
pharmaceutics

Review

Nanocarriers Used in Drug Delivery to Enhance Immune
System in Cancer Therapy

Giovanna C. N. B. Lôbo, Karen L. R. Paiva, Ana Luísa G. Silva, Marina M. Simões , Marina A. Radicchi
and Sônia N. Báo *

����������
�������

Citation: Lôbo, G.C.N.B.; Paiva,

K.L.R.; Silva, A.L.G.; Simões, M.M.;

Radicchi, M.A.; Báo, S.N. Nanocarriers

Used in Drug Delivery to Enhance

Immune System in Cancer Therapy.

Pharmaceutics 2021, 13, 1167. https://

doi.org/10.3390/pharmaceutics

13081167

Academic Editors: Marieta Costache

and Bianca Gǎlǎţeanu
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Abstract: Cancer, a group of diseases responsible for the second largest cause of global death, is
considered one of the main public health problems today. Despite the advances, there are still
difficulties in the development of more efficient cancer therapies and fewer adverse effects for the
patients. In this context, nanobiotechnology, a materials science on a nanometric scale specified for
biology, has been developing and acquiring prominence for the synthesis of nanocarriers that provide
a wide surface area in relation to volume, better drug delivery, and a maximization of therapeutic
efficiency. Among these carriers, the ones that stand out are those focused on the activation of the
immune system. The literature demonstrates the importance of this system for anticancer therapy,
given that the best treatment for this disease also activates the immune system to recognize, track,
and destroy all remaining tumor cells.
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1. Introduction

Cancer is a major cause of global morbidity and mortality. It is a disease caused by a
variety of factors, and its formation depends on several genetic and epigenetic aspects [1].
Malignant tumors have a specificity that affects other healthy cells in the body [2]. In
order to develop more effective methods of diagnosis and treatment without harming
the patient, various resources have been widely explored, and current treatment methods
used for cancer control include chemotherapy, surgery, radiation, and biological therapies
(immunotherapy and hormone therapy) [3–5].

However, these therapies have certain disadvantages and, being invasive, have side
effects before and after treatment, making the patient uncomfortable. For example, the use
of chemotherapeutic drugs can affect the normal and healthy growth of good cells and
bring opportunities for tumor recurrence. In addition, resistance to various drugs may
develop, and poor biodistribution results in a low concentration of these chemotherapeutic
agents at the tumor site, which may reduce the therapeutic effect of anticancer drugs [6–9].
In this context, it is necessary to research and develop alternative beneficial and effective
therapies for the drug delivery system.

Nanotechnology can increase the pharmacological properties of compounds com-
monly used in the treatment and diagnosis of cancer, which is why it has emerged as
an innovative possibility for therapeutic intervention in cancer and in the distribution of
drugs [10,11]. This can usually be achieved by different routes of administration, such as
oral, nasal, transdermal, intravenous, etc. These nanocarriers can improve the effectiveness
of the drug and reduce side effects. They can be encapsulated or used in combination
with other drugs [12,13]. In addition, nano-scale transporters can protect drugs or any
macromolecules (proteins, peptides, etc.) from degradation, reduce renal clearance, and
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provide sustained or controlled release kinetics, thereby increasing drug efficacy at steady-
state therapeutic levels [14–17]. Their half-life in the blood improves the therapeutic index,
solubility, and stability of the capsules, compared to conventional treatment methods (such
as tablets, capsules, and injections) [18,19].

Nanocarriers are added as colloidal nanosystems loaded with therapeutic agents
(anticancer agents or any macromolecules, such as proteins or genes), which allow drugs
to selectively accumulate at the site of cancerous tumors [20–22]. As a result of their
unique nanometer range, 1–1000 nm (drug administration is preferable in the 5–200 nm
range), they are used for cancer treatment. The main and most promising nanocarriers
in the literature are iron oxide, gold, polymers, liposomes, micelles, fullerenes (carbon
nanotubes, graphene), dendrimers, quantum dots, and nanodiamonds [23–25]. Below,
the following topics will be explored: lipidic, inorganic, and polymeric nanocarriers,
targeting of nanomaterials by tumors, resistance of nanocarriers, and activation of the
immune system.

