinizing the performance of entities and organizations is a crucial liability of the top-level

management team that can be carried out by various techniques. Data envelopment analysis

(DEA), first suggested by Charnes et al. [1] (Charnes-Cooper-Rhodes (CCR model)) and con-

tinued by Banker et al. [2] (Banker-Charnes-Cooper (BCC model)), is a nonparametric way to

appraise the relative efficiency of decision-making units (DMUs) with multiple input-output.

Both CCR and BCC have been developed for many topics and with many successful applica-

tions and case studies, as reported in the DEA published works [3–5]. Since DEA is data-

based, data entry errors, statistical noise, and incomplete data create disturbances in evaluating

DEA’s efficiency. A commonly asked question is, “How sensitive are the DMUs to possible
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variations in the data?” This matter has been considered as a performance stability analysis in

DEA. Numerous studies have focused on this topic. For the most up-to-date sensitivity analy-

sis problems, the interested reader can observe: Zhu [6], Jahanshahloo et al. [7], Abri et al. [8],

Zamani and Borzouei [9], Neralić and Wendell [10], Hladı́k [11], Khoveyni and Eslami [12],

Arabjazi et al. [13], among others.

In early studies of DEA stability analysis, which was named the “Algorithmic approach,”

Charnes et al. [14] treated the sensitivity of a single output of an efficient unit by using the opti-

mal basis matrix of an LP problem. This approach was extended and improved by a few sensi-

tivity analysis papers by Charnes and Neralić in which sufficient conditions were determined

to preserve efficiency (see, for example, [15, 16]).

Thompson et al. [17] and Thompson et al. [18] provided a DEA multiplier approach to sen-

sitivity analysis using the strong complementary slackness condition (SCSC) of centrality. Sen-

sitivity analysis based on the super-efficiency technique in DEA is also another type of

sensitivity analysis in which the DMU under evaluation is not included in the reference set.

Charnes et al. [19] and Charnes et al. [20] proposed a super-efficiency DEA model where the

simultaneous proportional variation of all inputs and outputs is applied to a DMU under test.

Seiford and Zhu [21, 22] considered input and output changes separately and proposed an iter-

ative procedure to define an input stability region (ISR) and an output stability region (OSR).

Zhu [6] presented the maximum radius that preserves efficiency or inefficiency when the data

of all DMUs are changed simultaneously and unequally.

Metters et al. [23] inspected the stability of a DMU batch. They divided DMUs and then

specified the stability of DMUs using a trial and error unit scheme. Jahanshahloo et al. [24]

developed the largest stability region for BCC and additive models by supporting hyperplanes

for the DMU under evaluation. Liu et al. [25] studied the sensitivity analysis for efficient DMU

when the data uncertainty occurred locally. They considered the constancy of an efficient

DMU by worsening a class of DMUs simultaneously in the same directions to keep the under

evaluation DMU remaining on the efficient frontier. Boljunčić [26] used an iterative procedure

so that data changes do not affect the optimal basis matrix, and parametric programming was

applied to obtain possible input or output perturbation.

Mozaffari et al. [27] offereda step method(STEM), an interactive technique of multiple

objective linear programming (MOLP), for maintaining efficiency classification when all inter-

val data is simultaneously altered for the DMU under test. Abri et al. [28] to define the consis-

tency radius for efficient DMUs and quasi-efficient DMUs presented a super-efficiency model

in DEA. Singh [29] provided multiparametric sensitivity analysis by classifying the perturba-

tion parameters as ‘‘focal” and ‘‘nonfocal” and found critical regions for the efficient DMU

under evaluation. Wen et al. [30], Khalili-Damghani and Taghavifard [31] surveyed the stable

states of efficiency of DMUs in a fuzzy environment. Hladik [32] proposed stability analysis in

linear programming and addressed the expansion of the maximum tolerance area. Jahanshah-

loo et al. [7] obtained a stability region for inefficient DMUs. Their method was considered a

new frontier with a performance score of α< 1 for a specific inefficient DMU that α defined

as constant by the manager.

Abri [8] demonstrated the sensitivity of returns to scale by stability radius. Daneshvar

et al. [33] offered a DEA model by modifying the variable returns to scale (VRS) model to

improve the efficiency stability region obtained from this model. Khodabakhshi et al. [34]

and He et al. [35] determined the stability radius based on input relaxation super-efficiency

measure and interval data, respectively. Arabjazi et al. [36] studied efficiency stability in the

presence of stochastic data for DMUs in which data perturbations do not affect their

classifications.
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Agarwal et al. [37] scrutinized the robustness of DEA efficiency scores by changing the ref-

erence set of the inefficient DMUs via a new slack model (NSM). Banker et al. [38] inspected

stability in stochastic data envelopment analysis. They applied the stochastic DEA (SDEA)

model and obtained the necessary and sufficient conditions to preserve the efficiency classifi-

cation of all DMUs. Zamani and Borzouei [9] offered a tolerance area when an extra unit

needs to be joined to the set of the observed units by defining hyperplanes of the production

possibility set (PPS). Of late, an alternative method has been proposed, focusing on enlarging

the maximum tolerance radius and tolerance region. See, for example, Ghazi et al. [39], Ara-

bjazi et al. [13], and Neralić and Wendell [10].

Recently, chaotic systems have many potential applications in various fields of technical

sciences and engineering. Among them, we can mention its applications in medical issues,

financial issues, encryption techniques, control systems and optimization algorithms.

Tian et al. [40] introduced a new deep-learned type-3 fuzzy logic system to develop a model

for CO2 solubility estimation. Moreover, a new type-3 fuzzy logic system with an online

optimization scheme is proposed for stabilizing and synchronizing financial chaotic sys-

tems [41]. For more information about the new type-3 fuzzy logic system, see references

[42, 43].

Mombini et al. [44] focused on sensitivity analysis in DEA and proposed an approach to

determine the stability radius of the cost efficiency of units with interval data. Mahla et al.

[45] detailed the sensitivity and stability analysis of the fuzzy SBM DEA and obtained lower

and upper sensitive bounds for input and output variables for both the inefficient and effi-

cient DMUs to determine the input and output targets. In order to assess the efficacy of

DMUs with uncertain random inputs and outputs, Jiang et al. [46] created an uncertain ran-

dom DEA model. The sensitivity and stability of this new model were then examined in

order to determine the stability radius of each DMU. Aslani Khiavi et al. [47] used the net-

work inverse data envelopment analysis approach to develop a structure for the optimal reg-

ulation of the bullwhip effect and considered the effect of time and delays on the bullwhip

effect score.

Also lately, innovative meta-heuristic algorithms with biological and naturalistic inspira-

tions have been developed to address challenging real-world optimization problems. A prairie

dog optimization algorithm was presented by Ezugwu et al. [48] and replicates the actions of

prairie dogs in their natural environment. A dwarf mongoose optimization algorithm was sug-

gested by Agushaka et al. [49] and mimics the foraging social interactions and ecological adap-

tations of three social groups of dwarf mongooses. A reptile search algorithm that is inspired

by crocodile hunting behavior was also proposed by Abualigah et al. [50]. Moreover, Oyelade

et al. [51] introduced the Ebola optimization search algorithm based on the spread mechanism

of the Ebola virus disease. Readers can find references [52, 53] if they are interested in learning

more about meta-heuristic techniques for optimization issues.

