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Germline mutations in the succinate dehydrogenase (SDH) (mitochondrial respiratory chain complex II) subunit B gene, SDHB, cause
susceptibility to head and neck paraganglioma and phaeochromocytoma. Previously, we did not identify somatic SDHB mutations in
sporadic phaeochromocytoma, but SDHB maps to 1p36, a region of frequent loss of heterozygosity (LOH) in neuroblastoma as well.
Hence, to evaluate SDHB as a candidate neuroblastoma tumour suppressor gene (TSG) we performed mutation analysis in 46
primary neuroblastomas by direct sequencing, but did not identify germline or somatic SDHB mutations. As TSGs such as RASSF1A
are frequently inactivated by promoter region hypermethylation, we designed a methylation-sensitive PCR-based assay to detect
SDHB promoter region methylation. In 21% of primary neuroblastomas and 32% of phaeochromocytomas (32%) methylated (and
unmethylated) alleles were detected. Although promoter region methylation was also detected in two neuroblastoma cell lines, this
was not associated with silencing of SDHB expression, and treatment with a demethylating agent (5-azacytidine) did not increase
SDH activity. These findings suggest that although germline SDHB mutations are an important cause of phaeochromocytoma
susceptibility, somatic inactivation of SDHB does not have a major role in sporadic neural crest tumours and SDHB is not the target of
1p36 allele loss in neuroblastoma and phaeochromocytoma.
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Neuroblastoma and phaeochromocytoma are the most common
neural crest-derived tumours in children and adults, respectively.
Neuroblastoma is clinically variable with some tumours demon-
strating spontaneous regression after little or no therapy, while in
other cases distant metastases are present at diagnosis. Familial
neuroblastoma is rare and major susceptibility genes have not yet
been isolated. Phaeochromocytomas usually present with hyper-
tension and 90% are benign. Germline mutations in the RET, VHL,
SDHB and SDHD genes are important causes of phaeochromocy-
toma susceptibility and phaeochromocytoma may also rarely
(o1%) complicate neurofibromatosis type 1 (reviewed by Maher
and Eng 2002, Eng et al, 2003). Human cancer genetics provides
many examples of how the identification of a rare inherited cancer
susceptibility gene has provided insights into the pathogenesis of

sporadic cases. However, exceptions exist: although von Hippel –
Lindau disease is a major cause of familial clear cell renal
carcinoma (cRCC) and somatic inactivation of the VHL tumour
suppressor gene (TSG) occurs in most sporadic cRCC (Gnarra et al,
1994; Foster et al, 1994; Herman et al, 1994; Clifford et al, 1998),
somatic VHL inactivation by mutation or methylation of the
promoter region is infrequent (o5%) in sporadic phaeochromo-
cytomas. In addition, although both phaeochromocytoma and
medullary thyroid cancer are major features of MEN 2A and MEN
2B and somatic RET mutations are common in sporadic medullary
thyroid cancer (Eng et al, 1994, 1995), somatic RET mutations are
found in only 10% of sporadic phaeochromocytomas (Eng et al,
1995; Hofstra et al, 1996). Thus, VHL and RET appear to have only
a minor role in the pathogenesis of sporadic phaeochromocytoma.