2. Classification of Nanocarriers

Nanocarriers can be classified into three categories based upon the materials that they
are made from (A) lipid-based nanoparticles, (B) inorganic nanoparticles, and (C) polymeric
nanoparticles (Figure 1).

Figure 1. Types of nanocarriers used for drug delivery in cancer therapy. (A) Lipid-based nanocarriers; (B) Inorganic
nanoparticles; (C) Polymeric nanoparticles.

2.1. Lipid-Based Nanocarriers

Liposomes were the first nanotransporters advanced by Bangham [26] in 1965, and
they include the first nanotransporter (DaunoXome ™) that was clinically approved by
the FDA (Food and Drug Administration) for the transport of chemotherapeutic drugs
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in 1996 [27]. Lipid-based nanocarriers have emerged as a very promising, emerging, and
rapidly developing tool for the delivery of various drugs with low solubility, bioavailability,
and stability in recent decades [28,29]. Lipid nanocarriers allow the therapeutic load to be
directed to the deep layers of the skin or even reach the blood circulation, making them
a promising cutting-edge technology. Lipid nanocarriers refer to a large panel of drug
delivery systems [30,31]. Lipid vesicles are the most conventional, and they are known to be
capable of transporting lipophilic and hydrophilic active agents [32]. Others are designed
with the objective of achieving a higher encapsulation rate and greater stability, such as
solid lipid nanoparticles and nanostructured lipid nanocarriers [33]. The formulation of a
liposomal drug improves the biodistribution and pharmacokinetics of a drug. This means
that a higher concentration of the drug can be achieved within the tumors, while reducing
the concentration of the drug in normal tissue [34,35]. Lipid-based nanocarriers include
liposomes, nanoemulsions, solid lipid nanoparticles, and phospholipid micelles.

2.2. Polymeric Nanocarriers

Polymeric nanocarriers are synthesized from different types of natural and synthetic
polymers that generally have good biocompatibility and biodegradability [36]. The ad-
vantages of these polymer nanomaterials compared to other nanocarriers include stability
in various microenvironments, slow release of drugs due to polymer degradation, and
their diversity in the types of polymers and types of drugs to be encapsulated [37,38]. The
hydrophobicity and hydrophilicity within the polymer structure can be controlled to suit a
variety of drug molecules [39]. Commonly used natural polymers include gelatin, dextran,
albumin, chitosan, and alginate, and synthetic biodegradable polymers include polylactic
acid (PLA), polyglycolic acid (PGA), copolymer of lactic acid and glycolic acid (PLGA),
poly (ε-caprolactone) (PCL), polyalkylcyanoacrylate (PACA), poly (ethylene glycol) (PEG),
poly (D,L-lactide-co-glycolide) (PLG), polyethyleneimine (PEI), poly (L-lysine), poly (Tian
Particular acid), and others [40–42]. Gao (2021) [43] evidences the activity of reactive
oxygen species (ROS)-responsive polymers for drug delivery systems, which may include
polymers containing thioether, poly (thioketal), polymers containing selenium, tellurium,
arylboronic acid/ester, aryl oxalate, and ferrocene; these are being widely investigated
for anticancer therapy. The properties of polymerized NPs can be beneficial for the treat-
ment of several potentially fatal diseases, including cancer, neurodegenerative diseases,
cardiovascular diseases, and even viral infections and osteoporosis [44,45].

