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One health approach is integral in enhancing the 
preparedness for ongoing and upcoming potential public 
health threats such as emergence of infectious diseases, 
antimicrobial resistance, environmental pollution, 
climate change, non-communicable diseases, natural 
disasters, and bioterrorism1,2. A proactive, coordinated, 
interdisciplinary and cross-sectoral approach across 
human, animal and environmental sectors remain the 
core pillar of One Health framework to mitigate the 
public health challenges3. The need for early response 
to emerging zoonoses before these spill over into human 
population has been underscored by the gravity of life 

losses caused by the ongoing COVID-19 pandemic, 
which  has  been  classified  as  an  ‘emerging  disease  of 
probable animal origin’4,5. A better understanding and 
early prediction of how an animal pathogen might have 
crossed species barriers to infect humans and then to an 
epidemic or pandemic potential can productively prevent 
many emerging diseases6. Therefore, the holistic One 
Health programmes are important for the elucidation of 
various zoonotic pathogen transmission pathways and for 
conceptualizing policies to prevent the outbreaks at the 
source of origin3.
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In the interconnected world, safeguarding global health security is vital for maintaining public health 
and economic upliftment of any nation. Emergency preparedness is considered as the key to control the 
emerging public health challenges at both national as well as international levels. Further, the predictive 
information systems based on routine surveillance, disease modelling and forecasting play a pivotal 
role in both policy building and community participation to detect, prevent and respond to potential 
health threats. Therefore, reliable and timely forecasts of these untoward events could mobilize swift 
and effective public health responses and mitigation efforts. The present review focuses on the various 
aspects of emergency preparedness with special emphasis on public health surveillance, epidemiological 
modelling and capacity building approaches. Global coordination and capacity building, funding and 
commitment at the national and international levels, under the One Health framework, are crucial in 
combating global public health threats in a holistic manner.
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In the globalized era, with rapid population and 
trade mobility, any infectious disease can spread 
across the world within a span of 36 hours7. The 
epidemic intelligence-based analysis of the drivers 
of the emerging infectious diseases in Europe during 
2008–2013, categorized ‘travel and tourism’ as the 
most prominent and frequent disease driver8. With 
the increasing number of air travel of around 3.6 
billion people/year9, the national and international 
boundaries have become more porous to facilitate 
the introduction of infectious agents into new regions 
within a time frame even shorter than the incubation 
period of most pathogens. The severe acute respiratory 
syndrome (SARS) pandemic with its epidemic origin 
in Guangdong, China had flourished into a pandemic 
affecting “5 countries within 24 hours and to more 
than 30 countries on 6 continents within 6 months” 
with 8096 cases and 774 deaths10. Other recent 
emergence and spread of infectious diseases of global 
health significance facilitated by air travel include the 
initiation of the chikungunya epidemic in Europe in 
2007 from a single infectious traveler from India11, the  
pandemic  influenza  in  Mexico12, the spread of New 
Delhi metallo-beta-lactamase-1 (NDM-1) gene from 
India to Sweden and to multiple other countries13, the 
Middle East respiratory syndrome (MERS) epidemic 
in South Korea, which is the largest epidemic outside 
Saudi Arabia, from a single infectious traveler returning 
from Saudi Arabia14, the 2014-2016 West African Ebola 
virus outbreak costing 11,325 lives, with imported cases 
in seven countries15, and  the 2015-2016 Zika outbreak 
spread from Brazil to 87 countries and territories16 and 
more recently the COVID-19 pandemic17. A study on 
H1N1  pandemic  influenza  strain  highlighted  the  fact 
that despite the presence of high-efficiency particulate 
air  (HEPA)  filters  in  aircrafts,  the  attack  rate  in  a 
9-hour flight was estimated as high as 4.3 per cent18. 
Therefore, in the interconnected world, public health 
preparedness is the key to avoid devastating losses 
from such emerging threats1.

