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Abstract

The current push for rigor and reproducibility is driven by a desire for confidence in research

results. Here, we suggest a framework for a systematic process, based on consensus princi-

ples of measurement science, to guide researchers and reviewers in assessing, document-

ing, and mitigating the sources of uncertainty in a study. All study results have associated

ambiguities that are not always clarified by simply establishing reproducibility. By explicitly

considering sources of uncertainty, noting aspects of the experimental system that are diffi-

cult to characterize quantitatively, and proposing alternative interpretations, the researcher

provides information that enhances comparability and reproducibility.

Indicators of confidence in research results

While reports about the difficulty of reproducing published biomedical research results in the

labs of pharmaceutical companies [1,2] have in large part triggered the current “reproducibility

crisis,” reproducibility has also been cited as a concern in computation [3], forensics [4], epide-

miology [5], psychology [6], and other fields, including chemistry, biology, physics and engi-

neering, medicine, and earth and environmental sciences [7].

While “reproducibility” is the term most often used to describe the issue, it has been fre-

quently pointed out that reproducibility does not guarantee that a result of scientific inquiry

tracks the truth [8–11]. It has been suggested that, instead, there is a need for “a fundamental

embrace of good scientific methodology” [12], and the term “metascience” has been pro-

posed to refer to the idea that rigorous methods can be used to examine the reliability of

results [13].

These perspectives suggest that it would be worthwhile to consider how the concepts of

measurement science—i.e., metrology—can provide useful guidance that would enable

researchers to assess and achieve rigor of a research study [14]. The goal of measurement sci-

ence is comparability, which enables evaluation of the results from one time and place relative

to results from another time and place; this is ultimately the goal of establishing rigor and

reproducibility. The purpose of this manuscript is to provide a practical connection between

the field of metrology and the desire for rigor and reproducibility in scientific studies.
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In the field of metrology, a measurement consists of two components: a value determined

for the measurand and the uncertainty in that value [15]. The uncertainty around a value is an

essential component of a measurement. In the simplest case, the uncertainty is determined by

the variability in replicate measurements, but for complicated measurements, it is estimated by

the combination of the uncertainties at every step in the process. The concepts that support

quantifying measurement uncertainty arise from international conventions that have been

agreed to through consensus by scientists in many fields of study over the past 150 years and

continue to be developed. These conventions are developed and adopted by the National

Metrology Institutes around the world (including the National Institute of Standards and

Technology [NIST] in the United States) and international standards organizations such as the

International Bureau of Weights and Measures (Bureau International des Poids et Mesures,

BIPM), the International Electrotechnical Commission (IEC), the International Federation of

Clinical Chemistry and Laboratory Medicine (IFCC), the International Organization for Stan-

dardization (ISO), the International Union of Pure and Applied Physics (IUPAP), the Interna-

tional Laboratory Accreditation Cooperation (ILAC), and others. These efforts helped to

advance the concepts of modern physics by providing the basis on which comparison of data

was made possible [14]. Thus, it seems appropriate to examine these concepts today to inform

our current concerns about rigor and reproducibility.

One of the consensus documents developed by measurement scientists is the Guide to
Expression of Uncertainty in Measurement [16], commonly known as the GUM. This docu-

ment describes the types of uncertainty (e.g., Type A, those that are evaluated by statistical

methods; and Type B, those that are evaluated by other means) and methods for evaluating

and expressing uncertainties. The GUM describes a rigorous approach to quantifying mea-

surement uncertainty that is more readily applied to well-defined physical quantities with

discrete values and uncertainties (such as the measurements of amount of a substance, like

lead in water) than to measurements that involve many parameters (such as complex experi-

mental studies involving cells and animals). Calculating uncertainties in such complex mea-

surement systems is a topic of ongoing research. But even if uncertainties are not rigorously

quantified, the concepts of measurement uncertainty provide a systematic thought process

about to how to critically evaluate comparability between results produced in different

laboratories.

The GUM identifies examples of sources of uncertainty. These include an incomplete

definition of what is being measured (i.e., the measurand); the possibility of nonrepresenta-

tive or incomplete sampling, in which the samples measured may not represent all of

what was intended to be measured; the approximations and assumptions that are incorpo-

rated in the measurement method and procedure; and inadequate knowledge of the

effects of environmental conditions on the measurement. In Table 1, we have grouped the

sources of uncertainty identified in the GUM that are common to many scientific studies,

and we have indicated measurement science approaches for characterizing and mitigating

uncertainty.

