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Purpose: To test the feasibility of usingdeep learning for optical coherence tomography
angiography (OCTA) detection of diabetic retinopathy.

Methods: A deep-learning convolutional neural network (CNN) architecture, VGG16,
was employed for this study. A transfer learning process was implemented to retrain the
CNN for robust OCTA classification. One dataset, consisting of images of 32 healthy eyes,
75 eyeswith diabetic retinopathy (DR), and 24 eyeswith diabetes but noDR (NoDR), was
used for training and cross-validation. A second dataset consisting of 20 NoDR and 26
DR eyeswas used for external validation. To demonstrate the feasibility of using artificial
intelligence (AI) screening of DR in clinical environments, the CNNwas incorporated into
a graphical user interface (GUI) platform.

Results: With the last nine layers retrained, the CNN architecture achieved the best
performance for automated OCTA classification. The cross-validation accuracy of the
retrained classifier for differentiating among healthy, NoDR, and DR eyes was 87.27%,
with 83.76% sensitivity and 90.82% specificity. The AUC metrics for binary classification
of healthy, NoDR, and DR eyes were 0.97, 0.98, and 0.97, respectively. The GUI platform
enabled easy validation of the method for AI screening of DR in a clinical environment.

Conclusions: With a transfer learning process for retraining, a CNN can be used for
robust OCTA classification of healthy, NoDR, and DR eyes. The AI-based OCTA classifi-
cation platformmay provide a practical solution to reducing the burden of experienced
ophthalmologists with regard to mass screening of DR patients.

Translational Relevance: Deep-learning-based OCTA classification can alleviate the
need for manual graders and improve DR screening efficiency.

Introduction

As the leading cause of preventable blindness
in working-age adults, diabetic retinopathy (DR)
affects 40% to 45% of diabetic patients.1 In the
United States alone, the number of DR patients is
estimated to increase from 7.7 million in 2010 to
14.6 million by 2050.1 Early detection, prompt inter-
vention, and reliable assessment of treatment outcomes
are essential to preventing irreversible visual loss
from DR. With early detection and adequate treat-

ment, more than 95% of DR-related vision losses
can be prevented.2 Retinal vascular abnormalities,
such as microaneurysms, hard exudates, retinal edema,
venous beading, intraretinal microvascular anomalies,
and retinal hemorrhages, are common DR findings.3
Therefore, imaging examination of retinal vascula-
ture is important for DR diagnosis and treatment
evaluation. Traditional fundus photography provides
limited sensitivity to reveal subtle abnormality corre-
lated with early DR.4–7 Fluorescein angiography (FA)
can be used to improve imaging sensitivity of retinal
vascular distortions in DR8,9; however, FA requires
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intravenous dye injections, which may produce side
effects and require additional monitoring and careful
management. Optical coherence tomography angiogra-
phy (OCTA) is a noninvasive method for better visual-
ization of retinal vasculatures.10 OCTA allows visual-
ization of multiple retinal layers with high resolution;
thus, it is more sensitive than FA in detecting subtle
vascular distortions correlated with early eye condi-
tions.11–13

The recent development of quantitative OCTA
offers a unique opportunity to utilize computer-aided
disease detection and artificial intelligence (AI) classi-
fication of eye conditions. Quantitative OCTA analy-
sis has been explored for objective assessment of,
for example, DR,14–17 age-related macular degen-
eration (AMD),18,19 vein occlusion,20–23 and sickle
cell retinopathy (SCR).24 Supervised machine learn-
ing has also recently been validated for multiple-
task classification to differentiate among control, DR,
and SCR eyes.25 In principle, deep learning may
provide a simple solution to fostering clinical deploy-
ment of AI classification of OCTA images. Deep
learning generally refers to the convolutional neural
network (CNN) algorithm, which was inspired by
the human brain and visual information process-
ing. CNNs contain millions of artificial neurons
(also referred to as parameters) to process image
features in a feed-forward process by extracting and
processing simple features in early layers and complex
features in later layers.26 To train a CNN for a
specific classification task requires millions of images
to optimize the network parameters.27 However, for
the relatively new imaging modality OCTA, the
limitation of currently available images poses an
obstacle for practical implementation of deep learn-
ing.