 The pillars of emergency preparedness 
for public health threats rely on the integrity of 
surveillance and forecasting models which aids in 
mobilizing resources and timely responses19. Public 
health surveillance is crucial in recognizing new cases 
of any emerging infections as well as in estimating 
the present health status of the populations. The 
epidemiological models support the preparedness 
and decision making of stakeholders by simulating 
the probable scenario such as transmission pathways, 

disease dynamics, along with the evaluation of various 
alternative intervention strategies20. The predictive 
information systems based on routine surveillance, 
modelling  and  forecasting  affect  the  organizational 
decisions and public awareness of health-related 
events. The temporal and spatial risk for many 
infectious diseases, especially in case of vector-borne 
diseases, predicted through advanced surveillance and 
disease models incorporating the environmental data 
has enhanced the epidemic prevention and control 
capabilities21. 

The emergency preparedness measures should 
work closely in frame of an integrated global network 
with national and international relevant stakeholders20. 
The successes of such global efforts were illustrated to 
control SARS, the first pandemic of 21st century which 
depended on a combination of open collaboration and 
the rapid and accurate communication of surveillance 
data within and among the countries10. The role 
of  effective  risk  communication,  involvement  and 
coordination among the individuals, healthcare 
providers, policy makers, community, international 
organizations and stakeholders is vital for prompt 
response to emergencies at all stages of the risk 
prioritization, preparedness and planning22. The 
operationalization of One Health framework 
is essential to avoid fragmented planning and 
implementation  of  swift  and  effective  response  by 
mobilizing sufficient resources in appropriate time23. 

Public health preparedness: An overview

The core realm of global health security is public 
health preparedness based on the pillars of prevention, 
early detection and response24. The emergence 
of COVID-19 pandemic has evoked worldwide 
concerns across the public health administrators 
to strengthen the preparedness capabilities25. 
These measures can help in the improvement of hazard-
specific capacity of the countries through the effective 
priority setting and mobilization of key resources 
including information, funds, equipment, drugs 
and response teams, based on their availability and 
perceived effectiveness22,26. The essential components 
of public health preparedness comprises of robust 
surveillance system, risk assessment and management, 
capacity building and maintenance, intersectoral 
collaboration and international coordination27.

 The emergency preparedness to address 
foreseeable public health problems should be enriched 
with the information from epidemiological models with 
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valid assumptions, quantitative predictions, and policy 
needs28. Modelling and simulations are key resources 
to  tackle  the  unprecedented  emergencies  effectively 
by assisting in decision making upon time-pressured 
situations to interlink theory, policy and practice28. 
These modelling and simulation exercises need to be 
combined with participatory surveillance to establish 
early warning systems for increasing the resilience to 
combat public health emergencies29. The analytical 
capability of forecasting has been demonstrated in 
recent outbreaks of influenza, dengue, Zika, and Ebola 
in assisting management at policy level for the real-
time outbreak response30-36. Furthermore, the scaling up 
of organizational public health workforce is essential 
for instigating a rapid effective response in case of an 
emergency. The capacity building of the workforce for 
adequate and rapid intervention and response should 
be regularly strengthened by regular training, use of 
modern epidemiological and molecular tools, technical 
assistance, periodic assessment and feedback, peer 
networking, and relevant incentives37. The outline of 
various components of public health preparedness has 
been highlighted in Fig. 1.