In standard models of DEA, it is supposed that the data values are known and fixed. How-

ever, in real conditions, there may be uncertainty and ambiguity. Many topics with many suc-

cessful applications have examined situations in which the inputs and outputs are not exactly

known. Recently, some researchers addressed the matter with fuzzy data [54–57]. Hence, the

methods of sensitivity analysis proposed in DEA are not suitable for DMUs with fuzzy data. So

in this paper, first, we present a DEA model in an uncertain environment, which will be mod-

eled by fuzzy sets. Then, the sensitivity and stability analysis of the proposed fuzzy DEA model-

ing is also shown. To that end, by applying the General Fuzzy (GF) approach, the fuzzy DEA

sensitivity analysis model is transformed into the equivalent crisp form of fuzzy chance con-

straints according to specific confidence levels.
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The difference between our work and the existing fuzzy procedures is that the existing

approaches consider the optimistic, pessimistic, and compromised attitudes of the decision

maker based on the possibility, necessity, and credibility measures in three separate models in

fuzzy DEA, while the proposed stability analysis takes into account the different optimistic-

pessimistic attitudes of the decision maker in one model only by setting an adjustable parame-

ter. The drawback of the possibility, necessity, and credibility measures is that these three mea-

sures reflect the decision maker’s attitude as extremely optimistic, pessimistic, and

compromising. While in order to estimate the efficiency of DMUs, we require an adjustable,

flexible, and applicable measure for fuzzy decision-making problems so that this measure can

reflect different perspectives of the decision maker. To put it another way, in our proposed

approach, decision makers can apply different attitudes that they have obtained according to

their experiences and judgments by adjusting the optimistic-pessimistic parameter for better

decision-making and forecasting. In addition, GF measure models are formulated in the form

of fuzzy linear programming.

The main contributions of the current research can be mentioned as follows:

• Providing an additive DEA model with fuzzy data.

• Proposing a sensitivity and stability analysis of the fuzzy additive DEA model.

• Presenting novel general fuzzy approach and chance constrained programming to tackle the

uncertainty of the fuzzy chance-constraints in the fuzzy DEA sensitivity analysis model and

convert them into their equivalent crisp values.

• Determining the stability region and stability radius for both efficient and inefficient DMUs.

• The efficiency of the proposed approach is illustrated by a numerical example.

• Implementation of the suggested method in a real-world case study from social security

organization.

The rest of the paper has been organized as follows: In Section 2, first the general fuzzy

measure is introduced, and then some basic concepts about the DEA additive model with

fuzzy data will be presented. A sensitivity and stability analysis technique for DMUs with

fuzzy data is shown in Section 3. An illustrative numerical example and a case study of social

security organizations are discussed in Section 4. In the final Section 5, conclusions are

expressed.

2. Fundamentals and concepts

2.1. Mathematical notations and nomenclatures

The symbols, parameters, and variables that will be utilized in this study are defined as follows:

Indices

j the index of DMUs; j ¼ 1; . . . ; n

i the index of inputs; i ¼ 1; . . . ;m

r the index of outputs; r ¼ 1; . . . ; s

o the index of DMU under test
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Parameters

Xj the inputs vector of DMUj

Yj the outputs vector of DMUj

xij the ithinput of DMUj

yrj the rthoutput of DMUj

Xo the inputs vector of DMUounder test

Yo the outputs vector of DMUounder test

xio the ithinput of DMUounder test

yro the rthoutput of DMUounder test

~x ij the ithfuzzy input of DMUj

~yrj the rthfuzzy output of DMUj

~x io the ithfuzzy input of DMUounder test

~yro the rthfuzzy output of DMUounder test

t a crisp number

g a specific confidence level for satisfying the uncertain constraint

Z the optimistic � pessimistic parameter of general fuzzy GFð Þmeasure

K a large enough number

Variables

mj the non � negative coefficient of DMUj data in the convex combination

s�i non � radial decrease of ithinput of DMUo under test in the additive model

sþr non � radial increase of rthoutput of DMUo under test in the additive model

ri the stability radius of ithinput of DMUo under test

φr the stability radius of rthoutput of DMUo under test

O a binary variable for linearization of incompatible constraints

Definition 1. A region of permissible data changes is called a stability region of DMUo if

and only if the classification of all DMUs remains stable after such changes occur.

Definition 2. Given DMUo, the stability radius is the largest number, r, such that feasible

perturbations to DMUo strictly <r preserve the efficiency classification of all DMUs (Arabjazi

et al. [13]).
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2.2. General fuzzy measure

General Fuzzy (GF) is a measure used to express the chance of fuzzy phenomena that was

developed by Xu and Zhou [58, 59]. Here, we will state some basic concepts in general fuzzy

measure. For any fuzzy event P 2C(Θ) that occurs on possibility space (Θ,C(Θ), Pos), the

general fuzzy measure is defined as follows:

GFfPg ¼ NecfPg þ ðZÞðPosfPg � NecfPgÞ ¼ ðZÞPosfPg þ ð1 � ZÞNecfPg

That is to say, the general fuzzy measure is equal to the convex combination of possibility

(Pos) and necessity (Nec) in which η (0� η� 1), is the optimistic-pessimistic parameter to

determine the attitude of a decision-maker. GF{.} is a general fuzzy measure if and only if:

• GF {;} = 0, GF {Θ} = 1

• 8 P 2C (Θ)) 0� GF {P}� 1

• 8 P 2C (Θ), η� 0.5) 0� GF {P} + GF {Pc}� 1

• 8 P 2C (Θ), η� 0.5) 1� GF {P} + GF {Pc}� 2

• 8 P, R 2C (Θ), P� R) GF {P}� GF {R}

• 8 P, R 2C (Θ), η� 0.5) GF {P [ R}� GF {P} + GF {R}

• 8 P 2C (Θ)) Pos {P}� GF {P}� Nec {P}

Suppose that, ~a a1; a2; a3; a4ð Þ with the condition of α1 < α2 < α3, < α4 is a trapezoidal

fuzzy variable on possibility space (Θ,C(Θ), Pos). The membership function of ~a is expressed

below:

mðxÞ ¼

x � a1

a2 � a1

; if a1 � x � a2;

1; if a2 � x � a3;

a4 � x
a4 � a3

; if a3 � x � a4;

0; otherwise:

8
>>>>>>><

>>>>>>>:

ð1Þ

Also, assume that τ is a crisp number. The GF measure of fuzzy events is as follows:

GFð~a � tÞ ¼

0; if a1 � t;

Z
t � a1

a2 � a1

� �

; if a1 � t � a2;

Z; if a2 � t � a3;

Zþ ð1 � ZÞ
t � a3

a4 � a3

� �

; if a3 � t � a4;