In order to overcome the limitation of data size,
a transfer learning approach has been demonstrated
for implementing deep learning. Transfer learning
is a training method to adopt some weights of a
pretrained CNN and appropriately retrain certain
layers of that CNN to optimize the weights for
a specific task (i.e., AI classification of retinal
images).28 In fundus photography, transfer learning
has been explored to conduct artery–vein segmenta-
tion,29 glaucoma detection,30,31 and diabetic macular
thinning assessment.32 Recently, transfer learning has
also been explored in OCT for detecting choroidal
neovascularization, diabetic macular edema,28 and
AMD.33

In principle, transfer learning can involve a single
layer or multiple layers, because each layer has weights
that can be retrained. For example, the specific number
of layers required for retraining in a 16-layer CNN

(Fig. 1) may vary, depending on the available dataset
and specific task interested. Moreover, compared to
traditional fundus photography and OCT, deep learn-
ing in OCTA classification is still unexplored due to the
limited size of publicly available datasets. In this study,
we demonstrate the first use of OCTA for automated
classification using deep learning. By leveraging trans-
fer learning, we aim to train a small dataset to achieve
reliable DR classification. Furthermore, an easy-to-use
graphical user interface (GUI) platform was also devel-
oped to foster deep-leaning-basedDR classification for
adoption in a clinical setting.

Methods

This study adhered to the tenets of the Declara-
tion of Helsinki and was approved by the institutional
review board of the University of Illinois at Chicago
(UIC).

Data Acquisition

The 6 × 6-mm2 field of view OCTA data were
acquired using an AngioVue spectral-domain OCTA
system (Optovue, Fremont, CA, USA) with a 70-kHz
A-scan rate, a lateral resolution of ∼15 um, and an
axial resolution of ∼5 um. The inclusion criterion
was an OCTA acquisition quality of 6 or greater. All
OCTA images were qualitatively examined for severe
motion or shadow artifacts. Images with significant
artifacts were excluded for this study. The OCTA data
were exported using ReVue (Optovue) software, and
custom-developed Python procedures were used for
image processing.

The study involved two separate datasets collected
with the same recording parameters. The first dataset,
consisting of 131 images, was collected at UIC. For
external validation, a second dataset, consisting of 46
images, was provided by National Taiwan University.

Classification Model Implementation

The CNN architecture chosen for this study was
VGG16.34 The network specifications and design are
illustrated in Figure 1. The pretrained weights were
obtained from the ImageNet dataset.35 The CNN
classifier was trained and evaluated using Python 3.7.1
software with the Keras 2.24 application and Tensor-
Flow 1.13.1 open-source platform backend. Training
was performed on aWindows 10 computer (Microsoft,
Redmond, WA, USA) using the NVIDIA GeForce
RTX 2080 Ti graphics processing unit (Santa Clara,
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Figure 1. The deep learning CNN used for OCTA DR detection is VGG16, a network that contains 16 trainable layers: convolution (Conv)
and fully connected (FC) layers. The corresponding output layer dimensions of each layer is shown below each block. All convolution and
fully connected layers are followed by a ReLU activation function. The softmax layer is a fully connected layer that is followed by a softmax
activation function. Maxpool and Flatten layers are operational layers with no tunable parameters.

CA, USA). To prevent overfitting, each classifier
was trained with early stopping, and experimentally
the model (i.e., retrained classifier) converges within
∼70 epochs. During each iteration, data augmentation
in the form of random rotation, horizontal and vertical
flips, and zoom was performed. In this study, manual
classifications were used as reference for determining
the receiver operating characteristic (ROC) curves and
area under the curve (AUC). AUCwas used as an index
of performance of the model along with sensitivity
(SE), specificity (SP), diagnostic accuracy (ACC). To
evaluate the performance of each model, fivefold cross-
validation was implemented.

Transfer Learning andModel Selection

In practice, it takes hundreds of thousands of
data samples (i.e., images) to optimize the millions
of parameters of a CNN. Training CNNs on smaller
datasets will often lead to overfitting, such that the
CNN has memorized the dataset, resulting in high
performance when predicting on the same dataset and
but failure to perform well on new data.36 Transfer
learning, which leverages the weights in a pretrained
network, has been established to overcome the overfit-
ting problem. Transfer learning is well suited for CNNs
because CNNs extract features in a bottom-up hierar-
chical structure. This bottom-up process is analogous
to the human visual pathway system.37 Due to the
great dissimilarity between the ImageNet dataset used
to pretrain the CNN and our own OCTA dataset, we
conducted a transfer learning process to determine the
appropriate number of retrained layers required in a
CNN to achieve robust performance of OCTA classifi-
cation. For this study, misclassification error was used
for quantitative assessment of the CNN performance,
and the one standard deviation rule was used for model
selection. This rule states that a model selected must

be within one positive standard deviation from the
misclassification error of the best performing model.38
The model requiring the least number of retrained
layers for performance comparable to that of the best
trained model was selected.