The ongoing COVID-19 pandemic has 
demonstrated that the bridging of not only professional 
silos but also the use of multi-tech approaches is much 
essential  to generate synergistic effects in combatting 
global pandemic of such scale38,39. To cite, various 
countries have used modern technologies in the form 

of data science40, computational biology41, medical 
image processing42,43, disease tracking44, prediction 
models45,46,  and  machine  learning  and  artificial 
intelligence47  to  aid  the fight  against COVID-19. For 
examples, the use of software enabled smartphones48, 
wrist bands49 and facial recognition cameras50 helped 
in rapid identification of cases, proper source tracking, 
outbreak forecasting and monitoring of the compliance 
of quarantine rules. In hospitals, robots for delivery 
of food and medicines to patients51 and drones for 
patrolling and broadcasting awareness messages and 
site disinfections, were employed52. Taiwan, which 
was applauded globally for its COVID-19 containment 
efforts,  has  successfully  coupled  the  information  of 
their national medical insurance database with the 
immigration and customs database for rapid isolation 
and tracking of suspected patients53. The use of 
artificial  intelligence  in  rapid  diagnosis  of  the  cases 
(e.g., use of computational tomography scans43 and 
radiology images)42, prediction of the possible disease 
outcomes among patients by virus-host interaction41, 
new drug molecule discovery54 and development of 
various suitable vaccine candidates by possible protein 
structure predictions has been widely employed55-57.

Public health surveillance 

The public health surveillance is known as the 
radar of public health, with the two-core objectives 
of assessing existing disease burden and pattern to 
guide  the  control  programmes  effectively,  and  early 
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warning and detection of novel pathogens for the 
rapid instigation of responses22. These systems should 
have adequate sensitivity and feasibility to be vigilant 
to detect the alerts from various sources, without 
compromising the specificity of surveillance system58. 
The core steps in the design of any surveillance system 
are depicted in Figure 2.

The complex scenario in developing countries 
with numerous drivers of infectious diseases at animal 
and human interface urges the need to strengthen 
the existing surveillance systems59. The various 
surveillance systems established for diseases of regional 
importance need upgradation to tackle numerous 
emerging infectious diseases59. For example, the Food 
and Agriculture Organization’s (FAO) Emergency 
Prevention System for Transboundary Animal and 
Plant Pests and Disease (EMPRES) was initially built 
on  the  foundation  of  community  surveillance  efforts 
for Rinderpest eradication60. 

Most of the laboratory-based surveillance 
protocols rely on the conventional culture techniques 
for  identification  and  isolation  of  pathogen  from 
the collected samples. These isolates can be further 

characterized by array of available molecular typing 
tools, viz., conventional and real-time polymerase 
chain reaction (PCR); pulsed-field gel electrophoresis 
(PFGE);  amplified  fragment  length  polymorphism 
(AFLP);  random  amplification  of  polymorphic  DNA 
(RAPD); repetitive-element PCR (rep-PCR), variable-
number tandem repeat (VNTR) typing; single locus 
sequence typing (SLST); multi-locus sequence typing 
(MLST), DNA microarray etc.61. Moreover, the 
advent of whole-genome sequencing (WGS) as tool 
with much higher resolving power than traditional 
molecular methods, greatly improved the speed and 
accuracy of epidemiologic investigations62. However, 
implementation of these novel molecular tools to assist 
conventional laboratory surveillance require proper 
validation of protocols and trained manpower for their 
standardized application. The use of molecular tools 
for the investigation of malaria outbreak included the 
demonstration of zoonotic transmission of Plasmodium 
simium in people of the Atlantic Forest in Rio de Janeiro 
by sequencing of the parasite mitochondrial genome63. 
The importance of molecular surveillance to prevent 
the foodborne outbreaks has been highlighted by the 
researchers, where the use of forensic microbiology 
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•  Selection and participation of relevant stakeholders (eg., for any zoonotic outbreak: Public
health officials, Veterinary professionals, Epidemiologists, Ecologists, etc.)

