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Abstract 

Single-cell omics data analysis pipelines are complicated to design and difficult to share or 

reproduce. We describe a web platform that enables no-code analysis pipeline design, simple 

computing via the Open Science Grid, and sharing of entire data analysis pipelines, their input 

data, and interactive results. We expect this platform to increase the accessibility and 

reproducibility of single-cell omics. 

 

Main 

Analyses for single-cell omics data are developing quickly; ensuring that analyses produce 

consistent and reliable results is important for the field to build confidence in published results. 

Given that analytical pipelines can have dozens of parameters, communicating these values via 

traditional publication venues is cumbersome and makes it difficult for others to implement an 

identical analysis. Analyses are further biased by the preference of the group implementing 

them1. Even when analytical code is included with publications, results can be affected by 

differences in software dependencies and computing environments2. Addressing these issues 

requires technical knowledge that may not be present in every research group or might be at 

odds with research priorities. 

Rather than expecting each group to obtain software development skills or changing current 

incentive structures, we instead propose to lower the threshold for making analyses 

reproducible and transparent to users without impeding research progress. We have developed 

the Platform for Single-Cell Science (PSCS, https://pscs.xods.org) to help researchers produce 

research products that bundle data, analysis, results, and communication together. There exist 

other sites (e.g., ezSC3, ICARUS4, Cellar5) that offer part of the solution by providing fixed 

pipelines, which are helpful for running a specific analysis (or set of analyses). However, 

analytical methods change with time and fixed pipelines are difficult to maintain over long 
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periods of time. More importantly, different experiments can require different treatments of their 

data (e.g., differing quality-control parameters) and a one-size-fits-all analysis is unlikely to be 

sufficient. Ambitious platforms such as Galaxy6 are fantastic resources but lack important 

features to promote analytical development. The web platform PSCS enables a flexible no-code 

data analysis and allows for the distribution of data, pipelines, and results in parallel with 

existing publishing venues.  

PSCS includes several features that are designed to increase the accessibility of single-cell 

omics data analyses, manage projects, and make results publicly viewable. A PSCS project 

encapsulates data, analyses, and results (Supplemental Video 1). Researchers create a 

project, upload data, and invite collaborators to join. Analytical pipelines are developed within a 

project using the no-code pipeline designer, which currently offers the functionality of Scanpy7,8, 

MiloPy9,10, and CAPITAL11(Supplemental Video 2). Individual functions are available as nodes, 

each node can have its parameters modified, and nodes from different modules can be used in 

any order assuming prerequisites are met. To help guide users, PSCS can perform validation 

before running to verify that node requirements are met. When run, analysis inputs are matched 

with user-selected data, sent to the Open Science Grid12-15 for computing, and executed through 

a Singularity16 container to ensure the same results are obtained on any cluster. The same 

analysis can be run on different datasets simply by selecting them, allowing for pipeline reuse 

without having to modify the analysis.  

Results from executed pipelines are brought back to PSCS and made available for viewing by 

the research group. Once researchers are satisfied with a project, it can be published in one of 

two ways: fully public or secured through a password to allow anonymous viewing during peer 

review (Supplemental Video 3). The latter allows reviewers to audit a project while keeping it 

private to prevent the work from being scooped. Figure 1A shows the typical workflow from a 

project’s creation to its publication, and eventual re-use in new projects. The structure 

encourages the iterative nature of experimentation, and by simplifying the re-use of both data 

and previously developed analyses we can iterate across independent research groups more 

easily. The platform is implemented with current technologies (Figure 1B). At no point does the 

user need to worry about how to distribute their data, whether their analysis is version-

controlled, or whether their results are reproducible. Data is made available for download upon 

publication, analyses are kept constant after being saved, and reproducibility is handled by the 

server. Additionally, pipeline development is aided by a validator to detect problems with the 

pipeline and make suggestions to fix them (Figure 1C). Parts of the pipeline designer are 

outlined in Supplemental Figure 1. 
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Figure 1. Overview of PSCS. (A) Workflow for the development of a PSCS project. Once 

published, data/analyses are readily reusable by other groups. (B) Software packages and 

technologies used in PSCS. (C) Example of validator suggestions during pipeline development. 

