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Abstract: Genome-wide association studies (GWAS) have identified genetic variants associated with an increased risk of developing 
breast cancer. However, the association of genetic variants and their associated genes with the most aggressive subset of breast can-
cer, the triple-negative breast cancer (TNBC), remains a central puzzle in molecular epidemiology. The objective of this study was to 
determine whether genes containing single nucleotide polymorphisms (SNPs) associated with an increased risk of developing breast 
cancer are connected to and could stratify different subtypes of TNBC. Additionally, we sought to identify molecular pathways and 
networks involved in TNBC. We performed integrative genomics analysis, combining information from GWAS studies involving over 
400,000 cases and over 400,000 controls, with gene expression data derived from 124 breast cancer patients classified as TNBC (at the 
time of diagnosis) and 142 cancer-free controls. Analysis of GWAS reports produced 500 SNPs mapped to 188 genes. We identified a 
signature of 159 functionally related SNP-containing genes which were significantly (P , 10−5) associated with and stratified TNBC. 
Additionally, we identified 97 genes which were functionally related to, and had similar patterns of expression profiles, SNP-containing 
genes. Network modeling and pathway prediction revealed multi-gene pathways including p53, NFkB, BRCA, apoptosis, DNA repair, 
DNA mismatch, and excision repair pathways enriched for SNPs mapped to genes significantly associated with TNBC. The results 
provide convincing evidence that integrating GWAS information with gene expression data provides a unified and powerful approach 
for biomarker discovery in TNBC.
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Introduction
Recent advances in high-throughput genotyping and 
reduction in genotyping costs have made it possible to 
identify genetic variants associated with an increased 
risk of breast cancer possible by using genome-wide 
association studies (GWAS).1–3 These findings are 
providing valuable clues about the genetic suscepti-
bility landscape of breast cancer. However, the asso-
ciation of genetic variants and their associated genes 
with the most aggressive subset of breast cancer, the 
triple negative breast cancer (TNBC) remains a cen-
tral puzzle in molecular epidemiology. Currently, 
there is a substantial gap between single nucleotide 
polymorphism (SNP) associations from GWAS and 
understanding how susceptibility loci contribute to 
the TNBC phenotype.

TNBC—tumors that do not express estrogen 
receptors, progesterone receptors, or HER2—are 
typically high-grade duct carcinomas, although low-
grade tumors do occur.4,5 They represent an impor-
tant clinical challenge because these cancers do 
not respond to endocrine therapy or other available 
targeted therapies.6,7 TNBC is significantly more 
aggressive than other subtypes of breast cancer and 
disproportionately affects younger premenopausal 
women, with a higher mortality rate among 
African-American women.8 Patients with TNBC have 
a significantly increased risk of relapse and shorter 
survival rate than patients affected with tumors of 
other molecular subtypes.5 In fact, although TNBC 
accounts for a relatively small proportion of breast 
cancer cases—about 15% to 20% of all breast can-
cers diagnosed in the general US population and 
about 30% in the African-American population-it is 
responsible for a disproportionate number of breast 
cancer deaths.9,10 Additionally, a lower proportion of 
TNBCs are discovered by mammographic screening, 
possibly due partly to the age distribution of patients 
afflicted by this disease.11,12

To date, there have been fewer advances in the 
treatment of TNBC compared to other subtypes of 
cancer. Although these tumors respond to conven-
tional chemotherapy, which is toxic and affects a wide 
range of dividing cells, the approach has met with 
mixed success.5 TNBC is often aggressive and highly 
resistant to chemotherapy.5 TNBC relapses more 
frequently than hormone receptor-positive, luminal 
subtypes, and have a worse prognosis.5 The five-year 

survival rate for TNBC is about 77%, compared to 
93% for other types of breast cancer.5 An important 
goal is therefore the identification of molecular mark-
ers to reliably identify high and low risk subsets of 
patients with TNBC, both for different treatment 
approaches and for the development of novel, more 
effective therapeutic strategies.

Over the last decade, transcription profiling using 
gene expression microarray technology has made 
possible the systematic molecular stratification of 
TNBC.8,13 Microarrays have also been used for the 
histopathological characterization of TNBC.14 More 
recently, gene expression profiling has been used 
to identify triple-negative breast cancer subtypes 
and preclinical models for selection of targeted 
therapies.15 However, while these primary analyses 
have made it possible to identify molecular signatures 
of TNBC, they have been unsuccessful in identify-
ing which genes and pathways have causative roles 
as opposed to being consequences of the disease 
states.2 Recently, several genetic variants associated 
with TNBC were reported.16,17 However, the reported 
genetic variants associated with TNBC—which 
include rs2046210 (ESR1), rs12662670 (ESR1), 
rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 
(19p13.1), and rs8100241 (19p13.1)—explain only a 
small fraction of genetic variation and have modest 
effects.16,17 In addition, results from these studies pro-
vide no information about the functional roles and the 
broader context in which the identified susceptibility 
loci operate leading to the TNBC phenotype.

Because genetic variants that are associated with 
an increased risk for breast cancer do not lead directly 
to the disease but instead act on intermediate molec-
ular phenotypes (gene expression), a more optimal 
approach is to combine GWAS information with 
gene expression data. Integration of GWAS informa-
tion with gene expression data provides a unified and 
powerful approach for identifying potential biomark-
ers and biological pathways dysregulated in TNBC. 
The objective of this study was to determine whether 
genes containing single nucleotide polymorphisms 
(SNPs) associated with an increased risk of develop-
ing breast cancer are both associated with TNBC and 
could stratify TNBC. A second but equally important 
objective was to identify molecular pathways and net-
works enriched for SNPs, which are dysregulated in 
TNBC. We hypothesized that genes containing SNPs 
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(herein called genetic variants) associated with an 
increased risk of developing breast cancer are associ-
ated with TNBC. We further hypothesized that genes 
containing genetic variants associated with TNBC 
are functionally related and interact with each other 
in biological pathways and networks associated with 
TNBC. We tested these hypotheses using an inte-
grative genomics approach which combines GWAS 
information with publicly available gene expression 
data derived from both breast cancer patients and 
cancer-free controls. The analysis strategy assumes a 
gene-centric approach in which the genes containing 
SNPs are treated as the units of association, with gene 
expression data derived from patients classified as 
TNBC at the time of diagnosis acting as the interme-
diate phenotype. Throughout this report we have used 
the terms genetic variants and SNPs interchangeably.

Material and Methods
Source of SNP data
Our methods for data collection were based on guide-
lines proposed by the Human Genome Epidemiol-
ogy network for the systematic review of genetic 
association studies; our methods follow the PRISMA 
guidelines.18–22 We have previously reported sources 
of SNP data, including references.2 Here we provide 
a brief but detailed description of the methods used in 
data collection. We mined SNP data and gene informa-
tion from published reports of GWAS on breast cancer. 
GWAS were eligible to be included if they met 4 criteria. 
First, the study design had to be a case-control, cohort 
or a cross-sectional association study conducted on 
unrelated individuals in human populations. Second, 
the study examined the association between breast can-
cer and the polymorphic phenotype, had a sample case 
size of greater than 500 subjects and greater than 500 
controls, and provided sufficient information such that 
genotype frequencies for both breast cancer cases and 
controls could be determined without ambiguity. Third, 
breast cancer must have been diagnosed by pathologi-
cal or histological examination. Fourth, publications 
must have been in peer-review journals or online and 
published in English on or before June 2012. Only stud-
ies published as full-length articles or letters in English 
language peer-reviewed journals were included in the 
analysis.