•  To minimize public health and socio-economics impact due to the infectious disease(s)
•  Early detection of new and emerging cases
•  To confirm the absence of specific disease(s) in a country or region 
•  Estimation of prevalence and disease trends in endemic regions
•  Monitoring of outcome of disease control programme and their prioritization

•  Description of the health event 
•  Case definition (suspected, confirmed, etc.) 
•  Description of type of surveillance (active/passive, targeted/scanning etc.)
•  Data transmission: Methods and means (reports, forms, samples etc.)
•  Data analysis
•  Data processing and returning the results to field officers and relevant stakeholders
•  Time span of the protocol (continuous or limited surveillance)

  • Sources of data
•  Compulsory notification
•  Voluntary notification: Public awareness and motivation are essential
•  Laboratory reports: Regional or national laboratories provide essential information
•  Outbreak investigations
•  Structured surveys: It involves selection of a sample of the target population for surveillance,
    looking for the health event of interest.
•  Sentinel surveillance: Certain groups or areas (sentinel units) are recruited to collect
    information because these are at higher risk of the health event. 
•  Participatory and rapid appraisals: In marginalized areas of developing countries, with poor
    infrastructure, alternative resources of data collection must be developed using qualitative data
    collection, face-to-face interviews, and so on.

•  Information flow and information systems (eg., Geographical information system)

•  Transparent flow of information to the stakeholders

•  Management, legal framework, training and funding

Fig. 2. Core steps in the design of surveillance system.
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based on the WGS of Listeria monocytogenes isolates 
successfully traced the source of the invasive listeriosis 
outbreak occurred during 2012-2016 in southern 
Germany64.

The early detection of the outbreaks allows the 
public health professionals a window period for 
coordinating efforts to contain the spread of outbreak 
and prevent it locally. The early warning and response 
systems rely on the epidemic intelligence gathered 
from sentinel and event-based surveillance data22. In 
sentinel surveillance programmes, the monitoring of 
at-risk population can generate the outbreak alerts, for 
example, entry screening of passengers at airport for 
H1N165,  receiving data on  influenza  like  illness  from 
selected healthcare centres66, or designated sentinel 
sites to monitor the HIV outbreaks among high-risk 
groups in epidemic areas (e.g., drug users, sex workers, 
long-distance truck drivers and clinic attendees of 
sexually transmitted diseases)67. The population based 
epidemiological tools such as wastewater-based 
surveillance approaches have been used as an early 
warning signal in the tracking of infectious agents at 
the community level, such as, adenoviruses68, hepatitis 
A69, rotavirus70, poliovirus71 and also for the presence 
of SARS-CoV-272,73. 

In addition, the application of zoonotic surveillance 
for predicting human risk has been highlighted during 
animal-sentinel approaches which drew the association 
between crow mortality and mosquito abundance 
and emergence of West Nile virus among human 
population74.  The  identification  of  potential  reservoir 
hosts and their longitudinal surveillance for the 
detection of pathogen shedding and related ecological 
interactions are essential for early prediction of 
spillover of zoonotic pathogens75,76. 

The  effective  implementation  of  public  health 
surveillance requires the breakage of the sectoral silos 
by adopting a multisectoral and multi-disciplinary 
approach. The Global Early Warning System 
(GLEWS) and World Animal Health Information 
System (WAHIS) are the two important ongoing 
supranational global surveillance systems where the 
multi-institutional coordination and collaboration 
across disciplines remain a cornerstone component to 
predict, prevent and control the emerging health threats. 
GLEWS has been devised as an alert mechanism for 
major animal diseases including zoonoses at human-
animal-ecosystems interface. It is a joint collaborative 
effort of FAO, World Organization for Animal Health 

(OIE) and WHO to carry out the disease tracking, 
analysis and joint risk assessment to generate early 
warning alerts, and essential response to outbreaks77. 
The OIE-WAHIS is a web-based system that collects 
and processes data to monitor the status of OIE listed 
diseases and to generate the alert messages by its early 
warning system on animal diseases in real-time to 
update the member countries78. The risk assessment and 
modelling are carried out as per the data availability 
on reported outbreaks, vaccination coverage, livestock 
movement, land use, wildlife interactions, climatic 
conditions and surveillance activities carried out by the 
member countries77,78. Thus, the proper standardization 
of the data and transparent reporting are must for proper 
dissemination of information to the member countries. 