The SDHB and SDHD genes encode two (of four) subunits of the
mitochondrial respiratory chain complex II (succinate dehydro-
genase: SDH). Germline mutations in SDHB and SDHD, in addition
to causing phaeochromocytoma, may also predispose to the
development of head and neck paragangliomas (most commonly
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carotid body tumours) (Baysal et al, 2000; Gimm et al 2000, Astuti
et al, 2001a, b, 2003; Gimenez-Roqueplo et al, 2002; Neumann et al,
2002, Benn et al, 2003; Leube et al, 2004). Familial phaeochromo-
cytoma or head and neck paraganglioma (HNPGL) kindreds with
germline SDHD mutations demonstrate parent-of-origin effects on
penetrance (Baysal et al, 2000; Astuti et al, 2001a). In contrast,
SDHB mutations show no evidence of genomic imprinting effect.
SDHB maps to 1p36, a region of frequent allele loss in many
tumour types including neuroblastoma and phaeochromocytoma
(Martinsson et al, 1997; Maris and Matthay, 1999; Benn et al, 2000;
Ejeskar et al, 2001). Previously, we did not detect somatic SDHB
mutations in 24 sporadic phaeochromocytomas (Astuti et al,
2001b) and this has been confirmed by others (Benn et al, 2003).
However, studies of a number of TSGs have established a paradigm
in which specific TSGs can be inactivated frequently by de novo
promoter methylation but rarely by somatic mutations (Dammann
et al, 2000; Agathanggelou et al, 2001; Burbee et al, 2001; Morrissey
et al, 2001). In keeping with this, we have reported frequent
RASSF1A hypermethylation in neuroblastoma and phaeochromo-
cytoma (Astuti et al, 2001c). These findings prompted us to
investigate whether SDHB promoter methylation occurred in
neuroblastoma and phaeochromocytoma.

MATERIALS AND METHODS

Clinical material

DNA were extracted from frozen primary tumour tissue from (a)
35 sporadic phaeochromocytomas without evidence of germline or
somatic SDHB mutations (four tumours were from patients with
von Hippel – Lindau disease and three from patients with MEN2A)
and one phaeochromocytoma with a germline SDHB mutation was
analysed (Astuti et al, 2001b); (b) 46 neuroblastomas and (c) from
corresponding normal tissue samples (fibroblast or blood) were
analysed. Approval from the appropriate Institutional Review
Boards and informed consent from all patients were obtained.
Most of this tumour material has been described earlier
(Martinsson et al, 1997; Ejeskär et al, 1998; Astuti et al, 2001c).

Bisulphite modification and methylation-specific PCR
(MSP)

Bisulphite DNA modification was performed as described pre-
viously (Herman et al, 1996). Briefly, 0.5–1.0 mg of genomic DNA
was denatured in 0.3 M NaOH for 15 min at 371C and then
unmethylated cytosine residues were sulphonated by incubation in
3.12 M sodium bisulphite (pH 5.0) (Sigma) 5 mM hydroquinone
(Sigma) in a thermocycler (Hybaid) for 30 s at 991C/15 min at 501C
for 20 cycles. The sulphonated DNA was recovered using the
Wizard DNA clean-up system (Promega) in accordance with the
manufacturer’s instructions. The conversion reaction was com-
pleted by desulphonating in 0.3 M NaOH for 10 min at room
temperature. The DNA was ethanol precipitated and resuspended

in water. Methylation-specific PCR was performed using specific
primers designed to amplify methylated and unmethylated
putative SDHB promoter sequences (Au et al, 1995; GeneBank
accession No. U17296): unmethylated –specific, 50-TGTGTTGTTA
TTGTGTTATTGTGTAT-30 (forward) and 50-CCACCAAAAATTA
TAACCAACAACCA-30 (reverse) and methylated –specific, 50-TGCG
TCGTTATTGCGTTATTGCGTAC-30 (forward) and 50-CCGCCAAA
AATTATAACCGACAACCG-30 (reverse) (Figure 1). Taq DNA
polymerase (Gibco) was added after a ‘hot start’ at 951C for
5 min. Amplification was carried out for 35 cycles at an annealing
temperature of 531C for the unmethylated specific primers
and 611C for the methylated specific primers on Omn-E (Hybaid)
DNA thermal cycler. The expected sizes of the PCR products
for both unmethylated and methylation-specific amplifications
were 269 bp.

Cloning and sequencing of PCR products

The PCR products containing bisulphite-resistant cytosines were
purified using PCR product purification kit (Qiagen) and ligated
into the pGEM-T easy vector system (Promega), according to the
manufacturer’s instructions. Several clones were then isolated and
sequenced using ABI 377 DNA analyser (Applied Biosystem).