To identify all relevant publications, we used 
two strategies. First, we queried PubMed with terms 

(breast cancer, GWAS, GWA, WGAS, WGA, genome-
wide, genomewide, whole genome, and all terms + 
association or + scan) in combination with breast cancer 
to find all the GWAS published before June 2012. This 
study yielded 100 publications, which were screened 
by title, abstract, and full text review in order to iden-
tify studies that met our eligibility criteria. The data 
was manually extracted from both the reported GWAS 
and the supplementary data in websites accompanying 
those studies. It was then summarized in a consis-
tent manner.2 When a study included multiple eth-
nic populations, we picked the results of the model 
which adjusted for ethnicity. When possible we con-
sidered each subpopulation as an independent study. 
The search yielded 500 SNPs mapped to 188 genes 
from a population of over 400,000 cases and over 
400,000 controls. The 100  genetic variants mapped 
to intergenic regions were not included in this 
analysis. Table D provides supplementary data on 
the 500 SNPs, including SNP ID, the genes they map 
to, assigned P-values indicating effect size, and the 
reference sources from which SNP information was 
extracted.

To address publication bias, we catalogued all 
available SNPs that showed significant (P  ,  0.05) 
association with an increased risk of developing 
breast cancer. The rationale for including all avail-
able significant SNPs is that relatively few SNPs have 
P-values sufficiently small enough to give conclusive 
evidence of association. Conversely, there are usually 
several hundred SNPs with moderately significant 
P-values (P ∼ 10−3 to 10−4). While these would likely 
contain several false-positives, they may also contain 
genuine effects of small magnitude. We reasoned that 
the presence of a greater than expected number of 
associated SNPs mapped to genes of similar biologi-
cal functions and similar patterns of expression pro-
files gives a degree of confidence that the associations 
may be genuine even if none of the SNPs individually 
is highly significant. The premise is that such SNPs 
could give insights about the biological process and 
the broader context in which they operate.2,23 The SNP, 
IDs (rs-ID), locations, and gene names were verified 
using the dbSNP database employing chromosome 
report build 37.7 and the Human Genome Nomen-
clature (HGNC) database. SNPs were matched with 
gene names using SNP ID (rs-IDs) information in the 
database (dbSNP). For SNPs replicated in multiple 
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independent studies, we combined the P-values to 
estimate the overall effect size by using Fisher’s 
methods, as described in our previous study.2

Gene expression data
We used publicly available gene expression data in 
our analysis. Data selection were based on the TNBC 
classification guidelines reported by Perou, which 
define TNBC as tumors which lack expression of 
estrogen receptor (ER), progesterone receptor (PR), 
and HER2.8 A significant proportion of TNBC—50% 
to 75%—matches the basal-like molecular subtype.8 
However, TNBC is a heterogeneous disease entity 
encompassing other subtypes of cancer. Synonymous 
terms of this subtype include basal-type, basal-
epithelial phenotype, basal breast cancer, and basa-
loid breast cancer.24 Although most basal-like breast 
cancer is TNBC, not all cases are. In fact, even within 
basal-like/basal, molecular subtyping has revealed 
two subtypes,15,25 underscoring the complexity of the 
TNBC phenotype. Therefore, focusing on the basal-
like subtype of TNBC alone might not be specific 
enough for biomarker discovery and identification 
of potential therapeutic targets. Because of inherent 
heterogeneity in the TNBC phenotype, we decided to 
include the other two subtypes, normal-like and non-
luminal basal, both of which are classified as TNBC.8 
The gene expression data set used in this study com-
prised of 266 subjects, of which 124 were breast can-
cer patients. Of the 124 breast cancer patients, 29 were 
classified as normal-like, 20 were classified as basal-
like, and 75 were classified as nonluminal basal as 
documented by data originators.25 The remaining 
142 subjects were cancer-free controls. These sample 
sizes were large enough to identify genes associated 
with TNBC with a statistical of power of 99%. We 
did not include the Claudin-low subtype8 because we 
did not find a suitable data set that matched the other 
data sets used in this study; therefore, we acknowl-
edge this weakness of the investigation.

All gene expression data was generated using the 
Affymetrix platform and the U133PLUS 2.0 Human 
Chip. The microarray data from these samples, includ-
ing the raw probe-level hybridization intensities, 
were downloaded from the NCBI’s Gene Expression 
Omnibus (GEO) database26 under accession numbers, 
GSE21653,25 and GSE7904,27 respectively. Methods 
of sample collection, preparation, and processing 

have been fully described by the data originators.25,27 
Data on the cancer-free controls GEO accession 
number GSE10780 has been fully described by the 
originators.28 For each data set, the entries in the data 
matrix were average scaled difference expression val-
ues normalized using the RMA suite on a log scale 
(log2). Spiked control genes were removed from the 
data during preprocessing.

Data Analysis
We performed both unsupervised and supervised anal-
yses followed by network modeling, visualization, 
and pathway prediction. The goal of this study was to 
determine whether genes containing SNPs associated 
with an increased risk of developing breast cancer are 
both associated with TNBC and could stratify TNBC. 
Additional, we aimed to identify gene regulatory net-
works and biological pathways enriched for SNPs 
which are dysregulated in TNBC. Therefore, as a first 
step in the analysis, we partitioned gene expression 
data into two subsets, a prioritized subset (ie, a data 
set of 188 genes containing SNPs associated with an 
increased risk of developing breast cancer) and a non-
prioritized set (ie, a data set containing the remainder 
of the genes not identified by GWAS). Prioritization 
of SNP-containing genes was aimed at identifying the 
genes providing good evidence of association with 
TNBC, amongst a large pool of 188 SNP-containing 
genes identified by GWAS. The overarching goal was 
to maximize the yield and the biological relevance of 
further downstream screens, analysis, refinements, 
validation, functional analysis, pathway prediction, 
and network modeling focusing on the most promis-
ing candidates associated with TNBC.