The upgradation of the traditional laboratory based 
and syndromic surveillance to build hybrid systems 
with their integration to digital data can improve 
the  speed,  sensitivity  and  specificity  of  existing 
surveillance indicators79. The use of participatory 
surveillance approaches for modelling and forecasting 
of epidemics has strengthened the real-time response 
in emergency conditions such as pandemic influenza29. 
The heterogeneity of data sets in health sector poses 
a technical challenge for their integration at various 
spatial scales. However, the use of novel analytical and 
modelling tools (e.g., multilevel Bayesian statistical 
approaches) aids in alleviating this challenging issue80. 
The reliability and validation of surveillance systems 
highlights the importance of the constant evaluation 
and subsequent improvement of the methodology. 

Disease modelling and forecasting

The  models  are  considered  as  simplified 
representation of complex phenomenon which remain 
an important decision support tool and an aid to 
communication81. The various uses of epidemiological 
models include formulation of hypothesis, retrospective 
analysis from past epidemics, rapid characterization of 
infectious disease outbreaks, transmission modalities 
associated with disease outbreaks, contingency planning 
and facilitating emergency response(s), disease 
forecasting, resource planning and implementation 
of public health policy, economic consideration for 
available intervention tools, and training of public 
health professionals21,82-84. 

The ongoing COVID-19 pandemic highlighted the 
applied aspects of epidemiological modelling in terms 
of disease dynamics85, projected basic reproduction 
number (R0)86, disease control interventions like social 



292  INDIAN J MED RES, MARCH 2021

distancing, regional or national lockdown, healthcare 
capacity estimations87, pharmaceutical distribution and 
immunisation campaigns88 and other requirements. 
In such emergency scenario, the experimental studies 
would have many inherent limitations such as, time 
consuming, unethical, impractical, or sometimes 
impossible. 

It should be remembered that biological systems 
are  inherently  more  difficult  to  model  due  to  their 
complexity and variability, thereby the input data are 
more difficult to collect and analyse89. To build a model 
of disease outbreak, the knowledge of epidemiological 
parameters of disease is needed so that the relevant 
components of the model can be put together 
accurately with correct interactions. Therefore, it is 
important to match the accuracy of disease modelling 
with the dynamics of real-world disease transmission. 
In the past years, dramatic increase in understanding 
of multifactorial disease dynamics paved to the 
development of many relevant models with significant 
implications (e.g., Ebola epidemic-Liberia and Sierra 
Leone, 2014-201590, COVID-19 pandemics)91. For the 
development of model for global Zika virus spread, 
the movement of high-risk population for Zika virus, 
the ecological niche of the mosquito vectors (i.e., 
Aedes aegypti and Ae. albopictus) and the data of the 
environmental temperature profile were used to locate 
the risk zones92. The risk of the COVID-19 spread 
outside China was statistically modelled using the 
aviation data integrated with the numbers of confirmed 

cases at each potential destination93. However, 
comprehensive predictive modelling of infectious 
diseases remains a challenging due to inadequate 
access  to  the  data  on  various  factors  that  affect  the 
disease dynamics. Some of the important inputs for 
robust predictive modelling of infectious diseases have 
been presented in the Table81,82,84,89,94.

Development and types of epidemiological models

The important aim of epidemiological models 
are to provide a systematic, data-driven, transparent, 
reproducible output, with the ability to describe the 
uncertainty and key data needed, and comprehensible 
decision-making framework. The development of 
epidemiological models remain a complex dynamical 
system which need coordination of several systems as 
presented in Fig. 394. 

The models  can  be  classified  into  various  types; 
however,  the  two  well-known  classifications  of 
epidemiological models are:
1. Deterministic and stochastic models: Deterministic 

models use a pre-determined relationship between 
the model structure and inputs and the associated 
outputs, whereas, the stochastic models include the 
‘effect  of  chance’,  thereby,  can  produce  varying 
outputs according to the calculation of individual 
probabilities81,94.