Mutation analysis SDHB mutation analysis was performed by
direct sequencing of coding sequence amplicons as previously
described (Astuti et al, 2001b). The GenBank accession number for
SDHB exons 1 –8 are: U17296, U17880, U17881, U17882, U17883,
U17884, U17885 and U17886. Sequence analysis was performed on
an ABI PRISM 3100 DNA Sequencer (Applied Biosystems). The
sequencing products were compared to the SDHB reference
sequence NM_003000.

Cell culture and Western blot analysis

Two neuroblastoma cell lines (SK-N-AS and SK-N-SH) purchased
from ATCC were grown in Dulbecco’s modified eagle medium,
supplemented with 10% foetal calf serum. Demethylation was
performed by the addition of 2 mM 5-aza-2-deoxycytidine to the
growth medium. This latter was replenished with fresh medium
after 3 days. On the fifth day of treatment, total protein was
extracted in NETS lysis buffer (150 mM NaCl, 50 mM Tris (pH 8)
5 mM EDTA, 1% NP40) containing 3 mM PMSF, 20 mg ml�1

aprotonin and 10 mg ml�1 leupeptin. Following homogenisation
and incubation on ice for 10 min, lysates were centrifuged for
15 min at 14 000 rpm/41C and stored at �201C.

Protein samples (20mg each) were separated on sodium dodecyl
sulphate-10.5% polyacrylamide gel and electroblotted to transblot
polyvinylidene difluoride membrane (Hybond-P; Amersham
Bioscience, Chalfont St Giles, UK). Anti-SDHB (Molecular
Probes, clone: 21A11-AE7) at 2.5 mg ml�1 was applied followed
by rabbit anti-mouse immunoglobulin-peroxidase conjugate.
Visualisation was carried out by the enhanced chemiluminescence
detection system (ECL-plus; Amersham Bioscience). The filter

tgcgtcgttattgcgttattgcgtacgttcgttgtgtttgtttcgtttttttttcgttt
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Figure 1 SDHB promoter sequence. In boxes shaded in light grey are the MSP primer sequences.CpG islands are in bold and numbered from 1 to 23.
The numbers in brackets are nucleotide position in relation to the ATG start codon (highlighted in light grey).
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was stained with India ink for standardisation, and quantification
was performed using a Bio-Rad imaging densitometer with
Quantity One software.

Enzyme assays Succinate cytochrome c reductase (complex II
and III) and quinol cytochrome c reductase (complex III) activities
were spectrophotometrically measured in neuroblastoma cell line
homogenates as previously described (Rustin et al, 1994).

Loss of heterozygosity (LOH) analysis

Assessment of neuroblastoma samples for 1p loss of heterozygosity
(LOH) has been reported previously (Martinsson et al, 1995, 1997;
Ejeskär et al, 2001). The 1p allele status of the phaeochromocytoma
samples was investigated using a panel of 14 polymorphic
microsatellite markers, including 1pter-D1S243, D1S1646,
D1S1635, D1S434, D1S1597, D1S228, D1S552, D1S1676, D1S1622,
D1S2134, D1S1661, D1S1596, D1S551 and D1S435-1cen. Primer
sequences are available from the Genome Database (http://
gdbwww.gdb.org). The PCR products were electrophoresed on an
8% urea – polyacrylamide gel and were visualised by silver
staining. Allelic loss was considered to have occurred in tumour
samples when there was a 50% or greater reduction in signal
intensity of an allele in tumour DNA compared to normal DNA.

Statistical analysis Comparisons were made by Fisher’s exact test
(two tailed). P-values of 0.05 were taken as statistically significant.