1; if a4 � t:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð2Þ
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GFð~a � tÞ ¼

1; if a1 � t;

Zþ ð1 � ZÞ
a2 � t

a2 � a1

� �

; if a1 � t � a2;

Z; if a2 � t � a3;

Z
a4 � t

a4 � a3

� �

; if a3 � t � a4;

0; if a4 � t:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð3Þ

According to the fuzzy general measure properties, the certain counterparts crisp ones of

fuzzy chance constraints under specific confidence level g for both conditions of g greater or

less than Z, are as follows:

GFf~a � tg � g,

Z � g

Z

� �

a1 þ
g

Z

� �

a2 � t; if g � Z;

1 � g

1 � Z

� �

a3 þ
g � Z

1 � Z

� �

a4 � t; if g � Z:

8
>>><

>>>:

ð4Þ

GFf~a � tg � g,

g

Z

� �

a3 þ
Z � g

Z

� �

a4 � t; if g � Z;

g � Z

1 � Z

� �

a1 þ
1 � g

1 � Z

� �

a2 � t; if g � Z:

8
>>><

>>>:

ð5Þ

In the above relations, if η is equal to 1, 0, and 0.5, then the GF measure represents possibil-

ity, necessity, and credibility, respectively [60, 61]. To put it another way, by setting η in the GF
measure, the decision-maker can achieve the desired attitude. And lastly, in recent years, the

popularity and applicability of the GF measure have been increasing among researchers, and it

is widely used in real-world problems in fuzzy environments [62–64].

2.3. The DEA additive model

Assume that n DMUs need to be appraised. The symbols and notations are given as follows:

DMUj denotes the jth DMU, where j = 1, 2,. . ., n. DMUo is the DMU under evaluation. The

vectors Xj = (x1j, x2j,. . ., xmj) and Yj = (y1j, y2j,. . ., ysj) are the inputs and outputs of DMUj,j = 1,

2, . . ., n. The inputs and outputs vectors of the target DMUo are Xo = (x1o, x2o,. . ., xmo) and Yo

= (y1o, y2o,. . ., yso). Also, the production possibility set (PPS) and the additive model of

Charnes et al. [14] are defined in Eqs (6) and (7) as follows:

PPS ¼ X;Yð Þ

�
�
�
�X �

Xn

j¼1

mjXj;Y �
Xn

j¼1

mjYj;
Xn

j¼1

mj ¼ 1; mj � 0; j ¼ 1; . . . ; n

( )

ð6Þ
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Max
Xm

i¼1

s�i þ
Xs

r¼1

sþr

s:t:
Xn

j¼1

mjxij ¼ xio � s�i 8 i

Xn

j¼1

mjyrj ¼ yro þ sþr 8 r

Xn

j¼1

mj ¼ 1 8 j

mj � 0 8 j

s�i ; sþr � 0; 8 i; r

ð7Þ

Definition 3. DMUo, the DMU under test, is efficient if and only if an optimum is

attained with all slacks zero in Model (7).

2.4. The fuzzy additive model

A hypothesis underlying DEA is that all the data take the form of specific numerical values.

However, in a great variety of applications, the presence of imprecise or vague data like fuzzy

data is undeniable. To this end, we present the additive Model (8) with fuzzy data in which

~x ij ¼ ðxð1Þ; xð2Þ; xð3Þ; xð4ÞÞ with the condition of x(1) < x(2) <x(3) <x(4) and ~yrj ¼

ðyð1Þ; yð2Þ; yð3Þ; yð4ÞÞ with the condition of y(1) < y(2) < y(3) < y(4) represent the ith fuzzy input

and rth fuzzy output of DMUj, j = 1, 2,. . ., n, respectively under trapezoidal distribution.

Max
Xm

i¼1

s�i þ
Xs

r¼1

sþr

s:t:
Xn

j¼1

mj~xij ¼ ~xio � s�i 8 i

Xn

j¼1

mj~yrj ¼ ~yro þ sþr 8 r

Xn

j¼1

mj ¼ 1 8 j

mj � 0 8 j

s�i ; sþr � 0; 8 i; r

ð8Þ

To tackle the uncertainty of fuzzy chance constraints in Model (8) and convert them to

their equivalent crisp values by applying general fuzzy measure and chance constrained
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programming, Model (8) will be converted to the following model:

Max
Xm

i¼1

s�i þ
Xs

r¼1

sþr

s:t: GF
Xn

j¼1

mj~xij � ~xio � s�i

( )

� g 8 i

GF
Xn

j¼1

mj~yrj � ~yro þ sþr

( )

� g 8 r

Xn

j¼1

mj ¼ 1 8 j

mj � 0 8 j
s�i ; sþr � 0; 8 i; r

ð9Þ

Definition 4. For the Model (9), DMUo is an γ-efficient if an optimum is obtained with all

slacks zero in Model (9) namely, the values of s� �i ; ði ¼ 1; . . . ; mÞ and sþ�r ; ðr ¼ 1; . . . ; sÞ
are equal to zero where s� �i and sþ�r are the optimal solutions of the Model (9).

From the properties of the GF approach and using relations (4) and (5), we can rewrite

Model (9) as Model (10). It is significant that in the GF approach, an equivalent crisp of fuzzy

chance constraints for the γ greater than or less than η, is not similar. So it has been applied a

binary variable O and a large enough number K in Model (10) to the linearization of the

incompatible constraints.

Max
Xm

i¼1

s�i þ
Xs

r¼1

sþr

s:t:
Xn

j ¼ 1
j 6¼ o

mjðð
Z � g

Z
Þxð1Þij þ ð

g

Z
Þxð2Þij Þ þ moðð

g

Z
Þxð3Þio þ ð

Z � g

Z
Þxð4Þio Þ � ðð

g

Z
Þxð3Þio þ ð

Z � g

Z
Þxð4Þio Þ � s�i þ KO; 8 i

Xn

j ¼ 1
j 6¼ o

mjðð
1 � g

1 � Z
Þxð3Þij þ ð

g � Z

1 � Z
Þxð4Þij Þ þ moðð

g � Z

1 � Z
Þxð1Þio þ ð

1 � g

1 � Z
Þxð2Þio Þ � ðð

g � Z

1 � Z
Þxð1Þio þ ð

1 � g

1 � Z
Þxð2Þio Þ � s�i þ Kð1 � OÞ; 8 i

Xn

j ¼ 1
j 6¼ o

mjðð
g

Z
Þyð3Þrj þ ð

Z � g

Z
Þyð4Þrj Þ þ moðð

Z � g

Z
Þyð1Þro þ ð

g

Z
Þyð2Þro Þ � ðð

Z � g

Z
Þyð1Þro þ ð

g

Z
Þyð2Þro Þ þ sþr � KO; 8 r

Xn

j ¼ 1
j 6¼ o

mjðð
g � Z

1 � Z
Þyð1Þrj þ ð

1 � g

1 � Z
Þyð2Þrj Þ þ moðð

1 � g

1 � Z
Þyð3Þro þ ð

g � Z

1 � Z
Þyð4Þro Þ � ðð

1 � g

1 � Z
Þyð3Þro þ ð

g � Z

1 � Z
Þyð4Þro Þ þ sþr � Kð1 � OÞ; 8 r

Xn

j¼1

mj ¼ 1 8 j

g � ZþKO
g > Z � Kð1 � OÞ
O 2 f0; 1g

mj � 0 8 j
s�i ; sþr � 0; 8 i; r

ð10Þ
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Theorem 2.1. If DMUo is an γ-inefficient DMU, then an optimum is obtained with m�o ¼

0 in Model (9).