2. Compartmental (or state-based) and individual-
based (agent-based) models: On the basis of 
approach to represent the population, compartmental 

Table. Characteristics and associated parameters for epidemiological disease modelling of infectious diseases
Characteristics Associated parameters
Agent Inherent characteristics: virulence, infectivity and pathogenicity 

Transmission dynamics: within cell and cell-to-cell transmission; within tissue and 
tissue-to-tissue transmission; host and multi-host level and population level dynamics 
Molecular characterization: genetic make-up, genotypic resistance, genetic relatedness, etc.

Host Age, sex, immunity status, underlying disease conditions, disease carriers, demographic 
characteristics, population susceptibility and immunity, geographic networks and host movement

Environmental Environmental hygiene, environmental reservoirs, transmission vehicles, temperature and other 
climate indicators

Socio-economic and behavioural Personal hygiene and sanitation, cultural/religious practices, prevalence-elastic behaviour 
Disease related parameters Latent period, incubation period, infectious period, non-symptomatic cases, chronic cases, 

possible co-infection dynamics and synergism, deliberate epidemics as in case of bioterrorism
Disease surveillance data (if 
prior outbreaks occurred from 
same/similar agent)

Transmission dynamics and pathways, sensitivity and specificity of available diagnostic (s), data 
collection methodology, consideration of previous under reporting, interactions of multiple risk 
factors, followed medical countermeasures, availability of regional, national and global health 
resources and infrastructure, availability of novel therapies and interventions, and possible 
synergistic effects of the interventions

Source: Refs 81, 82, 84, 89, 94
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(or state-based) models group individuals into 
states on the basis of characteristics relevant to the 
infectious disease processes. e.g., the popular SIR 
(susceptible–infected–recovered) model95 and its 
variants. These are quick to form and works best 
when risk factors of infection are uniform in the 
population. Whereas the individual-based (agent-
based) models explicitly represent the differentiation 
in biology or behaviour of individuals. Being 
stochastic, these offer more value when individual 
heterogeneity in transmission and structure of 
intervention is important89.

The British statistician George E. P. Box stated that 
“All models are wrong, but some models are useful”96. 
The  continuous  refinement  of  models  to  optimally 
respond to natural outbreaks is important. The realism 
in the model can be improved by incorporating 
the treatment of space (e.g., spatial distribution, 
population contact structure and contact rates) and 
the effect of available health related infrastructure. It 
should be remembered that the impact of behavioural 
factors  in  a population  could have  effect  on disease 
dynamics,  thus  can  produce  different  results  from 
homogeneously mixing populations97. Other major 
inherent characteristic of models is that the accuracy 
of the models can be improved only by proper 
assessment of the real-world data after the outbreak98. 

For the infectious diseases, where the quality data 
is available, but the epidemiological knowledge is 
lacking, analytical modelling, such as regression of 
various types can be applied to assess the risk factors. 
Later, with appropriate epidemiological knowledge, 
these risk factors can be included in simulation 
models. 

Many times, due to incomplete assumptions and 
inaccuracies in data assessments, the practicality 
of disease models have been questioned due to 
overestimation or underestimation of progression 
of disease outbreak99. In a recent systematic review 
on the use of prediction models for diagnosis and 
prognosis of COVID-19, the authors concluded that 
the prediction models are getting way to the medical 
literature to support the decision-making process. 
However, the majority of the models are poorly 
reported and pose high risk of bias in delivering the 
information. In addition, the promising models need to 
be validated appropriately in multiple cohorts through 
proper data sharing with collaborative efforts to assess 
their stability and heterogeneity across the various 
populations settings46.