The GUM also provides definitions of many terms such as “repeatability” (which is defined

as the closeness of the agreement between the results of successive measurements of the same

measurand carried out under the same conditions of measurement) and “reproducibility”

(which is defined as the closeness of the agreement between the results of measurements of

the same measurand carried out under different conditions of measurement). A complete

list of consensus definitions of measurement-related terms can be found in the International
Vocabulary of Basic and General Terms in Metrology (VIM) [18]. A recent publication demon-

strates the adoption of these definitions to harmonize practices across the geophysics commu-

nity [19].
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What does Table 1 add to existing efforts?

There have been many efforts to encourage more reliable research results, and many fields

have proposed or instituted conventions, checklists, requirements, and reporting standards

that are applicable to their specific disciplines. Some of these include the Grades of Recom-

mendation, Assessment, Development and Evaluation (GRADE) approach for assessing

clinical evidence [20], the minimum information activities that have a long history in the bio-

sciences (e.g., Minimum Information about a Microarray Experiment [MIAME]) [21], check-

lists developed by scientific journals requiring specific criteria to be reported [22], a NIST

Table 1. Identifying, reporting, and mitigating sources of uncertainty in a research study.

1. State the plan

a. Clearly articulate the goals of the study and the basis for generalizability to other settings, species, conditions,

etc., if claimed in the conclusions.

b. State the experimental design, including variables to be tested, numbers of samples, statistical models to be used,

how sampling is performed, etc.

c. Provide preliminary data or evaluations that support the selection of protocols and statistical models.

d. Identify and evaluate assumptions related to anticipated experiments, theories, and methods for analyzing

results.

2. Look for systemic sources of bias and uncertainty

a. Characterize reagents and control samples (e.g., composition, purity, activity, etc.).

b. Ensure that experimental equipment is responding correctly (e.g., through use of calibration materials and

verification of vendor specifications).

c. Show that positive and negative control samples are appropriate in composition, sensitivity, and other

characteristics to be meaningful indictors of the variables being tested.

d. Evaluate the experimental environment (e.g., laboratory conditions such as temperature and temperature

fluctuations, humidity, vibration, electronic noise, etc.).

3. Characterize the quality and robustness of experimental data and protocols

a. Acquire supplementary data that provide indicators of the quality of experimental data. These indicators include

precision (i.e., repeatability, with statistics such as standard deviation and variance), accuracy (which can be

assessed by applying alternative [orthogonal] methods or by comparison to a reference material), sensitivity to

environmental or experimental perturbants (by testing for assay robustness to putatively insignificant

experimental protocol changes), and the dynamic range and response function of the experimental protocol or

assay (and assuring that data points are within that valid range).

b. Reproduce the data using different technicians, laboratories, instruments, methods, etc. (i.e., meet the conditions

for reproducibility as defined in the VIM).

4. Minimize bias in data reduction and interpretation of results

a. Justify the basis for the selected statistical analyses.

b. Quantify the combined uncertainties of the values measured using methods in the GUM [16] and other sources

[17].

c. Evaluate the robustness and accuracy of algorithms, code, software, and analytical models to be used in analysis

of data (e.g., by testing against reference datasets).

d. Compare data and results with previous data and results (yours and others’).

e. Identify other uncontrolled potential sources of bias or uncertainty in the data.

f. Consider feasible alternative interpretations of the data.

g. Evaluate the predictive power of models used.

5. Minimize confusion and uncertainty in reporting and dissemination

a. Make available all supplementary material that fully describes the experiment/simulation and its analysis.

b. Release well-documented data and code used in the study.

c. Collect and archive metadata that provide documentation related to process details, reagents, and other

variables; include with numerical data as part of the dataset.

Abbreviations: GUM, Guide to Expression of Uncertainty in Measurement; VIM, International Vocabulary of Basic
and General Terms in Metrology

https://doi.org/10.1371/journal.pbio.2004299.t001
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system for checking thermodynamic data prior to publication [23], and many more. These

efforts are not intended to be comprehensive determinations of potential sources of uncer-

tainty in measurement. But interest in measurement science principles is increasing. For

example, the Minimum Information About a Cellular Assay (MIACA) activity [24], which was

last updated in 2013, encourages reporting the experimental details of cellular assay projects.