We performed unsupervised analysis using hierar-
chical clustering on the prioritized data set to discern 
the patterns of gene expression profiles in TNBC for 
all the 188  genes containing SNPs associated with 
an increased risk of developing breast cancer. This 
unbiased class discovery approach included gene 
expression data on all 188 genes. Prior to clustering, 
the data was normalized using median normaliza-
tion, standardized and centered.29 Pairwise similarity 
of all the 188  genes was calculated as the Pearson 
correlation coefficient of the expression levels. The 
genes were then grouped by hierarchical clustering 
using the complete linkage method as implemented 
in GenePattern.30
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To obtain a more robust analysis on gene expres-
sion data and to identify significantly differentially- 
expressed SNP-containing genes that are both 
associated with TNBC and could stratify TNBC, we 
performed supervised analysis. The significant differ-
ences in gene expression profiles between cases and 
controls were tested using a t-test. The sample sizes 
were sufficiently large to identify significantly dif-
ferentially-expressed genes with a statistical power 
of 99% at P , 0.05. This approach eliminated SNP-
containing genes which were not associated with 
TNBC and narrowed the focus, highlighting the set 
of genes which were highly significantly associated 
with TNBC. To investigate gene expression varia-
tion among the subtypes of TNBC under study, we 
performed analysis of variance (ANOVA). We con-
ducted additional analysis comparing gene expres-
sion profiles between the three subtypes of TNBC 
under study. We used a permutation test to calculate 
empirical P-values. The empirical P-values and those 
from the t-test did not differ appreciably. We used 
a false discovery rate (FDR) to correct for multiple 
hypothesis testing.31 Because of the small sample 
sizes for each type of data, we did not divide the data 
into test and validation sets; instead we used an out of 
sample validation approach32 to identify genes with 
predictive power. Genes were ranked based on esti-
mated P-values. Genes that were highly significantly 
(P , 10−5) associated with TNBC were selected. All 
supervised analysis was performed using Pomello II 
software package.33

We then performed unsupervised analysis based 
on hierarchical clustering, using gene expression data 
on genes highly significantly (P  ,  10−5) associated 
with TNBC. Pairwise similarity of all genes signifi-
cantly associated with TNBC was calculated as the 
Pearson correlation coefficient. The data was median 
normalized, standardized, and centered.29 The genes 
and individuals were then grouped by hierarchical 
clustering using the complete linkage method, as 
implemented in GenePattern.30 The goal was to iden-
tify functionally related genes consistently showing 
similar patterns of expression profiles, within and 
across the TNBC subtypes under study.

To assess biological functional relationships, we 
performed additional analysis using the gene ontol-
ogy (GO) information.34 The GO Consortium has 
developed three separate categories (molecular 

function, biological process, and cellular component) 
to describe the attributes of gene products. Molecular 
function defines what a gene product does at the bio-
chemical level without specifying where or when the 
event actually occurs or its broader context. Biological 
process describes the contribution of the gene product 
to the biological objective. Cellular component refers 
to where in the cell a gene product functions. Because 
our goal in this study was to gain biological insights 
about the broader context in which genetic variants 
associated with an increased risk of developing TNBC 
operate, we considered all three GO categories.

One of the limitations of GWAS as noted in this 
study is that the results of single-SNP GWAS anal-
ysis explain only a small fraction of variation. For 
example, in TNBC only a very small number of risk 
loci have been reported.16,17 This begs the question of 
where the missing variation is located. Realizing that 
there may be other key driver genes that act in concert 
with SNP-containing genes to produce the TNBC 
phenotypes, we performed additional analysis on the 
remainder of the data set (unprioritized data set) using 
supervised analysis. We then proceeded with an unsu-
pervised analysis, as described earlier in this report. 
The data containing genes identified from this analy-
sis was merged with the data set of SNP-containing 
genes significantly associated with TNBC. The com-
bined data set was then subjected to unsupervised 
analysis using GenePattern30 to identify co-expressed 
genes with similar expression profiles.

Finally, we performed pathway prediction, net-
work modeling, and visualization using the Ingenuity 
System (IPA) program (http://www.ingenuity.com).35 
The goal was to identify biological pathways that 
are enriched by the genetic variants associated with 
breast cancer and which are also involved in TNBC. 
We hypothesized that genes containing SNPs associ-
ated with an increased risk for TNBC interact with 
each other and other genes within biological path-
ways. HUGO gene identifiers were mapped to net-
works available in the Ingenuity database and ranked 
by score. The score indicates the likelihood of the 
genes in a network being found together by random 
chance. Using a 99% confidence interval, scores of 
$3 are considered significant. Additional information, 
validation of predicted pathways, and identification of 
other downstream target genes was achieved through 
the literature and database mining module built in the 
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Ingenuity System. This allowed identification of other 
functionally related genes not identified by GWAS. 
The distribution of the overall effect of SNPs in the 
pathway and replicated SNPs were calculated using 
the procedures developed by developed by Hicks et al.2

Results
Patterns of gene expression profiles  
for all genes containing SNPs
As a first step, we performed exploratory analysis 
using unsupervised analysis to assess the patterns of 
expression profiles for all 188 genes containing 500 
SNPs associated with an increased risk of develop-
ing breast cancer. Figure  1  shows the patterns of 
gene expression profiles for all 188 genes containing 
SNPs associated with an increased risk of developing 
breast cancer. SNP-containing genes exhibited pat-
terns of expression profiles that were different from 
the controls (Fig. 1). Overall, patterns of gene expres-
sion profiles varied markedly, with basal-like sub-
types showing more consistent patterns while basal 
and normal-like subtypes exhibited more variability 
and spurious patterns (Fig. 1). Patterns of expression 
profiles in the normal-like and non-luminal basal sub-
types tended to be similar (Fig. 1). Patterns of expres-
sion profiles for some genes in the normal-like and 
basal subtypes were similar to cancer-free controls. 

The variability in patterns of gene expression was 
expected given the genetic and phenotypic heteroge-
neity inherent in TNBC.5,8,15,36 These results suggest 
that genetic susceptibility to TNBC could vary, posing 
challenges in identifying and stratifying breast cancer 
patients at risk. The spurious patterns in gene expres-
sion profiles suggest that some of the genes may not 
be associated with the TNBC subtypes under study 
(Fig. 1). Therefore, after this exploratory analysis, we 
performed more rigorous analyses and refinements 
as described in the methods section to identify genes 
that are both significantly associated with TNBC and 
could stratify TNBC.

Association between GWAS  
information and TNBC
The primary objective of this investigation was to 
determine whether genes containing SNPs associ-
ated with an increased risk of developing breast can-
cer are associated with the most aggressive subset of 
breast cancer, TNBC. We hypothesized that genes 
containing SNPs associated with an increased risk of 
developing breast cancer significantly differ in their 
expression profiles between patients classified as 
TNBC and cancer-free controls. To test this hypoth-
esis, we performed supervised analysis as described 
in the methods section of this report. The results 

Figure 1. Patterns of gene expression profiles for all the 188 genes containing SNPs associated with an increased risk of developing breast cancer, 
assessed in 142 controls and subtypes of TNBC (normal-like, N = 29; basal-like, N = 20; and non-luminal basal, N = 75) Tumors.
Notes: Genes are represented in the roles and samples in the columns. Red and blue colors indicate up and down regulation, respectively.
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showing estimates of P-values, along with the FDR 
for all 188 genes containing SNPs associated with an 
increased risk of developing breast cancer, are pre-
sented in Table A (provided as supplementary data). 
Here we present the results of genes which were 
found to be highly significantly (P , 10−5) associated 
with TNBC.