Proof Let us hypothesize that for a fixed γ, the solution ðm�j ; m
�
o; s
� �
i ; s

þ�
r Þ is the optimal value

of Model (9) with the optimal objective
Pm

i¼1

s� �i þ
Ps

r¼1

sþ�r , the theorem is proved if m�o ¼ 0. Oth-

erwise, since DMUo is inefficient, there is at least one s� �i > 0 ði ¼ 1; . . . ;mÞ or sþ�r > 0 ðr ¼
1; . . . ; sÞ such that m�o > 0. Suppose that s� �k > 0 ðk 2 1; . . . ;mf gÞ. If m�o ¼ 1, in that case

GFf~xok � ~xok � s� �k g ¼ 0. This antilogy states that m�o 6¼ 1.

Now, we consider the case 0 < m�o < 1.

GF
Xn

j¼1

m�j ~x ij � ~x io � s� �i

( )

¼ GF
Xn

j¼1;j6¼o

m�j ~x ij þ m
�

o~x io � ~x io � s� �i

( )

¼ GF
Xn

j¼1;j6¼o

m�j ~x ij � ð1 � m
�

oÞ~x io � s� �i

( )

¼ GF

Xn

j¼1;j6¼o

m�j ~x ij

ð1 � m�oÞ
� ~x io �

s� �i

ð1 � m�oÞ

8
>>><

>>>:

9
>>>=

>>>;

� g; i ¼ 1; . . . ;m:

In a similar way,

GF
Xn

j¼1

m�j ~yrj � ~yro þ sþ�r

( )

¼ GF

Pn

j¼1;j6¼o
m�j ~yrj

ð1 � m�oÞ
� ~yro þ

sþ�r

ð1 � m�oÞ

8
>><

>>:

9
>>=

>>;

� g; r ¼ 1; . . . ; s:

It is straightforward

Pn

j¼1;j6¼o

m�j ~yrj

ð1� m�oÞ
¼ 1. Hence

m�
1

1� m�o
; . . . ;

m�o� 1

1� m�o
; 0;

m�oþ1

1� m�o
; . . . ;

m�n
1� m�o

� �
is a feasible

solution for Model (9) such that the objective value for this solution is 1

1� m�o

Pm

i¼1

s� �i þ
Ps

r¼1

sþ�r

� �

.

And since 0 < m�o < 1, it contradicts the assumption
Pm

i¼1

s� �i þ
Ps

r¼1

sþ�r

� �

. Therefore m�o ¼ 0.

3. Sensitivity analysis with fuzzy data

3.1. Stability radius for efficient DMUs

Suppose that DMUo is an γ-efficient DMU. The aim is to find scalars ρi (i = 1,. . ., m) and φr

(r = 1,. . .,s) such that if ith input of DMUo is increased by ρi and rth output of DMUo is

decreased by φr, then DMUo remains γ-efficient. For this purpose, we consider the following
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model:

Min
Xm

i¼1

ri þ
Xs

r¼1

φr

s:t: GF
Xn

j ¼ 1

j 6¼ 0

mj~xij � ~xio þ ri

8
>><

>>:

9
>>=

>>;

� g 8 i

GF
Xn

j ¼ 1

j 6¼ o

mj~yrj � ~yro � φr

8
>><

>>:

9
>>=

>>;

� g 8 r

Xn

j ¼ 1

j 6¼ o

mj ¼ 1 8 j

mj � 0 8 j

ri; φr � 0; 8 i; r

ð11Þ

Theorem 3.1. Theorize that DMUo is an γ-efficient DMU, and

ðm�
1
; . . . ; m�n; r

�
1
; . . . ; r�m;φ

�
1
; . . . ;φ�s Þ is an optimal solution of Model (11). In this case gDMUo

with inputs ð~xio þ r
�
i Þ; ði ¼ 1; . . . ;mÞ and outputs ð~yro � φ�r Þ; ðr ¼ 1; . . . ; sÞ remains an γ-effi-

cient DMU.

Proof Assume that ðm_j; m
_

o; s
� �
i ; s

þ�
r Þ is the optimal value of Model (9) when evaluating gDMUo

therefore we have:

GF
Xn

j¼1;j6¼o

m_j~xij þ m
_

oð~xio þ r
�

i Þ � ð~xio þ r
�

i Þ � s� �i

( )

� g 8 i

GF
Xn

j¼1;j6¼o

m_j~yrj þ m
_

oð~yro � φ�r Þ � ð~yro � φ�r Þ þ sþ�r

( )

� g 8 r

Assume that gDMUo is inefficient thus from Theorem 2.1, m
_

o ¼ 0 and we have:

GF
Xn

j¼1;j6¼o

m_j~xij � ð~xio þ r
�

i Þ � s� �i

( )

� g 8 i

GF
Xn

j¼1;j6¼o

m_j~yrj � ð~yro � φ�r Þ þ sþ�r

( )

� g 8 r

We set r̂i ¼ r
�
i � s� �i and φ̂r ¼ φ�r � sþ�r . Thus ðm_1; . . . ; m_n; r̂1; . . . ; r̂m; φ̂1; . . . ; φ̂sÞ is a feasi-

ble solution for Model (11) and the objective value is
Pm

i¼1

r̂i þ
Ps

r¼1

φ̂r <
Pm

i¼1

r�i þ
Ps

r¼1

φ�r , which

leads to a contradiction with the assumption.

From the above analysis, if DMUo is an γ-efficient DMU, and

ðm�
1
; . . . ; m�n; r

�
1
; . . . ; r�m;φ

�
1
; . . . ;φ�s Þ is an optimal solution of Model (11), then for each ρi

(i = 1,. . ., m) and φr (r = 1,. . .,s), where ri 2 ½0; r
�
i �, (i = 1, . . .,m) and φr 2 ½0;φ

�
r �, (r = 1, . . .,m)

if ð~xio þ riÞ, (i = 1, . . .,m) and ð~yro � φrÞ, (r = 1, . . .,m) then DMUo remains γ-efficient.
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We can rewrite Model (11) as a fuzzy DEA crisp model for the γ greater than or less than Z

according to the GF measure as follows:

Min
Xm

i¼1

ri þ
Xs

r¼1

φr

s:t:
Xn

j ¼ 1
j 6¼ o

mjðð
Z � g

Z
Þxð1Þij þ ð

g

Z
Þxð2Þij Þ � ðð

g

Z
Þxð3Þio þ ð

Z � g

Z
Þxð4Þio Þ þ ri þ KO; 8 i

Xn

j ¼ 1
j 6¼ o

mjðð
1 � g

1 � Z
Þxð3Þij þ ð

g � Z

1 � Z
Þxð4Þij Þ � ðð

g � Z

1 � Z
Þxð1Þio þ ð

1 � g

1 � Z
Þxð2Þio Þ þ ri þ Kð1 � OÞ; 8 i

Xn

j ¼ 1
j 6¼ o

mjðð
g

Z
Þyð3Þrj þ ð

Z � g

Z
Þyð4Þrj Þ � ðð

Z � g

Z
Þyð1Þro þ ð

g

Z
Þyð2Þro Þ � φr � KO; 8 r

Xn

j ¼ 1
j 6¼ o

mjðð
g � Z

1 � Z
Þyð1Þrj þ ð

1 � g

1 � Z
Þyð2Þrj Þ � ðð

1 � g

1 � Z
Þyð3Þro þ ð

g � Z

1 � Z
Þyð4Þro Þ � φr � Kð1 � OÞ; 8 r

Xn

j ¼ 1
j 6¼ o

mj ¼ 1 8 j

g � ZþKO
g > Z � Kð1 � OÞ
O 2 f0; 1g

mj � 0 8 j
ri; sþr � 0; 8 i; r

ð12Þ

3.2. Stability radius for inefficient DMUs

In this case, we imagine that DMUo is an γ-inefficient DMU; that is, m�o ¼ 0. The aim is to find

scalars ρi (i = 1,. . ., m) and φr (r = 1,. . .,s) such that if ith input of DMUo is decreased by ρi and

rth output of DMUo is increased by φr, then DMUo remains γ-inefficient. To this end, we have

the following model:

Max
Xm

i¼1

ri þ
Xs

r¼1

φr

s:t: GF
Xn

j¼1

mj~xij � ~xio � ri

( )

� g 8 i

GF
Xn

j¼1

mj~yrj � ~yro þ φr

( )

� g 8 r

Xn

j¼1

mj ¼ 1 8 j

mj � 0 8 j
ri; φr � 0; 8 i; r

ð13Þ

Theorem 3.2. Imagine that DMUo is an γ-inefficient DMU, and

ðm�
1
; . . . ; m�n; r

�
1
; . . . ; r�m;φ

�
1
; . . . ;φ�s Þ is the optimal solution of Model (13). In this case gDMUo
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with inputs ð~xio � riÞ; ði ¼ 1; . . . ;mÞ where ri 2 ½0; r
�
i Þ; ði ¼ 1; . . . ;mÞ and outputs ð~yro þ

φrÞ; ðr ¼ 1; . . . ; sÞ where φr 2 ½0;φ
�
r Þ; ðr ¼ 1; . . . ; sÞ remains an γ-inefficient DMU, i.e. m�o ¼ 0.

Proof. The theorem’s proof is like to that of Theorem 2.1 and is eliminated.

4. Numerical example

4.1. Illustrative example

This section provides an example with the data defined in Table 1 to demonstrate the stability

analysis. The numerical example is related to five DMUs with two fuzzy inputs and two fuzzy

outputs in the form of a trapezoidal fuzzy number.

We evaluated DMUs using Model (9) in the case of γ< η with confidence level γ = 0.2 and

adjustment parameter η = 0.4, the results presented in Table 2.

Using Model (9), DMUA and DMUC are efficient, while DMUB, DMUD, and DMUE are

inefficient. Sensitivity analysis for efficient DMUs using Model (11) is shown in Table 3.

To interpret Table 3, we say that the second and third columns show the maximum increase

in the first and second input of efficient DMUs, respectively, while maintaining their effi-

ciency. Similarly, the fourth and fifth columns show the maximum decrease in the first and

second output of efficient DMUs while keeping the efficiency of DMUs. For instance, consider

the first row of Table 3, DMUA = (x1A, x2A, y1A, y2A) remains efficient if gDMUA ¼

x1A þ r
_

1; x2A þ r
_

2; y1A; y2Að Þ in which 0 � r_1 � 0:75 and 0 � r_2 � 0:375.

Also, Table 4 gives sensitivity analysis for inefficient DMUs which estimated by Model (13).

The second and third columns document the lower bounds of variation ranges in the first

and second input of inefficient DMUs, respectively, while maintaining their inefficiency. Simi-

larly, the fourth and fifth columns document the upper bounds of variation ranges in the first

and second output of inefficient DMUs while keeping the inefficiency of DMUs. For instance,

we consider the first row of Table 4, DMUB = (x1B, x2B, y1B, y2B) remains inefficient if

Table 1. Data set of five DMUs with two fuzzy inputs and two fuzzy outputs.

DMUs DMUA DMUB DMUC DMUD DMUE

Input(I1) (0.5, 1, 1.5, 2) (2.25, 2.75, 3.25, 3.75) (3.25, 3.75, 4.25, 4.75) (2, 4, 6, 8) (3.5, 4.5, 5.5, 6.5)

Input(I2) (1.5, 1.75, 2, 2.25) (2, 3, 4, 5) (2.25, 2.5, 2.75, 3) (4, 4.5, 5, 5.5) (4.5, 5, 5.5, 6)

Output(O1) (3, 4, 5, 6) (1, 3, 5, 7) (1, 2, 3, 4) (0.5, 1, 1.5, 2) (1.5, 2, 2.5, 3)

Output(O2) (2, 2.75, 3.5, 4.25) (1.5, 2.5, 3.5, 4.5) (4, 4.5, 5, 5.5) (2, 3, 4, 5) (0.25, 0.5, 0.75, 1)

https://doi.org/10.1371/journal.pone.0275594.t001

Table 2. Results of evaluating DMUs in the case of γ< η by Model (9).

DMUj

Pm
i¼1

s� �i þ
Ps

r¼1
sþ�r ðm�A; m

�
B;m

�
C; m

�
D; m

�
EÞ Efficiency

DMUA 0 (1,0,0,0,0) Efficient

DMUB 11 (1,0,0,0,0) Inefficient

DMUC 0 (0,0,1,0,0) Efficient

DMUD 16 (1,0,0,0,0) Inefficient

DMUE 16.625 (1,0,0,0,0) Inefficient

https://doi.org/10.1371/journal.pone.0275594.t002

Table 3. Sensitivity analysis for efficient DMUs in the case of γ< η by Model (11).

DMUj r�
1

r�
2

φ�
1

φ�
2

DMUA 0.75 0.375 0 0

DMUC 0 0 0 0.077

https://doi.org/10.1371/journal.pone.0275594.t003
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gDMUB ¼ x1B � r
_

1; x2B � r
_

2; y1B þ φ_1; y2B þ φ_2ð Þ in which 0 � r_1 � 2:75, 0 � r_2 � 2:875,

0 � φ_1 � 3:5 and 0 � φ_2 � 1:875.

Similar to the above discussion will be presented in the case of γ< η with confidence level

0.8 and adjustment parameter 0.2. The results of the evaluating DMUs are shown in Table 5.