Results

Patient Demographics

Subjects and diabetes mellitus (DM) patients with
and without DR were recruited from the UIC retina
clinic. The patients presented in this study are repre-
sentative of a university population of DM patients
who require clinical diagnosis and management of
DR. Two board-certified retina specialists classified the
patients based on the severity of DR according to the
Early Treatment Diabetic Retinopathy Study staging
system. All patients underwent complete anterior and
dilated posterior segment examination (JIL, RVPC).
All control OCTA images were obtained from healthy
volunteers that provided informed consent for OCT
and OCTA imaging. All subjects underwent OCT and
OCTA imaging of both eyes (OD and OS). The images
used in this study did not include images of eyes with
other ocular diseases or any other pathological features
in their retina such as epiretinal membranes and
macular edema. Additional exclusion criteria included
eyes with a prior history of intravitreal injections, vitre-
oretinal surgery, or significant (greater than a typical
blot hemorrhage) macular hemorrhages. Subject and
patient characteristics, including sex, age, duration
of diabetes, diabetes type, hemoglobin A1c (HbA1c)
status, and hypertension prevalence, are summarized
in Table 1.

This study included 24 eyes from 17 patients with
diabetes but no DR (NoDR), 75 eyes from 60 patients
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Table 1. Demographics of OCTA Dataset

Demographic Control No DR Mild DR Moderate DR Severe DR

Subjects (n) 20 17 20 20 20
Sex, male/female (n) 12/8 6/11 11 12 11
Age (y), mean ± SD 42 ± 9.8 66.4 ± 10.14 50.10 ± 12.61 50.80 ± 8.39 57.84 ± 10.37
Age range (y) 25–71 49–86 24–74 32–68 41–73
Duration of diabetes (y), mean ± SD — — 19.64 ± 13.27 16.13 ± 10.58 23.40 ± 11.95
Diabetes type II (%) — 100 100 100 100
Insulin dependent, Y/N (n) — 14/3 7/13 12/8 15/5
Hba1c (%), mean ± SD — 5.9 ± 0.7 6.5 ± 0.6 7.3 ± 0.9 7.8 ± 1.3
Hypertension (%) 10 17 45 80 80

Table 2. Quantification of Individual OCTA Features

Mean ± SD

Feature Control No DR Mild DR Moderate DR Severe DR

SCP
BVT 1.11 ± 0.07 1.09 ± 0.01 1.14 ± 0.05 1.17 ± 0.06 1.23 ± 0.04
BVC (μm) 40.16 ± 0.51 41.28 ± 0.63 41.17 ± 1.35 40.95 ± 0.58 41.29 ± 1.09
VPI 29. 77 ± 1.52 31.04 ± 1.58 28.30 ± 2.09 28.91 ± 2.02 27.33 ± 3.30

BVD (%)
SCP

C1, 2 mm 56.93 ± 4.07 42.33 ± 7.48 50.44 ± 8.74 52.34 ± 5.71 44.40 ± 7.67
C2, 4 mm 56.49 ± 2.69 55.27 ± 4.00 54.09 ± 4.90 54.93 ± 4.06 52.47 ± 4.84
C3, 6 mm 54.45 ± 2.45 55.36 ± 3.14 52.77 ± 3.55 53.71 ± 3.94 52.54 ± 5.04

DCP
C1, 2 mm 75.52 ± 3.70 63.03 ± 6.95 64.97 ± 8.60 67.22 ± 5.52 57.36 ± 8.46
C2, 4 mm 78.37 ± 3.87 71.52 ± 5.59 70.25 ± 6.45 70.17 ± 5.12 62.50 ± 7.62
C3, 6 mm 76.70 ± 4.93 71.45 ± 6.02 68.08 ± 6.62 67.11 ± 5.23 60.77 ± 7.72

FAZ-A
SCP (mm2) 0.30 ± 0.06 0.37 ± 0.16 0.33 ± 0.05 0.38 ± 0.07 0.46 ± 0.06
DCP (mm2) 0.39 ± 0.08 0.40 ± 0.14 0.46 ± 0.07 0.53 ± 0.12 0.58 ± 0.09

FAZ-CI
SCP 1.14 ± 0.11 1.14 ± 0.04 1.29 ± 0.14 1.38 ± 0.14 1.46 ± 0.18
DCP 1.18 ± 0.12 1.09 ± 0.02 1.31 ± 0.21 1.42 ± 0.19 1.49 ± 0.17

SCP, superficial capillary plexus; BVT, blood vessel tortuosity; BVC, blood vessel caliber; VPI, vessel perimeter index; BVD,
blood vessel density; C1, C2, and C3, three circular zones; DCP, deep capillary plexus; FAZ-A, foveal avascular zone area; FAZ-CI,
foveal avascular zone contour irregularity.

with DR, and 32 healthy eyes from 20 control subjects.
For all subjects and patients, OCTA features were
quantified and are summarized in Table 2. In this study,
this dataset is referred to as the cross-validation dataset.