The more recent Minimum Information About T cell Assays (MIATA), [25,26] which is

focused on identifying and encouraging the reporting of variables of particular importance to

the outcome of T cell assays, is more comprehensive. MIATA guidelines go beyond descrip-

tions of activities and reagents to include the reporting of quality control activities such as pro-

viding information regarding the strategies for data analysis and reporting any effort to pretest

medium or serum for assay performance. The most current National Institutes of Health

(NIH) instructions for grant applications [27] speak to many of the concepts of metrology:

stating the scientific premise and considering the strengths and weaknesses of prior research;

applying scientific method to experimental design, methodology, analysis, and interpretation;

considering biological variables such as sex; and authenticating biological and chemical

resources that may be sources of variability. Thus, it seems timely to suggest a comprehensive

framework that can help to guide identification of the many other potential sources of uncer-

tainty. The conceptual framework in Table 1 can enhance existing guidelines by helping scien-

tists identify potential sources of uncertainty that might not have been considered in existing

checklists and to provide some strategies for reducing uncertainty. Table 1 is designed to help

guide researchers’ critical thinking about the various aspects of their research in an organized

way that encourages them to document the data they can, and often do, collect that provide

confidence in the results.

The inclusion of supporting evidence helps end users of research results—such as decision-

makers, commercial developers, and other researchers—know how best to use and follow up

on the results. Few research studies will address all aspects indicated in Table 1. But by explic-

itly acknowledging what is known—or, more importantly, what isn’t known—about the vari-

ous components of a research effort, it is easier to see the strengths and limitations of a study

and to assess, for example, whether the study is more preliminary in nature or if the results are

highly reliable. The Data Readiness Level is a concept that has been put forward by the nano-

technology community and is an example of this kind of approach, [28] and others have sug-

gested the need for this level of reporting [11].

What are the hurdles that keep ideas such as these from being

implemented?

The sociological issues that accompany the “reproducibility crisis” have been discussed in

many venues and are beyond the scope of this discussion. Instead, we focus on the principles

and practices of measurement science since we find that researchers, particularly in rapidly

advancing fields, are sometimes confused about how to apply these principles of the scientific

method to achieve “rigor and reproducibility.”

A hurdle to implementation of these concepts is the need for tools and technologies that

can reduce the challenges for experimentalists who want to address the elements in Table 1.

There has not been sufficient investment, perhaps, in technologies that could allow us to better

characterize the components of our experimental systems, such as antibody reagents, cell lines,

or image analysis pipelines. As a scientific community, we have not prioritized investments in

software to facilitate collecting information on complex experimental protocols. While there is

great interest in data mining, there is still a lack of progress in the development of natural lan-

guage and other approaches for achieving harmonized vocabularies that would make it easier
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to compare and share experimental metadata and protocols. Efforts associated with capturing

the details of complicated experimental protocols are being undertaken. PLOS has entered

into a collaboration with Protocols.io [29] to facilitate reporting, sharing, and improving pro-

tocols. Another effort, ProtocolNavigator [30], enables collection of highly detailed experimen-

tal information and storage of provenance information; there are also supporting links to

stored data and explanatory videos [31]. Challenges associated with data and digital resources

are being considered by the Research Data Alliance (RDA) [32]. The RDA was established in

2013 to foster the sharing of research data but recognized that effective sharing requires stan-

dards and best practices and is pursuing technical developments in data discovery, semantics,

ontologies, data citation and versioning, data types, and persistent identifiers. Also, with the

current emphasis on open data [33] and large-scale data sharing [32], it would be helpful to

have a means of evaluating the aspects of the research that establish confidence of the results

being shared, especially by those who are using data outside of their area of technical expertise.

In addition, increased support for the science that underpins the technologies and methods

that help to establish confidence in data will contribute to improving the reusability of pub-

lished research results.

Conclusions

The consideration by researchers of a systematic approach to identifying sources of uncer-

tainty will enhance comparability of results between laboratories. Because no single scientific

observation reveals the absolute “truth,” the job of the researcher and the reviewer is to deter-

mine how ambiguities have been reduced and what ambiguities still exist. By addressing and

characterizing the components of the study as potential sources of uncertainty, the researcher

can provide the supporting evidence that helps to define the characteristics of the data, analy-

sis, and tests of the assumptions that were made; such evidence provides confidence in the

results and helps inform the reader about how to use the information. Unfortunately, even

when studies include these activities, they are rarely reported in an explicit and systematic way

that provides maximum value to the reader.

A framework such as the one outlined in Table 1 is applicable to many areas of scientific

research. The ideas presented here are not radical or new but are worthy of reconsideration

because of the current concern about comparability of research results. We provide this infor-

mation in the spirit of stimulating discussion within and among the scientific disciplines.

More explicit use and documentation of the concepts discussed above will improve confidence

in published research results. Applying these concepts will require commitment and critical

thinking on the part of individuals, as well as a continuation of the tradition of cooperative

effort within and across scientific communities. The end result will be worth the additional

effort.
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