As shown in Table 5, in the case of γ< η, four DMUs, namely DMUA, DMUB, DMUC and

DMUD, are efficient, and DMUE is inefficient. Sensitivity analysis for the efficient DMUs

using Model (11) and sensitivity analysis for the inefficient DMU using Model (13) are shown

in Tables 6 and 7, respectively.

The interpretation of the last two tables is similar to Tables 4 and 5. Also, from the compari-

son between Tables 2 and 5, we find that in the case of γ< η, the number of efficient units is

more than in the case of γ> η.

4.2. An applicable data set

A public system of compulsory insurance that should be provided by the government for all

persons of society is called social security. Utilization of social security benefits, such as retire-

ment, unemployment, old age, disability, loss of caretaker, helplessness, accidents, and injuries,

requiring insurance or non-insurance medical and health care services, is a public right for all

individuals in society. By considering all the things above, a comprehensive social security sys-

tem is established to provide the aforementioned services.

Table 4. Sensitivity analysis for inefficient DMUs in the case of γ< η by Model (13).

DMUj r�
1

r�
2

φ�
1

φ�
2

DMUB 2.75 2.875 3.5 1.875

DMUD 6.25 3.625 4.75 1.375

DMUE 5.25 4.125 3.75 3.5

https://doi.org/10.1371/journal.pone.0275594.t004

Table 5. Results of evaluating DMUs in the case of γ> η by Model (9).

DMUj

Pm
i¼1

s� �i þ
Ps

r¼1
sþ�r ðm�A; m

�
B;m

�
C; m

�
D; m

�
EÞ Efficiency

DMUA 0 (1,0,0,0,0) Efficient

DMUB 0 (0,1,0,0,0) Efficient

DMUC 0 (0,0,1,0,0) Efficient

DMUD 0 (0,0,0,1,0) Efficient

DMUE 5.937 (1,0,0,0,0) Inefficient

https://doi.org/10.1371/journal.pone.0275594.t005

Table 6. Sensitivity analysis for efficient DMUs in the case of γ> η by Model (11).

DMUj r�
1

r�
2

φ�
1

φ�
2

DMUA 3.983 1.408 4.468 0

DMUB 0 0 3.25 2.063

DMUC 0 0 0.5 3.188

DMUD 0 0 0 2.122

https://doi.org/10.1371/journal.pone.0275594.t006

Table 7. Sensitivity analysis for inefficient DMU in the case of γ> η by Model (13).

DMUj r�
1

r�
2

φ�
1

φ�
2

DMUE 1.875 2.438 0.375 1.25

https://doi.org/10.1371/journal.pone.0275594.t007
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In this section, considering the proposed method, the sensitivity analysis for efficient and

inefficient DMUs is illustrated for evaluating 12 branches of the Social Security Organization

in Tehran. Each branch (DMU) applies two inputs (total number of computers, and number

of staff) to generate two outputs (sum of insured individuals’ contracts, and all individuals

under insurance). Also, input and output data in the form of trapezoidal fuzzy numbers are

documented in Tables 8 and 9, respectively.

By considering the adjustment parameter of 0.75, we evaluated the performance of these 12

branches of the Social Security Organization for some confidence levels in the case of γ� 0.75.

The evaluation results are documented in Table 10.

Table 10 represents the amount of objective function of Model (10) for all DMUs to deter-

mine the efficiency classification of DMUs, in which Z� ¼
Pm

i¼1
s� �i þ

Ps
r¼1

sþ�r . As shown in

Table 10, DMU2and DMU12are efficient for all confidence levels less than or equal to 0.75,

while DMU1is efficient only for the confidence levels of 0.5 and 0.75, and the other DMUs are

inefficient. Table 11 reports the stability radius for efficient DMUs with various confidence lev-

els of γ� 0.75.

The second and third columns report the upper bounds of variation ranges in the total

number of computers and the number of staff for efficient branches, respectively, while

Table 8. Inputs of 12branch of social security organization in Tehran.

DMUj Total number of computers (I1) Number of staff (I2)

DMU1 (84,84.16,90.16,91.99) (106,107.25,110.25,112)

DMU2 (92,92.58,93.58,93.99) (82,83,86.5,88)

DMU3 (92,92,92,92) (85,86,88.5,90)

DMU4 (88,88.416,89.41,89.99) (75,76.83,79.83,80.99)

DMU5 (99.99,100.08,100.58,100.99) (82,83,85.5,87)

DMU6 (83,83,83,83) (89,89.83,91.33,91.99)

DMU7 (91,91.33,91.83,91.99) (94,97.91,104.91,107.99)

DMU8 (90,90.5,91.5,92) (96,96.66,98.66,99.99)

DMU9 (93,93.75,95.25,96) (91,91.66,93.16,93.99)

DMU10 (107,107.33,109.33,110.99) (102,102,102,102)

DMU11 (85,86,88,89) (77,77.75,79.25,80)

DMU12 (78,78,78,78) (94,95.58,99.08,100.99)

https://doi.org/10.1371/journal.pone.0275594.t008

Table 9. Outputs of 12 branch of social security organization in Tehran.

DMUj Sum of insured individuals’ contracts (O1) All individuals under insurance (O2)

DMU1 (43,50.58,77.58,96.99) (85399,85810.25,86720.75,87220)

DMU2 (28,31.83,39.33,42.99) (87716,88307.25,89574.25,90250)

DMU3 (11,14.16,22.16,26.99) (42900,43963.83,46148.83,47269.99)

DMU4 (0,7.83,18.83,21.99) (36740,36770.25,36826.25,36852)

DMU5 (29,56.14,204.41,324.99) (27978,28475.91,30958.41,32942.99)

DMU6 (9,18.08,35.08,42.99) (52127,53398,54343,54817)

DMU7 (13,16.83,22.83,24.99) (78550,80892.75,86173.25,89111)

DMU8 (47,70.08,111.08,128.99) (32585,34220.66,36649.66,37442.99)

DMU9 (10,20.16,42.66,54.99) (35469,35577.08,35851.08,36016.99)

DMU10 (30,36,49.5,57) (56144,56814.41,58150.41,58815.99)

DMU11 (11,14.33,22.33,26.99) (38004,38225.08,38614.58,38782.99)

DMU12 (81,129.75,210.25,242) (36652,38567.16,42390.16,44297.99)

https://doi.org/10.1371/journal.pone.0275594.t009
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maintaining their efficiency. Similarly, the fourth and fifth columns report the lower bounds

of variation ranges in the sum of insured individuals’ contracts and all individuals under insur-

ance for efficient branches while keeping their efficiency. For instance, consider DMU2 with

the confidence level of γ = 0.5 in Table 11. DMU2 = (x12, x22, y12, y22) remains efficient if

gDMU2 ¼ x12; x22 þ r
_

2; y12 � φ_1; y22 � φ_2ð Þ in which, 0 � r_2 � 9:607, 0 � φ_1 � 7:003 and

0 � φ_2 � 957:667. In other words, if the number of computers in Branch 2 remains fixed and

the number of staff increases by a maximum of 9.607, also if the sum of insured individuals’

contracts decreases by a maximum of 7.003 and all individuals under insurance decrease by a

maximum of 957.667, then Branch 2 will remain efficient.