Model Selection

A model selection process was used to identify
the required number of retrained layers for the best
performance of OCTA classification. The layers in
the VGG16 CNN were sequentially retrained starting

from the last to the beginning layers. A quantitative
comparison of misclassification errors for individual
models (i.e., variable number of retrained layers) is
provided in Figure 2. In this study, we evaluated each
model using the cross-validation dataset. We applied
the one standard deviation rule, which recommends
choosing a less complex model that is within one
standard deviation of the misclassification error of the
best performing model. The model retrained with nine
layers conformed with the one standard deviation rule
and was further examined in a cross-validation study.



Transfer Learning for OCTA Detection of DR TVST | Special Issue | Vol. 9 | No. 2 | Article 35 | 5

Figure 2. A transfer learning performance studywas conducted to determine howmany layers are necessary for effective transfer learning
inOCTA images. Ourmodel consisted of 16 retrainable layers. The additional graph in the right-hand corner shows that retraining nine layers
satisfies the criteria of the one positive standard deviation rule.

Table 3. Cross-Validation Multi-Label Confusion
Matrix (n = 131)

Predicted Label

True Label Control No DR DR

Control 25 3 4
NoDR 1 23 0
DR 9 8 58

Cross-Validation Study

Using a fivefold cross-validation method, we evalu-
ated the performance of the selected nine layers
retrained on our cross-validation dataset. The cross-
validation performance summarized in Tables 3 and
4 reveals that this model achieved an average of 87.27%
ACC, 83.76% SE, and 90.82% SP among the three
categories of control, NoDR, andDR. For the individ-
ual class predictions, NoDR had the highest accuracy,
followed by control and then DR. This performance is
reflected in the ROC graphs and AUC in Figure 3. For
our cross-validation study, the overall AUC was 0.96,
with individual AUC values for control, NoDR, and
DR of 0.97, 0.98, and 0.97, respectively.

Figure 3. ROC curves for the cross-validation performance of the
model for individual class performance (control, NoDR, and DR) and
the average performance of the model.

External Validation

In addition to cross-validation, we validated our
CNN classifier using an external dataset from a cohort
of NoDR and DR patients from National Taiwan
University Hospital. The dataset was comprised of
13 NoDR patients (eight males), with an average age
of 62 ± 8.35 years, and 21 DR patients (12 males),
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Table 4. Cross-Validation Evaluation Metrics (n = 131)

Mean ± SD

Metric Control No DR DR Average

ACC (%) 87.022 ± 0.059 90.840 ± 0.020 83.970 ± 0.050 87.277 ± 0.034
SE (%) 78.123 ± 0.152 95.835 ± 0.089 77.334 ± 0.076 83.764 ± 0.105
SP (%) 89.899 ± 0.050 89.720 ± 0.022 92.858 ± 0.041 90.825 ± 0.018

Figure 4. GUI platform for DR classification using OCTA.

Table 5. External Validation Multi-Label Confusion
Matrix (n = 46)

Predicted Label

True Label Control No DR DR

Control
NoDR 1 13 6
DR 1 7 18

with an average age of 61 ± 12.80 years. Other clini-
cal information regarding the dataset was not avail-
able to us. The validation results revealed an average of
70.83 ± 0.021% ACC, 67.23 ± 0.026% SE, and
73.96 ± 0.026% SP. The confusion matrix for the
validation dataset is summarized in Table 5.

Evaluation of Clinical Deployment

Themodel with the best performancewas integrated
with a custom-designed GUI platform to evaluate the
potential of AI classification of DR using OCTA in
a clinical environment. The GUI was developed using
Java 11.01, an open source programming language.