A comparison between normal-like, basal-like 
and basal subtypes with cancer-free controls pro-
duced 98  genes (P  ,  5.00  ×  10−5), 101  genes 
(P , 2.50 × 10−5), and 142 genes (P , 7.50 × 10−5); 
respectively (Table A). Among the identified genes 
that were highly significantly associated with TNBC 

included 34 genes containing SNPs with large effects 
(P , 10−5) (Table 1). Thirty-one of the identified genes, 
including ADH1B, CASP8, CDKN1B, CDKN2A, 
COMT, EHMT1, ICAM5, IGBP3, LSP1, MAP3 
K1, PGR, RB1, RELN, SOD2, SORBS1, TGFB1, 
ESR1, SLC4A7, TOX3, FGFR2, STXBP4, CDKN1A, 
LOC643714, TOX3, CCND1, HCN1, TP53, PTEN, 
CCNE1, RAD51 L1, and CHEK1, contain SNPs rep-
licated in multiple independent GWAS.2 A subset of 
these genes (TOX3, rs3803662; RAD51L1, rs999737; 
ESR1, rs2046210, rs12662670; CASP8, rs17468277; 
ANKLE1, rs8170, rs8100241) contain SNPs which 
have been recently associated with TNBC.16,17 Another 

Table 1. Estimates of P-values for SNP-containing genes highly significantly associated with TNBC subtypes.

Gene 
symbol

GWAS Significant expression in TNBC subtypes
SNP(rs_ID) P-value Normal-like 

P-value
Basal-like 
P-value

Basal 
P-value

FGF4 rs1924587 3 × 10-15 5.00E-06 5.00E-06 5.00E-06
STXBP4 rs6504950 1.4 × 10-8 0.08 0.3 4.50E-05
RAD51L1 rs999737 1.74 × 10-7 5.00E-06 5.00E-06 5.00E-06
ABCC4 rs1926657 1.9 × 10-6 5.00E-06 5.00E-06 5.00E-06
HCN1 rs981782 1.0 × 10-6 5.00E-06 5.00E-06 5.00E-06
ZNF365 rs10995190 5 × 10-15 5.00E-06 5.00E-06 5.00E-06
NOTCH2 rs1124933 3.40 × 10-5 5.00E-06 0.004 5.00E-06
LSP1 rs3817198 3.0 × 10-9 5.00E-06 0.003 5.00E-06
FGFR2 rs2981582 2 × 10-76 0.8 0.2 0.001
PPP2R2B rs9325024 1.7 × 10-5 1.00E-05 5.00E-06 5.00E-06
GRIK1 rs458685 6.0 × 10-6 5.00E-06 5.00E-06 5.00E-06
FGF3 rs614367 3 × 10-15 0.09 5.00E-06 0.1
COL1A1 rs2075555 8.3 × 10-8 5.00E-06 5.00E-06 5.00E-06
MRPS30 rs7716600 7 × 10-7 0.2 5.00E-06 5.00E-06
FHOD3 rs9956546 2.9 × 10-6 0.8 5.00E-06 5.00E-06
BTNL8 rs7711990 8.4 × 10-5 5.00E-06 5.00E-06 5.00E-06
RNF146 rs2180341 2.9 × 10-8 5.00E-06 5.00E-06 5.00E-06
FGF19 rs614367 3 × 10-15 5.00E-06 5.00E-06 5.00E-06
MYEOV rs614367 3 × 10-15 0.04 0.01 0.1
ORAOV1 rs614367 3 × 10-15 5.00E-06 5.00E-06 5.00E-06
K1AA1804 rs1294255 1.9 × 10-5 0.2 0.0005 5.00E-06
ANKRD16 rs2380205 5 × 10-7 3.00E-05 0.0006 5.00E-06
ZMIZ1 rs704010 4 × 10-9 5.00E-06 5.00E-06 5.00E-06
ECHDC1 rs6569480 6.1 × 10-8 5.00E-06 0.1 0.1
NEK10 rs4973768 4 × 10-23 5.00E-06 5.00E-06 5.00E-06
LOC643714 rs3803662 1 × 10-36 5.00E-06 5.00E-06 5.00E-06
CASP8 rs1045485 1.1 × 10-7 5.00E-06 0.6 5.00E-06
ESR1 rs3020314 8 × 10-5 0.2 5.00E-06 6.00E-05
FBN1 rs1876206 6.0 × 10-6 0.005 0.1 0.1
SLC4A7 rs4973768 4.10-23 5.00E-06 5.00E-06 5.00E-06
TGFB1 rs1800470 2.8 × 10-5 0.72 0.008 0.4
TOX3 rs8051542 1.0 × 10-36 5.00E-06 5.00E-06 5.00E-06
H19 rs2107425 2.0 × 10-5 1.00E-05 0.0001 5.00E-06
MAP3K1 rs889312 4.6 × 10-20 0.003 2.50E-05 5.00E-06
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subset of genes found to be significantly associated 
with TNBC in this study included the genes P53, 
PTEN, RB1, BRCA1, BRCA2, ATR, ATM, MAP3K1; 
CDKN2A, ATR, CHEK1, CCND1, NOTCH2. These 
genes are highly mutated and are known to influence 
gene expression.37 The genes ERBB, CCNE1, PTEN, 
CCND1, CDKN2A, CDKN2B, CHEK1 found in this 
study were recently associated with different tumor 
groups.38 These analyses confirm our hypothesis that 
genes containing SNPs associated with an increased 
risk of developing breast cancer are both associated 
with TNBC and could stratify TNBC.

Interestingly, genes containing SNPs with small to 
moderate effects were found to be highly significantly 
associated with TNBC. This is a significant finding 
given that only a small number of statistically unim-
peachable, common low-penetrance breast cancer 
susceptibility loci have been reported and confirmed 
in different populations and in TNBC.16,17 Of particu-
lar interest was the weak link or lack of association of 
both the FGFR2 gene with TNBC and the association 
of the ESR1 gene with TNBC (Table 1). The FGFR2 
and ESR1 genes are the most replicated genes in 
GWAS and contain SNPs with the largest effect sizes 
(Table 1). In the published literature, FGFR2 has been 
associated with the risk of developing ER-positive 
tumors,39 while SNPs in ESR1 have been associated 
with both ER-positive and ER-negative tumors.40,41

Overall, there was incomplete overlap in associa-
tion between TNBC and cancer-free controls. This 
is attributable to heterogeneity in patterns of gene 
expression among the three types of TNBC studied. 
To assess overlap, we used a Venn diagram to delin-
eate the overlapping genes. We sought to group the 
genes into those exhibiting significant association 
with all the three subtypes of TNBC, those associated 
with two subtypes, and those exhibiting subtype-spe-
cific association. Figure 2 shows the intersections of 
normal-like, basal-like, and basal subtypes. Overall, 
119 genes were significantly associated with all three 
TNBC subtypes. Out of the remainder, 22 genes were 
significantly associated with the basal-like and basal 
subtypes only, 18 genes with basal and normal-like 
only, and 12 genes were significantly associated with 
basal-like and normal-like only (Fig.  2). Very few 
genes exhibited subtype-specific association (Fig. 2). 
Only three genes (not included in the Venn diagram) 
were not associated with any of the TNBC subtypes 

under study. These results are consistent with previ-
ous findings indicating that TNBC are heterogeneous 
and overlap is incomplete.8 The heterogeneity and 
variability in the results suggests that genetic suscep-
tibility in TNBC may not reflect a single disease, but 
rather a heterogeneous entity with some loci confer-
ring risks to all subtypes, while others confer subtype-
specific risks.