RESULTS

SDHB methylation and mutation status in neuroblastoma

Direct sequencing of the SDHB coding exons and flanking
sequences in 46 neuroblastoma tumours was performed. No
pathogenic mutations were detected, although a number of known
sequence variants and deviations from reference sequence were
detected. One silent heterozygous SNP (18A4C) was identified in
a stage 4 neuroblastoma with a fatal outcome of the disease. Some

variations from the reference sequence (c.-16delG, IVS3-(18-19)
insA, IVS3-(24-25)insA, IVS7þ 4delA, and IVS8þ (19-20)insT)
were present in homozygous form in all samples including the
control, and they are thus likely to be errors in the reference
sequence. A trinucleotide repeat, TTCn, with the most 30 nucleotide
located 14 bases upstream of exon 5 was found to be polymorphic.
The number of repeats varied between 6 and 10 with 8 repetitions
being the most common allele. Of 94 neuroblastoma tumour
samples tested, 91 were homozygous (or hemizygous) TTC8

compared to 98 out of 99 control samples.
SDHB promoter methylation status was investigated in 46

primary neuroblastoma tumours. In all, 22% (10 out of 46) of the
neuroblastomas demonstrated SDHB CpG island promoter methy-
lation by MSP analysis compared to 0 of 20 normal control blood
samples. Sequencing of the MSP product (10 individual clones
from two methylated tumours) demonstrated that 22 of the 23 CpG
dinucleotides in the fragment were methylated in each tumour
(Figure 2). In each tumour with SDHB methylation, unmethylated
alleles were also detected so there was no evidence of complete
methylation. There was no significant difference between the
frequency of SDHB promoter methylation in neuroblastoma
tumours with and without 1p36 allele loss and no correlation with
3p allele loss, 17q gain or N-myc amplification status. Further-
more, there was no association between partial SDHB promoter
methylation and tumour stage (21% of stage 1, 2 and 4S tumours,
and in 27% of stage 3 and 4 tumours).

1pLOH analysis and SDHB promoter methylation
in sporadic phaeochromocytomas

Previously we did not find evidence of somatic SDHB mutations in
sporadic phaeochromocytomas (Astuti et al, 2001b). However, to
investigate further the potential role of SDHB in the pathogenesis
of phaeochromocytoma, we determined the frequency, extent and
patterns of 1p allele loss in 36 sporadic phaeochromocytomas
using 14 polymorphic microsatellite markers mapping to 1p22 –
1p36. In all, 75% (27/36) of tumours demonstrated LOH at one or
more 1p locus (Figure 3). A total of 10 tumours demonstrated LOH
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Figure 2 (A) Partial chromatogram of cloned MSP product from a methylated neuroblastoma tumour (St158T). Methylated cytosine appear as a G signal
in the complementary strand. The number indicates the position of CpG sites. (B) Similar chromatogram obtained from an unmethylated neuroblastoma
tumour (St111T).
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at all informative markers and nine demonstrated retention at all
informative markers. SDHB maps between D1S228 and D1S552
(B1.7 MB from D1S552) and LOH was observed in 54 and 64%,
respectively, of informative tumours at these flanking markers. A
phaeochromocytoma sample with a germline SDHB mutation
demonstrated 1p allele loss (and no methylation, T12 – see later)
consistent with a ‘two hits’ model of tumourigenesis.

SDHB promoter methylation was detected in nine out of 28
(32%) of phaeochromocytomas analysed by MSP (all matching
blood DNA samples were unmethylated) (Figure 4). In addition to
methylation-specific PCR products, unmethylated-specific pro-
ducts were also amplified from each of the nine ‘methylated
tumours’ consistent with partial methylation in tumours and/or
the presence of contaminating normal tissue in the tumour
samples. Sequencing of the MSP product (10 individual clones
from each of two methylated phaeochromocytomas) demonstrated
methylation at 21 of the 23 CpGs analysed (data not shown). There
was no difference between the frequency of LOH close to SDHB in
phaeochromocytoma with and without SDHB promoter methyla-
tion (75 vs 57% respectively, P¼ 0.42).