One of the other limitations of the epidemiological 
models  include  multiple  interpretation  by  different 
stakeholders resulting in the loss of core essence of 
the conveyed information from the initial model. 
Sometimes, especially in developing countries, the 
intervention measures derived from models lacks 
ground reality in terms of implementation capacity, 
quarantine limits, availability of logistics, timing, 
compliance, or extent of completion. Moreover, the lack 
of required technical skill and the knowledge-practice 
gap restrict their use by the stakeholders in these 
regions100. It must be noted that regular examination 
and frequent model validation is required21, especially 
in consideration of currently available diagnostics, 
therapeutics, and other interventions. The generation of 
participatory approaches in the preparation of policy-
oriented models aid in increased incorporation of 
local knowledge  to effectively address  the associated 
environmental and socio-economic implications of 
infectious diseases101. 

Capacity building

The early detection of the pathogen in the 2018 
Nipah outbreak in Kerala, India, within a quick time span 
of 12 hours, due to the presence of trained manpower 
and the use of advanced genomic tools such as next 
generation sequencing (NGS), aided in the prompt 

Fig. 3. Different stages of epidemiological model development.
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response and deployment of the multidisciplinary team 
for the containment of the outbreak102. The detection 
of such novel pathogens requires well-equipped 
laboratory networks integrated with robust surveillance 
system, community participation and knowledge of the 
socio-economic and environmental factors103.

The standardization of laboratory protocols and 
their accreditation through periodic assessment assures 
the accuracy and reliability of the results104. The 
reference diagnostic frameworks need to be routinely 
upgraded to equip with latest diagnostic facilities at 
national, regional, or global levels. The success of the 
‘Diagnostic and Laboratory Systems Program (DLSP)’ 
in Kenya in early detection of infectious disease 
outbreaks  has  exemplified  the  necessity  of  capacity 
building of the diagnostic framework and trained 
manpower105.

The measures for public health preparedness 
also focus on preparing the public health taskforce 
with  well-defined  roles  and  responsibilities  by 
developing competent training resources, enhancing 
communications, establishing and sustaining response 
systems, and providing evaluation parameters for 
effectiveness and efficiency106. The global public health 
agencies such as the Centers for Disease Control and 
Prevention (CDC) have initiated Preparedness and 
Emergency Response Research Centers (PERRCs) 
as well as Preparedness and Emergency Response 
Learning Centers (PERLCs) across the United States 
to aid in developing such a public health workforce106.  
The deployment of such trained taskforce in the 
frontline of emergencies enhances capacity for a 
timely response to turn aside the global threat. The 
field  epidemiology  training  programmes  exists  in 
many countries to train resource persons and thereby 
efficiently improving core capacities in the human and 
animal health sectors107. The tripartite collaboration 
between FAO, OIE and WHO exhibits a long-
lasting  strong  advocacy  for  effective  multisectoral, 
multidisciplinary, and transnational collaboration 
at various levels. The recently published tripartite 
zoonoses guide provides operational guidance and 
tool to implement One Health approach at human-
animal-environment interface to address emerging 
zoonoses108.

Conclusion

The advancement in medical education and public 
health infrastructure coupled with technological 
development helped in reducing the morbidity and 

mortality due to infectious diseases in 20th century. 
These changes were appreciated in terms of increase in 
life expectancy and shifting of major mortality cause 
from infectious to chronic degenerative diseases109. 
However, the recent emergence of public health threats 
in the globalized world of the 21st century increases the 
vulnerability of the nations across the world, further 
demanding the expansion of the present capacity for 
emergency preparedness and prevention by establishing 
better early warning systems. A robust surveillance 
system with the capacity of rapid reporting of newly 
diagnosed threats; publicising best practices to public 
health workers, epidemiological disease modelling 
enabled interventions, simulating transmission 
dynamics and enhanced forecasting is crucial to 
mitigate the upcoming emerging public health threats. 
The multisectoral cooperation and coordination across 
all the stakeholders under the umbrella of One Health 
is essential to mount rapid and swift response to the 
public health challenges.
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