Having observed heterogeneity and incomplete 
overlap in association between TNBC and cancer-
free controls, we performed ANOVA among the three 
TNBC subtypes under study in order to quantify the 
extent of variation and to identify a set of genes which 
show significant group differences in expression 
profiles. We hypothesized that gene expression pro-
files significantly vary within and across the three 
TNBC subtypes under study, and that a subset of genes 
contribute to this significant variation. Estimates 
of P-values derived from ANOVA are presented in 
Table B (provided as supplementary data). ANOVA 
produced 125 genes which exhibited highly signifi-
cant (P , 10−5) variation among the three subtypes 
of TNBC studied (Table B). The remaining 63 genes 
exhibited moderate, little, or no variations among the 
three subtypes of TNBC studied (Table B).

While ANOVA identified genes which show sig-
nificant differences in expression profiles among 
the three TNBC subtypes, it could not identify dif-
ferentially expressed sets of genes distinguishing the 

NLK
4

BLK
512

119

5
Basal

2218

Figure 2. Venn diagram showing the numbers and distribution of genes 
significantly associated with TNBC subtypes under study.
Notes: The number of overlapping genes are shown in the intersections. 
NLK indicates normal-like and BLK indicates basal-like.
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subtypes of TNBC. Therefore, we performed addi-
tional supervised analysis comparing gene expression 
profiles between individual subtypes of TNBC. We 
hypothesized that gene expression profiles signifi-
cantly differ between individual subtypes of TNBC 
under study. Estimates of P-values along with FDR 
are presented in Table B (provided as supplemen-
tary data). A comparison between normal-like and 
basal-like subtypes produced 103 highly significantly 
(P , 10−5) differentially expressed genes distinguish-
ing the subtypes. When we compared normal-like to 
basal, we identified 37 highly significantly (P , 10−5) 
differentially expressed genes distinguishing the two 
subtypes. In contrast, a comparison between basal-like 
and basal produced 95 highly significantly (P , 10−5) 
differentially expressed genes distinguishing the two 
subtypes (Table B, supplementary data). The results 
confirmed our hypothesis that genes containing 
SNPs associated with an increased risk of developing 
TNBC significantly differ in their expression between 
the subtypes of TNBC and that genetic susceptibility 
may be subtype-specific.

Functional relationship
To further refine the genetic susceptibility landscape 
and identify functionally related genes with similar 
patterns of expression profiles, we performed unsu-
pervised analysis using hierarchical clustering on 
the set of genes which were significantly (P , 10−5) 
associated with TNBC. We hypothesized that genes 
containing SNPs associated with an increased risk 
of developing breast cancer have similar patterns 
of expression profiles and are functionally related. 
The rationale is that genes with similar patterns of 
expression profiles and similar functions are likely to 
be regulated via the same regulatory mechanisms.29 
To investigate the biological functions, biological 
process, and cellular process in which the genes are 
involved, we performed GO analysis as described in 
the methods section.

Figure 3 presents patterns of expression profiles 
of SNP-containing genes for each subtype and the 
controls. Figure  3A represents patterns of gene 
expression profiles for the 98 genes in normal-like 
subtype and controls. Figure 3B depicts patterns of 

Figure 3. Patterns of gene expression profiles for genes containing SNPs associated with an increased risk associated with an increased risk of 
developing breast cancer, which were highly significantly (P , 10−6) associated with TNBC subtypes. (A) shows patterns of expression profiles for the 
98 SNP-containing genes obtained by comparing expression profiles between normal-like breast cancer patients (N = 29) and 142 cancer-free controls. 
(B) Patterns of gene expression profiles for the 101 SNP-containing genes in basal-like patients (N = 20) and 142 cancer-free controls. (C) Patterns of 
gene expression profiles for the 142 SNP-containing genes in non-luminal basal patients (N = 75) and 142 cancer-free controls.
Notes: Genes are represented in the roles and samples in the columns. Red and blues colors indicate up and down regulation, respectively.
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gene expression profiles for the 101 genes in basal-
like subtype and controls. Patterns of gene expression 
profiles for the 142 genes in basal subtype and controls 
are presented in Figure 3C. Patterns of gene expres-
sion profiles for the 159  genes showing consistent 
patterns across all the three subtypes are presented in 
Figure 4. In all four cases examined, genes were co-
expressed and exhibited similar patterns of expres-
sion profiles. Interestingly, genes containing genetic 
variants with large effects and genetic variants rep-
licated in multiple independent GWAS studies were 
co-expressed with genes containing genetic variants 
with small to moderate effects. Additional analysis 
using GO information revealed that genes contain-
ing SNPs associated with an increased risk of devel-
oping breast cancer are functionally related and are 
involved in the same biological processes and cellu-
lar components. A full catalogue of the physiological 
functions, biological processes, and cellular compo-
nents in which the genes containing SNPs associated 
with risk for breast cancer are involved is presented 
in Table C (provided as supplementary data). These 
analyses confirmed our hypothesis that genes con-
taining SNPs associated with an increased risk of 
developing breast cancer are functionally related. 
This is a significant finding given that traditional 

single-SNP GWAS analysis does not provide infor-
mation about the functional relationship of genes 
containing SNPs associated with risk for developing 
breast cancer. Importantly, these data indicate that 
it is reasonable to use gene expression data as an 
intermediate phenotype to assess the association of 
GWAS information with TNBC and to gain biologi-
cal insights about the broader context in which SNPs 
operate.

To assess the significance of SNP-containing genes 
as potential biomarkers, we examined their functional 
relationship with high-penetrance genes (BRCA1, 
BRCA2, TP53, PTEN, RB1, CDKN2A, ATR), mod-
erate-penetrance genes (ATM, BRIP1, CHEK2, and 
PALB2), and low-penetrance genes (FGFR2, TOX3, 
MAP3K1, LSP1, CASP8) genes.1 These genes have 
been associated with an increased high risk of devel-
oping breast cancer.1 Importantly, these genes con-
tain genetic variants that have been replicated in 
multiple independent GWAS studies2 and contain 
mutations involved in TNBC.37 The results revealed 
functional relationships and similarity in patterns of 
gene expression profiles between these sets of genes 
and other SNP-containing genes (Fig. 4). This indi-
cates that the mechanisms of action in some common 
low-risk genetic susceptibility loci are likely to be 

Figure 4. Patterns of gene expression profiles for the 159 genes containing SNPs associated with an increased risk of developing breast cancer, which 
were highly significantly (P , 10−6) associated with the TNBC subtypes under study. 
Notes: Genes are represented in the roles and samples in the columns. Red and blues colors indicate up and down regulation, respectively. Note that 
this is a combination of Figure 3A–C.
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activated through activation of these genes. It is also 
conceivable that these genes could regulate down-
stream SNP-containing target genes. This is a sig-
nificant finding given that, for example, BRCA1 and 
BRCA2 confer approximately a 10 to 20 fold relative 
risk and mutations in these genes account for 16% of 
the familial risk of breast cancer.1,42 Notably, most of 
the BRCA1 and BRCA2 cancers are TNBC. For exam-
ple, in a recent study involving 1, 469 patient aged 20 
to 49 from Los Angeles County in California, 48% of 
BRCA1 carriers had TNBC compared to 12% of non-
carriers.42 Additionally, recent studies have shown 
that the P53 gene could be used to stratify TNBC 
in subgroups with distinct predictive and prognostic 
value.43,44