In the following, Table 12 reports the stability radius for inefficient DMUs with various

confidence levels of γ� 0.75.

Table 10. Evaluation of 12 DMUs in the case of γ� 0.75.

DMUj Confidence levels (γ � 0.75)

γ = 0 γ = 0.25 γ = 0.5 γ = 0.75

Z� Efficiency Z� Efficiency Z� Efficiency Z� Efficiency

DMU1 4856.915 Inefficient 2223.679 Inefficient 0 Efficient 0 Efficient

DMU2 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU3 47389.990 Inefficient 46737.041 Inefficient 46088.957 Inefficient 45445.495 Inefficient

DMU4 39877.121 Inefficient 35507.664 Inefficient 28822.224 Inefficient 22056.104 Inefficient

DMU5 62299.980 Inefficient 61897.330 Inefficient 60941.641 Inefficient 56921.478 Inefficient

DMU6 11819.975 Inefficient 9717.656 Inefficient 7577.350 Inefficient 5398.696 Inefficient

DMU7 11752.230 Inefficient 10653.049 Inefficient 9560.071 Inefficient 8472.985 Inefficient

DMU8 57456.796 Inefficient 56119.518 Inefficient 54669.833 Inefficient 51685.650 Inefficient

DMU9 54829.980 Inefficient 54563.043 Inefficient 54296.107 Inefficient 54029.170 Inefficient

DMU10 34157.980 Inefficient 33704.960 Inefficient 33251.940 Inefficient 32798.920 Inefficient

DMU11 24787.545 Inefficient 18499.863 Inefficient 12096.933 Inefficient 5778.021 Inefficient

DMU12 0 Efficient 0 Efficient 0 Efficient 0 Efficient

https://doi.org/10.1371/journal.pone.0275594.t010

Table 11. Sensitivity analysis for efficient DMUs in the case of γ� 0.75.

DMUj Confidence level (γ = 0)

r�
1

r�
2

φ�
1

φ�
2

DMU2 0 5.579 0 0

DMU12 5.704 0 0 0

DMUj Confidence level (γ = 0.25)

r�
1

r�
2

φ�
1

φ�
2

DMU2 0 8.493 0 0

DMU12 7.294 0 0 0

DMUj Confidence level (γ = 0.5)

r�
1

r�
2

φ�
1

φ�
2

DMU1 0.239 0 0 0

DMU2 0 9.607 7.003 957.667

DMU12 9.418 0 0 0

DMUj Confidence level (γ = 0.75)

r�
1

r�
2

φ�
1

φ�
2

DMU1 1.240 0 0 0

DMU2 0 20.750 0 1586.500

DMU12 12.709 0 0 0

https://doi.org/10.1371/journal.pone.0275594.t011
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Table 12. Sensitivity analysis for inefficient DMUs in the case of γ� 0.75.

DMUj Confidence level (γ = 0)

r�
1

r�
2

φ�
1

φ�
2

DMU1 0 29.946 0 4826.969

DMU3 0 8 31.990 47350

DMU4 0 0 42.866 39834.255

DMU5 8.990 5 13.990 62272

DMU6 0 0 153.997 11665.978

DMU7 0 25.960 30.058 11696.212

DMU8 0.594 16.208 0 57439.994

DMU9 4 11.990 32.990 54781

DMU10 18.990 20 12.990 34106

DMU11 0 0 40.505 24747.040

DMUj Confidence level (γ = 0.25)

r�
1

r�
2

φ�
1

φ�
2

DMU1 0 25.707 0 2197.972

DMU3 0 6.595 30.875 46699.572

DMU4 0 0 33.906 35473.758

DMU5 8.660 4.167 3.723 61880.780

DMU6 0 0 147.178 9570.478

DMU7 0 23.871 29.030 10600.148

DMU8 1.798 10.829 0 56106.891

DMU9 3.557 11.380 28.383 54519.723

DMU10 18.243 19.667 9.770 33657.280

DMU11 0 0 35.531 18464.332

DMUj Confidence level (γ = 0.5)

r�
1

r�
2

φ�
1

φ�
2

DMU3 0 5.205 29.475 46054.277

DMU4 0.403 0 27.427 28794.394

DMU5 9.507 0 0 60932.134

DMU6 0 0 140.289 7437.062

DMU7 0 21.801 27.641 9510.629

DMU8 3.436 4.305 0 54662.091

DMU9 3.113 10.770 23.777 54258.447

DMU10 17.497 19.333 6.550 33208.560

DMU11 0 0 30.015 12066.917

DMUj Confidence level (γ = 0.75)

r�
1

r�
2

φ�
1

φ�
2

DMU3 0 3.830 27.805 45413.861

DMU4 0.803 0 21.235 22034.066

DMU5 9.738 0 0 56911.740

DMU6 0 0 133.327 5265.369

DMU7 0 19.750 25.907 8427.328

DMU8 4.766 0 0 51680.884

DMU9 2.670 10.160 19.170 53997.170

DMU10 16.75 19 3.330 32759.840

DMU11 0 0 8.649 5769.371

https://doi.org/10.1371/journal.pone.0275594.t012
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In Table 12, the second and third columns show the maximum decrease in the total number

of computers and the number of staff for inefficient branches, respectively, while maintaining

their inefficiency. Similarly, the fourth and fifth columns show the maximum increase in the

sum of insured individuals’ contracts and all individuals under insurance for inefficient

branches while keeping their inefficiency. For instance, consider DMU10 with the confidence

level of γ = 0.25 in Table 12. DMU10 = (x110, x210, y110, y210) remains inefficient if gDMU10 ¼

x110 � r
_

1; x210 � r
_

2; y110 þ φ_1; y210 þ φ_2ð Þ in which, 0 � r_1 � 18:243, 0 � r_2 � 19:667, 0 �

φ_1 � 9:770 and 0 � φ_2 � 33657:280. That means if the number of computers in Branch

10decreases by a maximum of 18.243,and the number of staff decreases by a maximum of

19.667, as well as if the sum of insured individuals’ contracts increases by a maximum of 9.770

and all individuals under insurance increase by a maximum of 33657.280, then Branch 10 will

remain inefficient.

Now, by considering the adjustment parameter of 0.25, we estimated the performance of 12

branches of the Social Security Organization for some confidence levels in the case of γ� 0.25.

The evaluation results are documented in Table 13.

As shown in Table 13, all of the branches are efficient in various confidence levels except

Branch 3, Branch 8, and Branch 9 which are inefficient in some confidence levels, also Branch

10 which is inefficient in all the confidence levels.

Tables 14 and 15 document the stability radius for efficient branches and inefficient

branches respectively, with various confidence levels of γ� 0.25.

The interpretation of the last two tables is similar to that of Tables 11 and 12. Also, from the

comparison between Tables 10 and 13, we find that in the case of γ> η, the number of efficient

DMUs is greater than in the case of γ< η. Also, as the level of confidence increases, DMUs

approach the efficient frontier and the number of efficient DMUs increases.