2.3. Inorganic Nanoparticles

Among the nanocarriers that are being developed for the diagnosis and treatment
of cancer are inorganic nanoparticles, which may consist of iron oxide, silica, gold, and
graphene, among other compounds [46]. There is greater difficulty in translating these
types of nanomaterials (NMs) to clinical application, due to their lower biocompatibility
and the lack of understanding of possible complications caused by their deposition in differ-
ent organs, such as greater stability, less hydrophobicity, and non-microbial storage [47,48].
Despite these difficulties, the physical properties attributed to the constituent materials
of inorganic nanoparticles make it possible to apply them in a variety of processes, for
example, magnetic nanoparticles can be used for magnetic resonance imaging (MRI) or
with magnetic targeting, while gold and silver NM can be used for imaging or heating
during targeted treatment [49,50].

Similar to organic nanoparticles, inorganic NMs are also being studied as targeted drug
delivery systems [45,46]. These important nanoparticles have gained attention in preclinical
studies due to their potential for diagnosis and therapy in anticancer systems, with a
variety of applications including tumor imaging, drug administration, and improvement in
radiotherapy. Recent advances in nanotechnology demonstrate the importance of inorganic
nanoparticles, given that they are internalized by cells through the endocytosis process [51]
and can be composed of different materials, some of which are gold, oxide iron, and
graphene [45–50].
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Iron oxide nanoparticles (IONPs), composed of magnetite (Fe3O4) or maghemite (γ-
Fe3O2), were initially developed and used as contrast agents for the detection of primary
tumors and metastasis by magnetic resonance [51,52]. Due to the reduced nanometric
size, usually varying between 10 and 20 nm, and their responses to magnetic fields, they
have been developed to be associated with different drugs and to work as a drug delivery
system [45–53]. Iron oxide nanosystems, once functionalized, have a wide field of biomed-
ical application, being used preferentially for the treatment and diagnosis of cancer [54].
Studies demonstrate advantages in the use of IONPs for the greater uptake of intratumoral
drugs, as shown in a study by Alphandéry et al. (2019) [53], which observed that the associ-
ation of doxorubicin (DOX) with IONPs increased the accumulation of intratumoral drugs,
when compared to free drug treatment against ovarian cancer models [55]. In another
study, IONPs conjugated to vinblastine led to decreased viability of MCF-7 breast cancer
cells when compared to treatment alone [56]. These processes can be improved when
these NMs receive a targeting molecule, as in Nagesh et al. (2016) [57], which combined
superparamagnetic iron oxide nanoparticles (SPIONs) with docetaxel, a chemotherapy,
and an antibody against a specific membrane antigen present in prostate cancer (PSMA),
and increased uptake and antitumor effectiveness compared to free drugs [57]. Associated
with the drug delivery system, IONPs can also be used together.

Therapies can also be based on increasing local temperature, as in a study by Estelrich
et al. (2016) [58], which used photothermal therapy with IONPs, resulting in the destruction
of tumor cells (MCF-7 and MDA-MB-231) [58], or as contrast agents for imaging carcinomas,
such as in Patel et al. (2016) [59]. The latter study used SPIONs associated with the
anti-mesothelin antibody, which is a protein expressed in the membrane of different
adenocarcinomas such as pancreas, lung, liver, sarcomas, to identify pancreatic carcinoma
in xenographic models by MRI, which obtained very significant results when compared
with the commonly used contrast agent (T2) [59].

Another group of inorganic nanoparticles that has been developed for the treatment of
cancer are those composed of gold. Gold nanoparticles are being studied as an important
mechanism for drug delivery, demonstrating better tumor targeting and, thus, reducing
the adverse effects caused to patients by decreasing the doses of drugs used to treat
various types of cancer [16]. In addition to the chemical properties of its surface, physical
properties can also be exploited to act as contrast agents in imaging and as enhancers of
anticancer therapy by increasing local temperature, leading to photothermal destruction
of tumors [45,60]. A system proposed by Lee et al. (2017) [61], composed of doxorubicin
linked to oligonucleotides and gold nanoparticles for therapy in cancer, has demonstrated
promise in reducing colorectal cancer tumors [61]. In another study, the importance of
the photothermal properties of gold nanoclusters covered by silica (AuNC ∼= SiO2) was
demonstrated, showing the potential of these nanoparticles in the treatment of prostate
cancer [62].