Association of SNP-containing genes 
with novel genes
One of the limitations of GWAS is that the suscepti-
bility loci identified thus far are few and explain only 
a small fraction of the variation. This begs the ques-
tion of where the missing variation is located. It is 
plausible that there are potentially many yet-to-be dis-
covered common susceptibility alleles with smaller 
effects missed by GWAS. Even if the genes contain-
ing genetic variants associated with an increased risk 

of developing breast cancer are identified, it may 
not be obvious which genes mediate their biologi-
cal effects. Therefore, key driver genes may be over-
looked and important pathways may be missed by 
focusing solely on genes containing genetic vari-
ants associated with an increased risk of developing 
breast cancer. To address this question, we performed 
supervised analysis on the non-prioritized data set 
comparing gene expression profiles between each 
TNBC subtype and controls in order to identify novel 
genes which are significantly differentially expressed 
and co-expressed with SNP-containing genes. This 
analysis produced a set of 97 significantly (P , 10−6) 
differentially expressed novel genes. We then com-
bined data on this set of genes with data on the 
159 SNP-containing genes associated with TNBC 
and performed hierarchical clustering to determine 
whether the two sets of genes are functionally related 
and have similar patterns of expression profiles. The 
results showing patterns of expression profiles for the 
combined set of 256 genes are presented in Figure 5. 
SNP-containing genes were found to have similar 
patterns of expression profiles and were also found 
to be functionally related with genes not identified 
through GWAS analysis. Interestingly, genes con-
taining SNPs with low to moderate effect size were 

Figure 5. Patterns and clusters of gene expression profiles for the 256 genes (159 SNP-containing genes and 97 novel genes not identified by GWAS, 
highly significantly associated with TNBC) in different subtypes of TNBC and controls. 
Notes: Genes are represented in the roles and samples in the columns. Red and blues colors indicate up and down regulation, respectively.
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found to be functionally related with genes not iden-
tified through GWAS analysis. This is an interesting 
finding given that relatively few SNPs have P-values 
sufficiently small enough to give conclusive evidence 
of association and the fact SNPs identified thus far 
explain only a small fraction of the variation. The 
co-expression of genes containing SNPs with genes 
not identified through GWAS analysis indicates that 
integrating GWAS information with gene expres-
sion data could provide insights about the missing 
variation in GWAS studies. Overall, the results dem-
onstrate that molecular perturbation leading to the 
TNBC phenotype involves other genes in the genome 
acting in concert with SNP-containing genes and that 
use of GWAS information alone may miss potential 
biomarkers.

Biological pathways and gene networks
The second objective of this study was to investigate 
the broader context in which genetic variants and 
genes associated with TNBC operate and to identify 
gene regulatory networks and biological pathways 
enriched for SNPs, which are involved in TNBC. We 
hypothesized that genes containing SNPs associated 
with an increased risk of developing breast cancer, 
which are significantly associated with TNBC, inter-
act with each other and with other genes not iden-
tified through GWAS. To test this hypothesis, we 
performed network analysis and pathway prediction 
using all 259 genes (SNP-containing and novel genes) 
as described in the methods section. We identified 
five top networks with the highest scores (predicted 
scores ranging from 28 to 51). The five top regulatory 
networks identified contained genes with multiple 
overlapping functions and involved multi-gene path-
ways. The first (network 1, score 51) contained genes 
involved in DNA repair, DNA mismatch repair, DNA 
replication and recombination, cell cycle, and nucleic 
acid metabolism. The second (network 2, score 41) 
produced genes involved in the DNA replication, 
recombination and repair, cellular compromise, and 
cell cycle. The third (network 3, score 33), contained 
genes involved in cell cycle, cellular development, 
cellular growth, and proliferation. The fourth (net-
work 4, score 32) contained genes involved in cancer 
and organismal development. The fifth (network 5, 
score 28) contained genes involved in apoptosis. In 
all the networks identified, SNP-containing genes 

significantly associated with TNBC and other genes 
were functionally related.

To further refine the genetic susceptibility land-
scape, we mapped the genes onto the networks focus-
ing on the most significant network. Figures 6–8 show 
the gene regulatory networks of SNP-containing genes 
and genes not identified through GWAS analysis. 
Network modeling and visualization revealed that 
SNP-containing genes significantly associated with 
TNBC interact with each other and with other genes 
not identified by GWAS confirming our hypoth-
esis. Network analysis further revealed that genes 
containing SNPs with large effects and SNPs repli-
cated in multiple independent studies interact with 
genes containing SNPs with small effects and not 
replicated. Among the identified SNP-containing 
genes were ATR, ATM, NBN, BLM, WRN, XRCC1, 
XRCC2, XRCC3, RPA1, BRCA1, BRCA2, RAD51, 
TP53, H19, RPA2, XPA, ERCC5, FRMD4A, COMT, 
TMEM43, ERCC6, ERCC2 and PALB2. (Fig.  6) 
These genes were predicted to be involved in DNA 
repair, DNA mismatch repair, base-excision repair, 
cell cycle, and nuclei acid metabolism. Additional 
network analysis revealed the genes PMS1, ATM, 
ATR, DCLRE1C, PRKDC, XRCC5, KSR2, CHEK2, 
ERBB2, ERBB4, ESR1, CHEK1, BRCA1, CYP1B1, 
PGR, CYP19A1, MSH2, MSH3 and FANCA (Fig. 7). 
The genes were predicted to be involved in DNA 
replication, recombination, repair, cellular compro-
mise, and cell cycle. Further delineation of the net-
work produced the genes ALPL, CDK6, NUMA1, 
CCND1, FOXM1, CDKN2B, SUV39H2, CCNE1, 
EHMT1, EHMT2, TERT, MYCL1, TYMS, RB1, 
CDKN1A, MCMB and DNMT3A which are involved 
in cell cycle, cellular development, cellular growth, 
and proliferation (Fig. 8).

A close examination of the genes in the net-
works on the basis of molecular and cellular func-
tion revealed 66 genes which are involved in DNA 
repair, DNA mismatch repair, and base-excision 
repair to be the most significant (P  =  7.50  ×  10−29 
to 5.41 ×  10−7), followed by 103 genes involved in 
cell death (1.66  ×  10−21 to 6.92  ×  10−7), 75  genes 
involved in cell cycle (1.07 × 10−19 to 6.92 × 10−7), 
23 genes involved in cellular response to therapeutics 
(5.99 × 10−15 to 1.19 × 10−9), and 31 genes involved 
in cellular compromise (2.37 × 10−14 to 5.41 × 10−7). 
Overall, most of the genes identified have multiple 
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Figure 6. (Network 1). Gene regulatory networks containing multigene pathways involved in DNA replication, recombination, and repair, cell cycle, nucleic 
acid metabolism.
Note: Red fonts indicate genes containing SNPs.