Considering the discriminatory power of the GF measure compared to classical fuzzy meth-

ods, decision-makers and managers can achieve their desired results by including their prefer-

ences on the optimistic-pessimistic parameter at any confidence level in the fuzzy

environment. As a result,decision-makers will be able to be aware of all efficiency scores and

efficiency stability based on different optimistic-pessimistic attitudes and confidence levels.

Thus, the GF measure provides more comprehensive information and is very proper for real-

life decision-making problems.

Table 13. Evaluation of 12 DMUs in the case of γ� 0.25.

DMUj Confidence levels (γ � 0.25)

γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

Z� Efficiency Z� Efficiency Z� Efficiency Z� Efficiency

DMU1 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU2 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU3 33003.526 Inefficient 29152.963 Inefficient 24039.227 Inefficient 0 Efficient

DMU4 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU5 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU6 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU7 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU8 11163.993 Inefficient 0 Efficient 0 Efficient 0 Efficient

DMU9 48197.830 Inefficient 43148.673 Inefficient 44598.669 Inefficient 0 Efficient

DMU10 25554.342 Inefficient 21293.539 Inefficient 15092.465 Inefficient 5095.558 Inefficient

DMU11 0 Efficient 0 Efficient 0 Efficient 0 Efficient

DMU12 0 Efficient 0 Efficient 0 Efficient 0 Efficient

https://doi.org/10.1371/journal.pone.0275594.t013
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Table 14. Sensitivity analysis for efficient DMUs in the case of γ� 0.25.

DMUj Confidence level (γ = 0.25)

r�
1

r�
2

φ�
1

φ�
2

DMU1 8.923 0 42.627 0

DMU2 0 27.250 0 3764

DMU4 0 3.147 0 0

DMU5 0 16.080 74.660 0

DMU6 2.611 0 0 0

DMU7 0.338 0 0 0

DMU11 2.257 4.461 0 0

DMU12 13.814 1.243 145.947 0

DMUj Confidence level (γ = 0.5)

r�
1

r�
2

φ�
1

φ�
2

DMU1 9.227 0 51.475 0

DMU2 0 28.167 0 4126.333

DMU4 0 4.610 0 0

DMU5 0 17.050 131.103 0

DMU6 3.227 0 0 0

DMU7 1.339 0 0 0

DMU8 0 3.277 3.550 0

DMU11 2.165 6.152 0 0

DMU12 14.019 1.971 163.915 0

DMUj Confidence level (γ = 0.75)

r�
1

r�
2

φ�
1

φ�
2

DMU1 9.531 0 60.089 0

DMU2 0 29.083 0 4488.667

DMU4 0 6.276 0 0

DMU5 0 18.020 187.547 0

DMU6 3.844 0 0 0

DMU7 2.743 0 0 218.667

DMU8 0 4.133 25.770 0

DMU11 1.885 8.165 0 0

DMU12 14.222 2.704 181.610 0

DMUj Confidence level (γ = 1)

r�
1

r�
2

φ�
1

φ�
2

DMU1 9.835 0 68.475 0

DMU2 0 30 0 4851

DMU3 0 0.350 0 0

DMU4 0 8.295 0 0

DMU5 0 18.990 243.990 0

DMU6 3.642 1.603 0 0

DMU7 2.990 0 0 1395

DMU8 0 4.789 48.811 0

DMU9 0 2.191 0 0

DMU11 1.326 10.658 0 0

DMU12 14.423 3.443 199.037 0

https://doi.org/10.1371/journal.pone.0275594.t014
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Notably, it is worth noting that the measure of the GF converts into the measures of Pos,
Nec, and Cr if η is equal to100%, 0%, and 50%, respectively (Xu and Zhou [59]). Fig 1 is taken

from Peykani et al. [61] to illustrate the attitude of fuzzy measures of Pos, Nec, Cr, and GF.

As shown in Fig 1, in the GF measure only by adjusting η, decision-makers customize their

preferences.

For evaluating the efficiency sensitivity analysis of organizations, the consideration of input

and output changes is very significant. The proposed fuzzy sensitivity analysis approach could

be used as a “what-if” tool in managers’ strategies to improve their managerial performance.

In the sense that management is able to know what may happen to the efficiency of units if

input or output data is altered. As a result, this subject can lead managers to better decision-

Table 15. Sensitivity analysis for inefficient DMUs in the case of γ� 0.25.

DMUj Confidence level (γ = 0.25)

r�
1

r�
2

φ�
1

φ�
2

DMU3 0 0 6.339 32997.187

DMU8 9.473 0 0 11154.520

DMU9 1.970 0 0 48195.860

DMU10 16.832 0 0 25537.510

DMUj Confidence level (γ = 0.5)

r�
1

r�
2

φ�
1

φ�
2

DMU3 0 0 2.289 29150.674

DMU9 2.822 0 0 43145.851

DMU10 17.363 0 0 21276.176

DMUj Confidence level (γ = 0.75)

r�
1

r�
2

φ�
1

φ�
2

DMU3 0.155 0 0 24039.072

DMU9 3.255 14.418 0 44580.997

DMU10 18.525 0 0 15073.940

DMUj Confidence level (γ = 1)

r�
1

r�
2

φ�
1

φ�
2

DMU10 20.903 0 0 5074.655

https://doi.org/10.1371/journal.pone.0275594.t015

Fig 1. The viewpoint of fuzzy measures.

https://doi.org/10.1371/journal.pone.0275594.g001
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making. Furthermore, this technique can be applied to each application of real-world prob-

lems such as hospitals, universities, schools, banks, companies, etc., since these rates of change

give useful information to managers or decision-makers from the managerial and economic

perspectives.

5. Conclusion

This research seeks to investigate the sensitivity and stability of efficiency for efficient and inef-

ficient DMUs in the additive DEA model in the presence of fuzzy data so that by identifying

the permitted changes in the data, the efficiency classification of the DMUs remains

unchanged. In order to tackle the uncertainty of fuzzy chance constraints in the fuzzy DEA

sensitivity analysis model and convert them into their equivalent crisp values, the General

Fuzzy (GF) approach and chance-constrained programming are used. The GF approach,

which incorporates all prior fuzzy DEA techniques based on possibility (an optimistic view-

point), necessity (a pessimistic viewpoint), and credibility (a compromise viewpoint), is an

adjustable and flexible fuzzy DEA strategy. The previous three measures are formulated in

three separate models while the GF measure is taken into account by setting an optimistic-pes-

simistic parameter in one model so that, by altering this parameter and according to different

confidence levels, decision-makers can obtain their desired results.

For future studies, the proposed approach can be used as a suitable framework for evaluat-

ing performance and analyzing efficiency sustainability in various fields of management and

engineering, such as supply chain, transportation, energy, stock market, mutual fund, hotel,

etc. [65–69]. Also, to tackle data uncertainty, Z-number theory [70, 71], and uncertainty theory

[72, 73] can be considered.
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