Functional significance of SDHB promoter region
methylation

To investigate the possible functional significance of this partial
promoter methylation, we screened eight neuroblastoma cell lines
and identified two (SK-N-SH and SK-N-AS) with partial SDHB
methylation by MSP. We then treated these two cell lines with the

demethylating agent, 5-azacytidine, for 5 days and evaluated the
effect on SDHB protein expression. Before treatment, SDHB was
readily detectable and following treatment with 5-azacytidine,
there were small increases in SDHB protein expression (SDHB
protein (up to three- and two-fold in SK-N-SH and SK-N-AS cells
respectively) (Figure 5). However, the relatively small changes in
SDHB expression were not associated with evidence of enhanced
SDH enzyme activity. Thus, the ratio of quinol cytochrome c
reductase (complex III) (QCCR) to succinate cytochrome c
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treatment. Western blotting was performed essentially as described in the
Material and Methods. Indian ink staining was included as a loading control.
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reductase (complex II and III) (SCCR) enzyme activities was not
abnormally increased prior to treatment with 5-aza-2-deoxycyti-
dine, and there was no reduction in QCCR/SCCR ratio after
demethylation (SK-N-SH cell line: Pretreatment QCCR/SCCR
ratio¼ 2.13, post-treatment 3.7; SK-N-AS cell line, pretreatment
QCCR/SCCR ratio¼ 2.85, post-treatment 3.44; controls (lympho-
blastoid cell lines: QCCR/SCCR ration¼ 3.170.3).

DISCUSSION

Neuroblastomas and phaeochromocytomas are the most common
neural crest-derived tumours in children and adults, respectively,
and it is of interest to compare the molecular pathology of the two
tumours. The molecular pathology of sporadic neuroblastomas has
been investigated extensively. Frequent alterations include N-myc
amplification (20– 25%) and gain of genetic material at 17q23 –
qter (�50% of tumours). Neuroblastoma suppressor genes have
been mapped by LOH studies to 1p36 (30– 35% of primary
tumours show LOH), 11q23 (44%) and 14q23l – qter (22%)
(reviewed in Maris and Matthay, 1999). In addition to these well-
defined genetic alterations, we and others have demonstrated that
epigenetic TSG inactivation may be a feature of neuroblastoma.
Thus, CASP8 promoter methylation has been reported in B50% of
neuroblastomas by us and other (Teitz et al, 2000; Astuti et al,
2001c; Harada et al, 2002a) and RASSF1A promoter methylation
also occurs frequently (52–55% (Astuti et al, 2001c; Harada et al,
2002b). However, Harada et al (2002b) detected no or little
promoter methylation of p16INK4A (0%), MGMT (0%), RARB (0%),
DAPK (0%), APC (0%), CDH13 (0%), CDH1 (6%) and GSTP1 (3%)
in primary neuroblastoma tumours. These genes have all
demonstrated promoter methylation in other cancer types and so
most TSGs analysed to date do not show promoter methylation in
neuroblastoma.

Although there is compelling evidence for a major neuroblas-
toma suppressor gene on 1p, to date, a major 1p36.2 – p36.3
neuroblastoma suppressor gene has not been identified (Ejeskär
et al, 1999; Jogi et al, 2000; Abel et al, 2002). We did not detect
somatic SDHB gene mutations in neuroblastoma and we could not
demonstrate evidence for epigenetic inactivation. In addition, we
note that the critical neuroblastoma suppressor gene interval
defined by Ejeskar et al (2001) (D1S508 to D1S244) and the 500 kb
1p36.2 – p36.3 homozygous deletion in a neuroblastoma cell line
reported by Ohira et al (2000), both map 44 Mb telomeric to
SDHB. CASP8 and RASSF1A methylation in neuroblastoma is
associated with transcriptional downregulation, but in contrast
SDHB promoter methylation did not impair SDH enzyme
activity. We note that despite tumour-specific WT1 promoter
methylation in primary breast cancer, WT1 protein is still
expressed in these tumours (Loeb et al, 2001). While MSP provides
a sensitive technique for detecting promoter methylation in
tumour samples, the ability to detect low levels of methylation,
in only a subset of tumour cells, can exaggerate the frequency of
promoter methylation.