Figure 7. (Network 2). Gene regulatory network containing multigene pathways involved in DNA replication, recombination, and repair, cellular compro-
mise, and cell cycle.
Note: Red fonts indicate genes containing SNPs.

Figure 8. (Network 3). Gene regulatory network containing multigene pathways involved in cell cycle, cellular development, cellular growth and proliferation.
Note: Red fonts indicate genes containing SNPs.
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overlapping molecular functions and are involved 
in similar biological and cellular processes. Of the 
258 genes investigated, 130 were directly classified 
as cancer genes by the IPA and were the most signifi-
cant (P = 2.24 × 10−23 6.75 × 10−7). The information 
on molecular functions and biological and cellular 
processes for all 256 genes are presented in Table C 
(provided as supplementary data to this report).

To further determine the broader context in which 
genes containing genetic variants operate and to 
establish the functional bridges between GWAS 
findings and biological pathways relevant to TNBC, 
we performed pathway prediction. Specifically, we 
mapped the genes significantly associated with TNBC 
onto the pathways in the IPA database. The predicted 
pathways were ranked on predicted P-values, after 
correcting for multiple testing. Pathway prediction 
revealed that SNP-containing genes significantly 
associated with TNBC interact with each and with 
other genes not identified by GWAS, in cascades of 
complex multi-gene pathways. We identified many 
multi-gene pathways. The most highly significant 
pathways included the hereditary breast cancer 
signaling pathway (P  =  3.86  ×  10−17), the role of 
BRCA1 in DNA repair response (P = 4.17 × 10−17), 
the Aryl hydrocarbon receptor signaling pathway 
(P = 2.44 × 10−13), the DNA double-strand break repair 

by non-homologous end joining (P =  1.99 ×  10−10), 
and the role of CHK proteins in cell cycle checkpoint 
control (P = 2.98 × 10−10).

Figure 9 shows the SNP-containing genes mapped 
to the BRCA1 in the DNA damage response pathway. 
SNP-containing genes significantly associated with 
TNBC and which mapped to this pathway included 
FANCA, ATM, ATR, CHECK1, CHEK2, P53, 
BRCA1, BARD1, BLM, MSH2, MSH6 and RAD50 
(Fig.  9). These genes are involved in DNA repair, 
mismatch repair, and base-excision repair. This is a 
significant finding given that the majority of BRCA1 
tumors are TNBC.12 Both BRCA1 and BRCA2 have 
been implicated in double-strand DNA repair.45 The 
gene ATM has been shown to encode a checkpoint 
kinase that has key functions in DNA repair and 
which also phosphorylates P53 and BRCA1.46 Given 
that impaired base-excision repair functions can give 
rise to the accumulation of DNA damage and initia-
tion of cancer,47 and the fact that chemotherapy is the 
only effective therapeutic modality for TNBC that 
can cause DNA damage,45 targeting the DNA repair 
defects in this pathway could potentially serve as an 
effective therapeutic strategy.48

To further explore the role of SNP-containing 
genes in biological pathways relevant to TNBC, we 
explored the role of CHK proteins in the cell cycle 

Figure 9. BRCA pathway showing the role of BRCA1 in DNA damage response and crosstalk with other biological pathways, notably the P53 pathway.
Notes: Double circles indicate complex interactions involving multiple genes. Genes containing SNPs are shown in red fonts.
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checkpoint control pathway (Fig.  10). This path-
way contained 6 SNP-containing genes RAD50, 
ATM, CHEK1, CHEK2, BRCA1 and P53 (Fig.  10). 
Identification of this pathway was of particular interest 
because the most recent study has shown that targeting 
CHEK1 in P53-deffiecient triple-negative breast can-
cer is therapeutically beneficial in human-in-mouse 
tumor models.49 CHEK1 and CHEK2 are checkpoint 
kinases involved in DNA repair that directly modu-
late the activities of TP53 and BRCA1 through phos-
phorylation. Thus, targeting these pathways could be 
therapeutically beneficial. In particular, the P53 gene 
has been shown to be a specific prognostic factor 
in TNBC.50 In addition, the DNA damage signaling 
kinase ATM has been shown to be aberrantly reduced 
or lost in BRCA1/BRCA2-deficient breast cancer 
and TNBC.46 Overall, the pathway prediction and net-
work modeling confirmed our hypothesis that genes 
containing SNPs interact with each other and other 
genes not identified by GWAS in biological path-
ways. In the predicted pathways and networks, genes 
containing SNPs were found to interact with genes 

not identified by GWAS Figures 9 and 10. This is a 
significant finding regarding the missing variation as 
it suggests that using GWAS alone may miss poten-
tial therapeutic targets.

In all predicted pathways enriched for SNPs, genes 
containing SNPs with large effects and SNPs repli-
cated in multiple studies were found to be interacting 
with genes containing SNPs with small to moderate 
effects. This is a significant finding given that overall, 
only a small number of statistically unimpeachable, 
common low-penetrance breast cancer susceptibility 
alleles have thus far been reported in TNBC in differ-
ent populations.16,17 The identification of many multi-
gene pathways enriched for SNPs indicates that many 
loci and pathway crosstalk may be involved in the 
pathogenesis of TNBC. The association of the DNA 
mismatch repair genes and pathways with TNBC is 
of particular interest both because ensuring fidelity 
of DNA replication is central to preserving genomic 
integrity and because DNA mismatch repair is criti-
cal for maintaining the fidelity of replication.51 The 
functional relationship, similarity in patterns of gene 

Figure 10. CHEK kinase pathway showing the role of CHEK proteins in cell cycle checkpoint control, and crosstalk with other pathways notably the P53 
and BRCA pathways.
Notes: Double circles indicate complex interactions involving multiple genes. Genes containing SNPs are shown in red fonts.
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expression profiles, and interactions in gene regula-
tory networks and pathways between different sets 
of genes, highlights the complexity of the molecular 
mechanisms involved in TNBC. An exciting result 
with potential therapeutic and clinical significance in 
this study is that genes with high penetrance (BRCA1, 
BRCA2, TP53, PTEN, STK11 and CDH1), moderate 
penetrance (PALB2, BRIP1, ATM, and CHEK1) and 
genes with lower penetrance (CASP8, FGFR2, TOX3, 
MAP3K1, and LSP1), all of which contained genetic 
variants, were significantly associated with TNBC. 
Importantly, these genes were found to be function-
ally related and interacted with other SNP-containing 
genes and novel genes not identified by GWAS. This 
is a significant finding in that although we do not fully 
comprehend the genetic basis of TNBC, and perhaps 
rare variants are yet-to-be found, the mechanism of 
action for at least some SNP-containing genes associ-
ated with TNBC may be through activation or regu-
lation of breast cancer-predisposing loci. Although 
we did not integrate findings with clinical outcomes, 
evidence from the literature suggests that some of 
the genes identified in this study—notably MAP3K1, 
DAPK1, LSP1, MMP7, TOX3, and ESR1—are asso-
ciated with survival.52