Graphene nanofibers, composed of a single layer of carbon atoms hybridized in sp2,
have been used in biomedicine as imaging agents, anticancer therapy, and drug delivery
systems [50]. The easy functionalization processes, excellent electrical conductivity, strong
mechanical resistance, and high surface area make graphene an important agent to explore
to compose the theragnostic NM used against cancer [50,63]. A study by Santos et al.
(2018) [63] demonstrated the potential of the association of graphene oxide nanofibers
with the methylene blue photosensitizing agent in the removal of xenographic breast
tumors 4T1 through the combination of photodynamic and photothermal therapies [63].
As well as the potential for direct treatment against tumor cells, Deng et al. (2020) [64]
evidenced the activation of antitumor macrophages in vitro and in vivo by means of
graphene oxide nanofibers combined with polyethylene glycol (PEG), which is associated
with near-infrared light irradiation (NIR) [64].
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3. Resistance of Nanocarriers

Multi-drug resistance (MDR) in cancer can lead to the failure of chemotherapy and ra-
diotherapy and has become one of the main obstacles to the success of cancer treatment [65].
Resistance to multiple drugs is the ability of tumor cells to exhibit simultaneous resistance
to various structural and functional chemotherapeutic agents or radiation [66]. MDR is a
complex process that completely modifies the behavior of tumor cells, generating changes
in the targets of the drug, reduction of cell uptake, and the increase in drug efflux [67].
Some anti-MDR delivery platforms are based on drug delivery systems in multifunctional
and responsive stimuli that can deliver drugs to cells and deliver at specific locations or
times [68–70]. MDR can be treated with a combination of encapsulated cytotoxicity drugs
and a chemosensitizer [71]. To overcome MDR, an ideal drug delivery system must release
the drug quickly and completely into the cytoplasm, causing the intracellular concentration
of the drug to be high enough to exceed the outflow of the drug and limit the concentration,
thus inhibiting the cancer cells resistant to the drugs and killing them [72]. Specifically, the
drug delivery system can control the drug release pattern and improve the accumulation
of the drugs at targeting sites [71,73]. In this context, nanocarriers can achieve synergistic
therapeutic effects and prove to have a stronger killing effect on cancer cells [74]. This can
be seen in Alvandifar et al. (2018), in a study that constructed poly-lactid-co-glycolide
(PLGA) carriers using SN38, an active metabolite of irinotecan, and verapamil, a MDR1
reversal agent, and they obtained a good result in cellular uptake and reduction of cell
viability on MDA-MB-231 breast cancer cell line [71].

4. Targeting and Uptake of Nanomaterial to the Tumor

Nanobiotechnology, the creation of materials on a nanoscale applied to biology, has
been developed and is gaining prominence due to early diagnosis and the targeted delivery
of drugs to the tumor environment [75–77]. Controlled drug delivery systems have been
extensively studied over the past few decades, resulting in more than 32,000 publications
on colloidal systems [77]. Among these studies, the efficiency of the use of NMs in the
detection and elimination of tumor cells in vitro and in vivo demonstrated that the clinical
translation of these nanosystems is still statistically limited [78].

Currently, studies demonstrate that the physicochemical properties of NMs can influ-
ence the specific targeting for tumor cells, which can accumulate in this environment in a
passive or active pathway [79,80] (Figure 2). The passive delivery of NMs is commonly
called the enhanced permeability and retention (EPR) effect, which consists of the accumu-
lation of these NMs in the tumor microenvironment through the problematic vasculature
found in these locations. The increased permeability of the blood vessels associated with
the tumor occurs due to the high metabolism of tumor cells and, consequently, of the en-
dothelial cells associated with them, which during the angiogenesis process (formation of
new vessels) do not complete the maturation process by forming vessels with irregular and
larger fenestrations than normal sizes [46]. Unfortunately, NMs face a huge barrier until
they find the tumor site and are easily eliminated from the bloodstream by the immune and
reticuloendothelial system (RES) [81,82], which may be responsible for the unsatisfactory
results found in the clinic. Indeed, Wihelm et al. (2016) [79] observed that from a database,
only 0.7% of the administered dose accumulates at the tumor site, and Sindhawani et al.
(2020) [83] demonstrated that the minimum dose necessary to achieve an efficiency of 93%
uptake is one trillion nanoparticles [79,83].