Even though germline SDHB mutations are an important cause
of phaeochromocytoma susceptibility (Astuti et al, 2001b;
Neumann et al, 2002), we did not identify somatic SDHB mutations
in phaeochromocytoma so far. Similarly, germline mutations in
the VHL TSG are an important cause of phaeochromocytoma

susceptibility, but somatic VHL mutations are rare in phaeochro-
mocytoma (Eng et al, 1995; Woodward et al, 1997). The finding of
1p LOH in a phaeochromocytoma with a germline SDHB mutation
is consistent with a two hit hypothesis of tumorigenesis and the
frequent occurrence of 1p LOH in sporadic phaeochromocytomas
without SDHB mutations suggested that in some cases SDHB
inactivation could occur by a combination of LOH and SDHB
promoter methylation. However Benn et al (2000) have suggested
that there were at least two distinct intervals (three possible
regions) of 1p LOH in phaeochromocytoma. SDHB maps outside
the most telomeric distinct interval (PC1, D1S243 to D1S244) but is
contained within the second interval (D1S228 to 440 cM
centromeric). In our LOH studies, 10 tumours with partial 1p
LOH had no LOH at D1S228 but LOH at more centromeric
markers. SDHB maps B4 Mb centromeric to D1S228 (http://
genome.ucsc.edu/cgi-bin/hgGateway) so LOH studies did not
exclude SDHB being implicated in phaeochromocytoma tumor-
igenesis. As for chromosome 3p, multiple TSGs may map to 1p.
We note that in several tumours there were complicated patterns
of LOH with areas of LOH flanking a marker with retention of
heterozygosity. Such patterns may reflect the involvement of
multiple TSGs in a single tumour. Although we detected evidence
for partial SDHB promoter methylation using the sensitive MSP
technique in a subset of phaeochromocytomas, this degree of
methylation did not impair SDH activity (for comparison,
Gimenez-Roqueplo et al (2002) found a mean QCCR/SCCR ratio
of 4200 in phaeochromocytomas with SDHB mutations and 2.7 in
phaeochromocytomas without SDHB mutations).

The mechanism whereby germline SDHB mutations promote
tumorigenesis is uncertain. SDHB inactivation may lead to
upregulation of a wide range of hypoxia-inducible genes (Gime-
nez-Roqueplo et al, 2002). Activation of hypoxia-responsive
pathways may have an important role in cancer development
and may be caused by local tissue hypoxia or result from genetic
mechanisms (An et al, 1998; Maxwell et al, 1999; Zundel et al,
2000). However, germline VHL mutations that cause phaeochro-
mocytomas and not other features of VHL disease retain the ability
to regulate hypoxia-inducible factor HIF-1 and HIF-2 (Clifford
et al, 2001; Hoffman et al, 2001). Mitochondrial dysfunction may
reduce apoptosis and promote tumorigenesis (Green and Reed,
1998), and is another mechanism by which SDHB inactivation
could promote tumorigenesis. Further work is required to define
the precise mechanism of SDHB tumour suppression and how
these explain the restricted phenotype of SDHB-associated
tumours and the lack of evidence for a role of somatic SDHB
inactivation in the pathogenesis of sporadic phaeochromocytomas.
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Ejeskär K, Sjöberg RM, Abel F, Kogner P, Ambros PF, Martinsson T (2001)
Fine mapping of a tumour suppressor candidate gene region in 1p36.2 –
3, commonly deleted in neuroblastomas and germ cell tumours. Med
Pediatr Oncol 36: 61 – 66
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