To exemplify the basic functionality of PSCS including sharing data, analytical pipeline, and 

results, we recreate the results from the Scanpy PBMC tutorial17(Supplementary Figure 2, 

https://pscs.xods.org/p/aE6PG). This pipeline demonstrates all common qualitative steps in 

single-cell data analysis, including normalization, scaling, dimension reduction, clustering, 

visualization and marker gene extraction. The project also highlights interactive results 

exploration, achieved by integrating the CellxGene app18.  

To demonstrate the multi-omic data integration utility of PSCS, we have put together a currently 

public project19 that is described in Figure 2. The project uses data from Specht et al.19 but 

combines PSCS nodes from the Scanpy and CAPITAL packages to produce novel insights 

through multi-omic data integration. Figure 2A shows the pipeline, with separate paths for the 

proteomic and transcriptomic data, highlighting the flexibility of PSCS pipelines. Using this 

analysis, we were able to reproduce the paper’s finding that there are two groups of cell types 

(monocytes or macrophages). Figure 2B and 2C show the distribution of quantities for 

proteomics (B) and transcriptomics (C). Trajectory inference and pseudotime alignment with 

dynamic time warping were performed with CAPITAL (Figures 2 D-G), and demonstrates which 

transcripts and proteins change differently (Figure 2F) or the same (Figure 2G) as cells 

transition to macrophages. For example, both the protein and RNA level for CAPG appear to 

increase across aligned pseudotime. We can see an overview of the project on its publication 

page (https://pscs.xods.org/p/SzFKQ), including the data, analytical results, and auditable 

pipeline. PSCS users that would like to use the pipeline on their own work can import it directly 

to their projects. Both data and results can be directly downloaded for offline examination. 
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Figure 2. CAPITAL workflow applied to data provided with the SCoPE2 project. (A) 

Schematic of the CAPITAL pipeline for aligning proteomic (top) and transcriptomic (bottom) 

datasets. Looking from left to right, the first trapezoidal nodes represent data input to the 

pipeline, the octagonal nodes represent processing nodes, and the trapezoidal nodes on the far 

right represent pipeline outputs that can be figures or data objects. Data is loaded into the 

separate paths, preprocessed separately, and combined in the TreeAlignment node. (B) UMAP 

of proteomic data with cluster labels produced by the Leiden algorithm, and quantities for 

selected proteins. (C) As (B), but for the transcriptomic data. (D) Alignment tree generated by 

CAPITAL. The left path or right path are two possible alignments that either include cluster 1 or 

3 from the proteomics data. (E) Pseudotime alignments for the datasets, one alignment each for 

the branches of the tree in panel (D). (F) Pseudotime trajectories for low-agreement genes. (G) 

Pseudotime trajectories for two selected agreeing genes, NCL and CAPG. 
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Besides facilitating the use of existing packages and re-use of published pipelines, PSCS aims 

to encourage researchers to develop new analytical packages and deploy them. We have built a 

node template21 that researchers can use to convert their work into a format that can be fully 

integrated into PSCS. The PSCS node template represents individual pipeline nodes and is 

intended to represent a "unit" of analysis. At its core, the template only requires developers to 

define input parameters and operations on data from the input data object. Managing user 

parameter settings, connecting to other nodes, and returning files to the user are all handled by 

PSCS. The intent is to give the field the tools to converge on both the best analytical practices 

and on robust results by removing barriers that slow down development and distribution. 

Researchers that would benefit from quickly using established analyses can do so, while those 

that develop the analyses benefit from the distribution of analytical packages to a broader 

audience. 

In summary, single-cell omics research is a rapidly developing field, but ensuring reliable and 

reproducible analyses is difficult due to complex code-based pipelines and variations in 

computing environments. To address this, we introduced PSCS, a web platform that simplifies 

single-cell omics data analysis while maintaining high flexibility. PSCS offers a no-code interface 

for designing analysis pipelines using pre-built modules from popular packages like Scanpy. 

Users can drag-and-drop these modules to build custom pipelines without writing code. 

Analyses are then executed on the Open Science Grid using containers, ensuring consistent 

results. The platform's functionalities are showcased by reproducing published results and 

integrating data from multiple sources (proteomic and transcriptomic) using a custom PSCS 

pipeline. Furthermore, PSCS empowers researchers to develop and share their own analytical 

tools, fostering collaboration and the development of robust analysis methods within the field. 