Thus, research groups are looking for alternatives that result in an active and more
targeted delivery of these NMs. For this, numerous functionalization processes are being
developed aiming to evade opsonization, recognize the immune system and RES, and
thus increase circulation time and the probabilities of reaching the tumor microenviron-
ment [84–86]. In addition to the well-known functionalization with PEG and chemical
agents, other mechanisms are also being used to increase the uptake of nanomaterials
by tumors, such as modulation of the tumor microenvironment, targeting peptides and
biological methods using cells, which will be described below [80].
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Figure 2. Schematic depiction of passive and active tumor targeting. Passive tumor targeting consists of the extravasation of
nanomaterial by the increased vascular permeability of the tumor vessel associated with lower lymphatic drainage, which is
commonly called the EPR effect. Active tumor targeting is the functionalization of nanomaterial with specific tumor ligands.

The tumor microenvironment, a set of cells and molecules recruited and released
by tumor cells, is an important component to be considered when targeting anticancer
therapy [80]. The modulation of this environment, which can occur using chemical and
physical reagents to improve tumor vasculature, assist in the reduction of tumor physio-
logical changes, and alter components of the dense extracellular matrix associated with
the tumor, has been shown to be an important contributing factor for therapies focused on
treatment [86–88]. This was noted by Paris et al. (2020) [89], who used the combination
of photodynamic and photothermal therapy with gold nanorods to increase nanoparticle
(NP) uptake by the fibrosarcoma tumor and shut down the remaining tumor vasculature
with an NIR laser [89].

In addition to the modulation of the tumor microenvironment, the use of ligands,
such as tumor-binding peptides (IRGD) conjugated to the surface of NPs, has been shown
to be promising in stimulating the transport of these nanomaterials into cancer cells and
reducing drugs outside the target sites, consequently interfering in the patient’s quality of
life [80]. Ni et al. (2015) [90] functionalized crystallized paclitaxel nanoparticles with IRGD
(CAc) and demonstrated, in vivo, that only nanocrystals associated with IRGD were able
to perform complete intratumor delivery and reach tumor stem cells [90].

Biological methods for improving the delivery of NPs are based mainly on the use
of cell membranes or complete circulation cells that are tumoritropic, in order to increase
and more effectively deliver NMs to the tumor environment [91,92]. This was observed in
Wang et al. (2014) [93], in a study that used iron oxide nanoparticles with DOX linked to
erythrocytes for the treatment of breast cancer in vivo, obtaining more satisfactory results
when compared to the nanoparticle alone [91], and in the study of Piao et al. (2014) [94],
which functionalized gold nanoparticles with an erythrocyte membrane, improving circu-
lation time and, consequently, the treatment of 4T1 tumors [94].
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Despite all the difficulties encountered in delivering NMs to the tumor environment,
studies are being carried out to improve this process. Better results in the delivery of NMs
to solid tumors may occur through the exploration of both the EPR effect and by active
targeting strategies.