As shown in Figure 4, the GUI adopted an inter-
face that is commonly used in retina clinics to enable
easy adoption by ophthalmic personnel. By clicking the
“Load image”button, oneOCTA image can be selected
(Fig. 4A) and displayed (Fig. 4B) for visual exami-
nation. By clicking the “Predict” button, automated
AI classification can be performed. The output of
the DR classification is displayed in the “Results”
box. Additional information about classification confi-
dence is also available for clinical reference. The GUI
platform has been tested by three ophthalmologists
(JIL, RPVC, and DT) to verify the feasibility of apply-
ing the deep-learning-based AI classification of DR
using OCTA in a clinical environment. For each OCTA
image, the GUI-based classification can be completed
within 1 minute.

Discussion

In this study, a deep learning model was trained
using transfer learning for automated classification of
OCTA images for three categories: healthy control,
NoDR, and DR. In our study, we utilized a selection
processes to determine the optimal number of layers for
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fine-tuning. This selection process revealed that fine-
tuning nine layers is optimal. To evaluate this model,
we performed a fivefold cross-validation. The results
of cross-validation were promising; however, the cross-
validation dataset may contain some inherent biases,
such as the inclusion of both eyes from one subject.
To verify our classifier, we tested an external dataset to
confirm the performance of automated DR classifica-
tion.

Current research for deep learning in ophthalmol-
ogy has focused on using fundus photography and
OCT. Transfer learning has been demonstrated as a
means to train CNNswith fundus images to predict the
future DR progression.39 Recently, Li et al.40 employed
transfer learning to train a CNN for detecting refer-
able DR from non-referable DR in fundus images.
Similarly, Lu et al.41 trained a CNN for classification
of OCT scans to detect retinal abnormalities, such as
serous macular detachment, cystoid macular edema,
macular hole, and epiretinal membrane. All of these
studies reported good classification (>90% accuracy)
when utilizing transfer learning to train a relatively
large dataset (>500 images per cohort). One study by
Eltanboly et al.42 proposed a deep learning computer-
aided design system for the detection of DR in OCT
scans. That study utilized a dataset of 52 clinical OCT
scans and achieved 92% accuracy in fourfold cross-
validation and 100% accuracy on one hold-out valida-
tion. Although these results are promising, that study
did not use an external database to validate. In compar-
ison to our study, the cross-validation performance
revealed 87.65% accuracy and an external validation
accuracy of 70.83%. It should be noted that the
compromised classification performance could indicate
that cross-validation alone is not substantial enough for
validating deep learning models, and external valida-
tion is highly important for future studies.

Recent work related to the classification of DR in
OCTA has primarily used supervised machine learn-
ing methods.14,25 However, the disadvantage of super-
vised machine learning approaches is that the user
must extract quantitative features, such as blood vessel
density, blood vessel tortuosity, or foveal avascular
zone area. On the other hand, deep learning requires
minimal user input. A user, such as a clinician or
technician, inputs an image, and the CNN can extract
features from the input image to output a prediction.
With the advantage of being easy to use, deep learning
can work well for mass-screening programs. To the best
of our knowledge, this study is the first exploration of
using deep learning for OCTA classification of DR.

There are some limitations for this current study.
The dataset used to train the CNN models was
acquired from one device and may contain biases. This

is evident in the external validation, which revealed
a lower accuracy compared to the cross-validation
accuracy. This decreased accuracy may be due to the
differences between ethnicities. For example, the cross-
validation dataset largely consisted of cohorts from an
African and Hispanic American population, whereas
the external dataset consisted primarily of cohorts
from an East Asian population. The next step to
address this issue would be to create a dataset consist-
ing of multiple devices from different populations, but
to accomplish this multiple-institution collaboration is
required. One limitation of this study (and deep learn-
ing in general) is the lack of interpretability. The CNN
can make a prediction, but the user, such as the physi-
cian, will not know how the CNN inferred its predic-
tion. Based on our work and other published studies,
as well as future studies involving AI technologies,
researchers could use tools such as occlusion maps43
to help clinicians understand how the CNN made its
prediction, in addition to utilizing external validation
in order to build trust and confidence.

Based on the results of this study, we incorporated
our trained CNN into a custom GUI to evaluate the
potential of using automated AI classification in a
clinical setting. The design of the GUI was inspired
by commonly used software in the UIC retinal clinic
and was developed using open source software. By
demonstrating the potential of quick deployment of
AI technologies and with the promising results in our
study and other published studies, we hope to build
confidence and foster the use of AI technologies in a
clinical setting. Deep learning can help clinicians gain
valuable time when screening patients and can reduce
the need for manual graders. In the future, AI can
potentially be used to assist clinicians in understand-
ing pathological mechanisms and the development of
new treatment options.
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