Overall, PSCS offers a user-friendly and comprehensive solution for single-cell omics data 

analysis, and we expect the platform to facilitate the production of reliable results and accelerate 

the promotion of seamless collaborative work across multiple research groups. 
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Online Methods 

Site Implementation 

The site has a standard implementation, using the Flask22 web framework for processing web 

requests. Web pages are rendered by Flask using the Jinja223 template engine. Interactive 

portions of the site are implemented in JavaScript, with the exception of CellXGene Annotate18 

which is containerized via Docker, wrapped in a Flask application, and run as a microservice. 

The database is managed with SQLite. 

 

Pipeline Node Template 

Pipelines are constructed from individual nodes. Nodes come in three basic types: input, output, 

and intermediate. Inputs nodes are matched with files to allow them to import data into the 

pipeline. Output nodes are used to identify the output files that should be registered with PSCS 

and made available to the user. Intermediate nodes don't interact with project files, but data in 

the pipeline, apply a set of operations, and make the result available to downstream nodes. The 

generic node template has several sections. Class variables are used to identify important 

parameters, node requirements, and node effects. Parameters that are labeled as important are 

displayed when the user modifies the parameters; other parameters are accessed by expanding 

the parameter modification window. Node requirements specify what variables should be 

available in the node's input Annotated Data object in order for the node to run correctly. For 

example, Scanpy's UMAP function requires neighborhoods to be computed before computing 

the UMAP; the UMAP node requires the keys, neighbors and connectivities to be available to 

execute correctly. Node effects specify what variables are created by the node and stored in the 

output data. For example, the UMAP node would store data in the X_umap key. Both the node 

requirements and effects can be affected by modifying node parameters, which makes these 

unknowable before the user has finalized the pipeline. Instead, we use key strings to identify 

requirements/effects that are determined from parameters and fetch the relevant values when 

the user is ready to validate their pipeline. 

The method to initialize a node is also used to describe parameters that can be set by the user. 

This includes the parameter name, default value, and data type. Since the user interacts with 

the HTML frontend, all parameters are effectively defined as character strings. The parameter 

type is used to instruct PSCS to convert the character strings to the specified type using the 

Typomancy24 package. Consequently, developers don't need to code their own input handling. If 

needed, parameters can be processed before being stored in the node for later use. 

Lastly, the node's run method is the core purpose of all nodes and has three steps. First, get the 

node's input data from the previous node. Second, process the data and store the results in the 

Annotated Data object. Third, make the data available to following nodes. The first and third 

steps are standard and rarely need modification. When the whole pipeline is executed, the input 

nodes are identified and load their data from disk. From there, nodes are executed in sequence, 

with the Annotated Data being passed by reference. Passing by reference and storing results in 

the same object allows us to minimize memory requirements; in cases where a node has 

multiple outputs, the data is duplicated, and each duplicate is then passed by reference. This is 
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done to avoid possible race conditions, where separate paths might write to the same key in the 

Annotated Data object. 

Input Data and Uploads 

After processing raw mass spectrometry data to quantify peptides and proteins, users can 

upload the tabular data as .csv files, including sample metadata (e.g., batch number, treatment 

code) and variable metadata (e.g., whether a column is mitochondrial protein), where it is 

converted to an Annotated Data25 object that is compatible with Scanpy7,8. The data is then 

available for any pipeline, and once published can be imported into other projects. 

 

Pipeline Execution 

Executing the pipeline requires four sets of files: the descriptor file, the data file(s) to be 

processed, the input mapping file, and the job file for the remote computing resource. The 

descriptor file specifies the code to use for each node, its parameters, and its connections to 

other nodes. The data files are specified by the user when the pipeline is being submitted. The 

input mapping file matches the data files to the pipeline's input nodes, allowing for pipelines to 

have multiple inputs. Lastly, the remote computing resources use workload managers (e.g., 

Slurm26, HTCondor27, etc.) which need a brief script to schedule computing jobs. The four sets 

of files are sent to the remote resource, the pipeline is constructed from the descriptor, and the 

analysis is executed in a Singularity container. Once the analysis is complete, the results are 

transferred back to the PSCS server, registered into the database, and then made available to 

the user. 

External App Integration 

Interactive apps relevant to single cell can be integrated into PSCS as a microservice. As an 

example, pipelines can use the CellXGene node in the pipeline designer to export their 

processed data and make it compatible with CellXGene Annotate18. Once available, users can 

load their data into CellXGene and view a 2D projection (e.g., UMAP28, tSNE29, principle 

components), of samples and distributions of observational metadata. New apps can be 

integrated into PSCS with relative ease, assuming that their resource requirements can be met. 
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