5. Strategies for Specific Delivery to Immune Cells

Macrophages compose the major population of infiltrating immune cells, and these
cells are usually referred to as tumor-associated macrophages (TAMs) [94–96]. These TAMs
usually overexpress macrophage mannose receptors (MMR), and nanocarriers can use this
property to enhance the recognition and internalization of these macrophages [96]. On
the other hand, these receptors are also found in healthy monocytes and macrophages
and play a critical role in the immune system’s functions [97]. There is a receptor, CD206,
that shows high expression on TAMs [98], and in humans, CD206 is more expressed in
the M2 phenotype rather than the M1 phenotype [97]. Some studies have been successful
after using the MMR receptor as a pattern of recognition, as seen with mannosylated poly
(ethylene glycol)-conjugate nanocarriers, which can be a potential cell surface target on
macrophages, including scavenger receptors such as the mannose receptor [99]. Anti-MMR
nanobodies conjugated to polymeric nanogels were effective in delivering nanoparticles
to MMR-expressing TAMs in vitro, ex vivo, and in vivo mice models. However, they
are not the only functionalized nanocarriers that achieve specificity for TAMs; polymeric
nanocarriers N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers conjugated with
Alexa Fluor 647 and folic acid (P-Alexa647-FA) are able to colocalize to CD11b + CD68
+ TAMs in vitro and in vivo. In both primary and metastatic breast tumors, it has been
shown that HPMA–copolymer folate conjugate could be localized in tumor-associated
macrophages. The retinoid X receptor beta (RXRB) was also identified and validated as a
macrophage-targeting peptide receptor binding on the surface of TAMs, with the anti-RXRB
antibodies accumulated in TAMs [100]. Furthermore, red blood cell-derived nanovesicles
(RDNVs) can be used as drug nanocarriers to specifically deplete macrophages; RDNVs
are nanocarriers that can deliver drugs into macrophages both in vitro and in vivo [101].

Antigen-presenting cells (APCs) play an important role in activating the immune
response. Among APCs, dendritic cells (DCs) are of paramount importance, as they are
responsible for activating primary T lymphocytes and can effectively trigger the immune
responses of cytotoxic T lymphocytes [101]. The first challenge in improving the activity of
DCs is the specific binding of the nanocarriers to the target and, to do that, a nanoparticle
formed by a cylindrical polymer with side chains of poly (2-oxazoline) was conjugated
to an anti-DEC205. This was capable of specifically binding to and being uptaken by the
DEC205 positive bone marrow derived dendritic cells (BMDCs) in the mouse model. When
conjugated with an OVA-antigen, the same nanocarrier was able to stimulate the capacity
of these BMDCs to activate and induce the proliferation of reactive CD8+ T-cells [102].

Other nanocarriers were designed to bind DCs, and some of these nanoparticles are
based on HPMA [96], or formed by a protein cage named encapsulin (Encap) [102]. The
Acetal-modified dextran-nanoparticles (Dex-NPs) were also able to bind to the dendritic
cells [103,104]. Since the DCs are used as an antigen presenter, the development of vaccines
using these nanocarriers involves different strategies to improve DC activity, such as the
use of adjuvants or just the peptide of ovalbumin (OVA) protein, OT-1. They were all
capable of activating CD8+ T, and one also activated CD4+ T and induced the proliferation
of these cells, increasing the immune activity in the tumor area and suppressing tumor
growth [102–108]. Other studies also showed that nanoparticles modified with mannose
were able to increase the uptake of antigens by dendritic cells [109,110].

6. Tumor Microenvironment and Nanocarriers

The tumor microenvironment (TME) consists of cellular and non-cellular components
that form the tumor’s niche. The non-cellular components are the extracellular matrix,
cytokines, growth factors, small RNAs, DNA, chemokines, and extracellular vesicles. In
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addition to the cancer cells, there are also several other cell types, mesenchymal stromal,
cancer-associated fibroblasts, adipocytes, pericytes, cancer stem cells, and the immune
cells such as tumor-associated macrophages (TAM), dendritic cells (DC), T and B lym-
phocytes, neutrophils, and natural killer cells (NK) [111–114]. TME is characterized by
oxidative stress, hypoxia, and acidosis and by interactions between these different cell
types, which will cause the induction of angiogenesis, modulate the immune system, and
lead to metastasis [115,116].