Discussion
The primary goal of this study was to determine 
whether genes containing SNPs associated with an 
increased risk of developing breast cancer are asso-
ciated with and could stratify different subtypes of 
TNBC. In addition, we sought to identify molecu-
lar pathways and networks relevant to TNBC. Our 
analysis establishes the association between genes 
containing SNPs associated with an increased risk 
of developing breast cancer and TNBC. It further 
identifies gene regulatory networks and biological 
pathways enriched for SNPs, which are involved in 
TNBC. This is a significant finding because to date, 
very few genetic variants and genes associated with 
an increased risk of developing TNBC have been 
reported.16,17 Many examples highlight the power of 
transcription profiling (signatures) in informing an 
understanding of the molecular basis and stratify 
subtypes of TNBC,8,13,14 as well as in the prediction 
of clinical outcomes.8,14,15,52,53 However, although 
these studies have made great strides in decipher-
ing the molecular basis of TNBC, they have been 

unsuccessful in determining which genes have caus-
ative roles as opposed to being consequences of breast 
cancer state.2 Recently our group reported integration 
of GWAS with gene expression data.2,54,55 However, 
this is the first study to link genes containing SNPs 
associated with an increased risk of developing breast 
cancer both with the TNBC intermediate phenotype 
and with the identification of biological pathways 
enriched for SNPs, which are involved in TNBC.

Importantly, this study indicates that combin-
ing GWAS information with gene expression data 
provides a powerful approach to identification of 
potential predictive biomarkers involved in TNBC. 
Predictive markers in TNBC will be particularly 
important because in the absence of effective therapy, 
these tumor subtypes tend to have poor prognosis.8 
Although, the ability to interpret the direct effects of 
the genetic variants on genes and pathways remains 
a challenge, this does not diminish the power of inte-
grative analysis presented here to provide insights 
about the broader context in which genetic vari-
ants operate. It also establishes functional bridges 
between GWAS findings and the TNBC intermediate 
phenotype. Another novel feature of this integrative 
genomics approach is that it allows identification of 
additional genes which could not be identified using 
GWAS alone.

The practical significance of our approach is that 
it can be used to identify candidate genes to prioritize 
for sequencing. By prioritizing and evaluating SNP-
containing genes using gene expression profiles, 
we were able to identify not only the most promis-
ing genes but also candidate pathways. This study 
therefore has the important goal of maximizing the 
yield and biological relevance of further downstream 
screens, experimental validation, functional studies, 
and targeted sequencing (by focusing on the most 
promising genes and biological pathways). Although 
we did not perform experimental validation, we used 
functional and co-expression analysis along with path-
ways prediction and network modeling in order to pri-
oritize the genes on the basis of putative links to other 
genes—notably high, moderate, and low penetrance 
genes that have more established roles as key drivers 
of breast cancer.1 Future research directions for prior-
itization will focus primarily on broadening the scope 
of this study beyond transcription profiling of SNP-
containing genes to include sequence information. 
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A key opportunity and component will be the 
prioritization of genetic variants and associated genes 
for the purposes of next generation sequencing and 
elucidating the impact of genetic variants on gene and 
pathway function. Such work was beyond the scope 
of this report, but it is ongoing and will be reported 
elsewhere. Although we did not perform sequencing, 
some of the genes identified in this study (notably 
TP53, RB1, PTEN, ATM, ATR, MAP3K1, BRCA1, 
BRCA2, and ERBB2) were reported in the most recent 
and first study to perform deep-sequencing on 104 
primary TNBC tumors (with the goal of identifying 
mutations).37

One caveat is important in this study. We observed 
significant heterogeneity in patterns of expression 
profiles and overlap was incomplete. This suggests 
to the research community that to make headway 
against TNBC, we researchers must first come to 
grips with the burgeoning data from this and other 
studies,8 showing that this subgroup of breast cancer 
is highly heterogeneous. The heterogeneity observed 
in this study indicates that TNBC is not a single dis-
ease entity and that genetic susceptibility could poten-
tially be TNBC subtype-specific. Thus, identification 
of predictive risk markers must be conducted with 
that in mind.

It is worth noting that until recently, the only 
candidates for defining TNBC were mutations in 
BRCA1, TP53, and RB1 genes. However, in this study 
SNP-containing genes were functionally related, 
co-expressed, and interacted with these genes in 
biological pathways. This indicates that the molecu-
lar basis of TNC is far more complex and involves 
many genes and multi-gene pathways, with each gene 
likely contributing a small effect. These findings cou-
pled with the observed heterogeneity in patterns of 
expression profiles indicate that there are many other 
genes acting in concert with these genes in order to 
produce the TNBC phenotype. We argue that associ-
ating GWAS information with the TNBC phenotypes 
is the first step to understanding the broader context 
in which genetic variants operate.

The results found in this study provide convinc-
ing evidence that genes containing SNPs associated 
with an increased risk of developing breast cancer 
are associated with TNBC and the identification of 
biological pathways enriched for SNPs, which are 
involved in TNBC. However, several limitations of 

this study must be acknowledged. First, we used pub-
licly available GWAS information and gene expres-
sion data. The results could potentially be influenced 
by factors contained in use of such information and 
are beyond the scope of this report. Second, we 
did not investigate allele-specific gene expression. 
Current knowledge about how SNPs identified by 
GWAS—particularly those mapped to noncoding and 
inter-genic regions—regulate gene expression and 
pathways remains sketchy at best. However, we can 
now at least begin to understand the broader context 
in which they operate. Moreover, because the disease-
causing alleles are likely uncommon, it is unlikely 
that they will be identified by association studies.1 
Integrative genomics provides a powerful approach 
for identifying candidate genes for further down-
stream screening. Although we did not investigate 
allele-specific expression, an earlier report on breast 
cancer confirmed that alleles in genes CASP8, TOX3 
(previously known as TNRC9) and ESR1 affect gene 
expression.52 Additionally, there is anecdotal evidence 
from literature that allele-specific gene expression 
is widespread across the genome.56,57 In fact, allele-
specific variation and gene expression differences in 
humans have been reported.58,59

Importantly, the majority of the GWAS informa-
tion, as well as gene expression data used in this 
study, were derived from Caucasian populations. 
TNBC preferentially affects young African-American 
women.60 While TNBC represents about 15% to 20% 
of all diagnosed breast cancers in the general US 
population, it constitutes about 30% in the African-
Americans.61 In fact, a recent study revealed popu-
lations differences and over-representation of TNBC 
in indigenous African women.62 It is conceivable 
that genetic variants may confer population-specific 
risks depending on exposure. In the absence of gene 
expression data on the African-American population, 
we were not able to address that question, though 
it warrants investigation in future. Accordingly, 
we view this study as exploratory and the results 
found here cannot be generalized to different ethnic 
populations.

In conclusion, this study provides convincing evi-
dence that genes containing SNPs associated with an 
increased risk of developing breast cancer are signifi-
cantly associated with and could stratify the TNBC 
intermediate phenotypes. The study further reveals 
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molecular pathways and networks enriched for SNPs, 
which are involved in TNBC. Based on these results 
we recommend that an integrative genomics approach 
combining GWAS information and gene expression 
data provides a unified and powerful approach to 
identification of potential biomarkers and molecular 
pathways in TNBC. More studies directed at under-
standing how the genetic variants regulate gene 
expression in target populations, notably the African-
American population, are needed.
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