The outcome of altered metabolism in tumor cells in the tumor microenvironment
directly affects the effectiveness of anticancer therapies (Figure 3). Thus, different research
groups intend to develop new therapeutic strategies capable of modulating the TME.
Among the new approaches is the use of nanocarriers in immunotherapy, which aims to
change the immunosuppressive phenotype of TME [113–120]. Nanoparticles (NPs) can
deliver drugs, antigens, and adjuvants that can manipulate immune cells at desired target
sites (tumor and lymph nodes), in addition to evading pathophysiological barriers such as
extracellular matrix, degradation of endonucleases, and renal clearance. Thus, the use of
nanocarriers allows a more effective delivery of immunomodulators to the target tissue,
which results in the amplification of the therapeutic potential of these molecules. The
interactions of nanoparticles with the major immune cells, such as DCs, TAM, and T cells,
are examined below. Studies on other cell types, such as B cells and natural killers, can
be found in Thakur et al. (2020) [119–125]. Below, we introduce how nanotechnology
addresses the cells of the immune system.

Figure 3. Immune cells associated with the tumor microenvironment and the possible outcomes after interaction
with nanoparticles.
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7. Tumor-Associated Macrophages (TAM)

Macrophages play an important role in controlling inflammatory responses, by re-
leasing cytokines and presenting antigens [125]. Tumor-associated macrophages (TAM)
are one of the essential modulators of the tumor environment [126]. As flexible cells, they
can switch and be categorized in two major phenotypes: M1 represents macrophages
that can exert phagocytosis in pathogens, prolong inflammation, provoke tissue damage,
and have anti-tumoral activities. The other phenotype is M2, which is known to promote
tumor development, and it is the type most found in the tumor microenvironment, be-
cause cancer cells induce macrophages to assume this phenotype by releasing several
tumor-determining factors such as NF-κB, STAT3, and low pH values in the tumor microen-
vironment [127–130]. The M2 phenotype secretes a series of immunosuppressive cytokines
responsible for the reorientation of infiltrating immune cells, and it also remodels the
stroma [128]. It is responsible for tumor development and progression, survival, immune
escape, wound healing, angiogenesis, metastasis, invasion, and resistance to chemother-
apy [97,99,129], and it is also correlated with poor clinical outcomes [125]. So, therapies
that can destroy M2 or restore it to the M1 phenotype are needed.

In this context, several researchers have studied the interactions that nanomaterials
have with macrophages, since most circulating nanocarriers or tissue infiltrators are in-
ternalized mainly by phagocytic cells [131–133]. Thus, understanding how the properties
of different nanoparticles can influence the polarization or inhibition of macrophages is
extremely important for the use of this technique, in order to direct these cells to nanother-
apeutic formulation and alter the TME in a more permissive environment for the function
of the immune cells [134]. In this approach, organic, inorganic, and hybrid nanoparticles
have been extensively explored to verify their potential to modulate the TME [134–136].
As an example, a drug nanocarrier based on the copolymer of lactic acid and glycolic
acid (PLGA) loaded with methotrexate (MTX), covered with polyethyleneimine (PEI) and
hyaluronic acid (HA), and combined with a PD-L1 antibody, was developed to investigate
the immunomodulatory effects on breast cancer TME. The nanoparticles of PeiPLGA-MTX
were able to downregulate the STAT3 and NF-κB genes, which resulted in the change of the
M2 (CD163) to M1 (CD68) phenotype and reduced the levels of IL-10, TGF-β, and CCL22.
Thus, NPs from PeiPLGA-MTX were effective in polarizing macrophages and modified
the course of disease development [128]. Another nanoparticle, Man-PEG-Lipo, showed a
different approach: the great difference is that it induced not only the polarization of the
M2 to the M1 phenotype but also promoted the polarization of the M0 to the M1 phenotype.
The in vivo model presented tumor growth inhibition, which may be attributed to the
impact of Man-PEG-Lipo on the polarization of TAMs [137].

Another example is inorganic particles, such as gold nanoparticles (AuNPs) developed
by Kim et al. (2020) [138], in a study that evaluated the effect of this nanomaterial with
radiotherapy (RT) on M2 TAMs of tumors. AuNPs conjugated with the CD163 antibody,
and after being coated with silica (CD163-GNPs), they were tested in in vitro and in vivo
models. The analyses revealed that a greater number of CD163-GNPs were absorbed by M2
macrophages than those of type M0 or M1 and were able to alter the phenotype of TAMs. In
addition, the polarization of type M2 macrophages in tumors after combination treatment
with CD163-GNPs increased the efficiency of RT [138]. In addition, superparamagnetic
iron oxide nanoparticles (SPIONs) can act as co-stimulators during macrophage activation
and alter their polarization by shifting their M2 phenotype without significantly reducing
cell viability of macrophages [131].

Therefore, NPs capable of directly reaching the immune cell, such as TAMs in the
tumor microenvironment, can effectively increase local and systemic antitumor immu-
nity [133–142]. Nanocarriers can also be used as a platform to deliver genetic information
used to reprogram the TAMs. This is seen with the in vitro-transcribed (IVT) mRNA used
in TAMs; after serial administration of IRF5/IKKβ-encoding nanoparticles, two potent
pro-inflammatory agents, the nanocarrier can substantially reduce tumor progression and
also reduce the density of M2-like macrophages in a mouse tumor model, along with
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increased numbers of inflammatory myeloid cells with distinct M1-type transcriptional pro-
files [143]. A microRNA, the miRNA-155 (miR155), is characterized as a pro-inflammatory
miRNA, and it can enhance the M1-like macrophage activation by decreasing inhibitors
of pro-inflammatory responses, so a nanocarrier to deliver this miRNA was developed,
which was constituted by a lipid-coated calcium phosphonate conjugated with mannose
(CaP/miR ∼= pMNPs). These nanoparticles were able to reactivate TAMs and reprogram
their functions, thus reversing the immunosuppressive tumor microenvironment, inhibit-
ing tumor growth, and reducing tumor sizes and weight after systemic administration in a
tumor-bearing mouse model [130].

In order to inhibit TAM, different nanocarriers have been used. A virus-based de-
livery vehicle, the icosahedron cowpea mosaic virus (CPMV), conjugated with a zinc
ethynylphenyl porphyrin (Zn-EpPor), a photosensitizer, PS-CPMV demonstrated a sig-
nificant improvement in the effective elimination of both macrophage and tumor cells,
with differences in uptake between the M1 and M2 populations observed [143]. Plat-
inum (Pt)-prodrug conjugated small particles and BLZ-945, a small molecule inhibitor
of colony-stimulating factor 1 receptor (CSF-1R) of TAMs, were capable of codelivering
nanocarriers. As well as inducing the apoptosis of tumor cells, it also modulated the tumor
immune environment and eventually increased the antitumor effect of CD8+ cytotoxic T
cells through TAM depletion and exhibited properties to suppress tumor growth, inhibit
metastasis, and prolong the survival of the mice model [126]. The p-(aminomethyl) benzoic
acid (PAMB)/doxorubicin (DOX) was capable of specifically decreasing TAM. PAMB/DOX
effectively suppressed the primary tumor growth and inhibited tumor migration, invasion,
and metastasis formation. It also improved the tumor microenvironment by inhibiting
ECM degradation, neovascularization, and tumor cells’ escape [129].

8. Dendritic Cells (DC)

In an attempt to use the immune cells to attack the tumor, an important agent is
antigen-presenting cells (APCs), such as B-lymphocytes, macrophages [144] and, the most
potent, dendritic cells (DCs) [145]. DCs are able to capture, process, and present tumor-
associated antigens (TAA) [146], which induce and activate a specific tumor immune
response by presenting these antigens to T cells [105,110], as T helper cells (CD4+ T cells)
and cytotoxic T cells (CD8+ T cells) [105] that can secrete cytokines to induce tumor rejection,
such as IFN-γ [146], which can trigger and control an antitumor immune response [146].
Due to the immunosuppression generated by changes in the tumor microenvironment,
there is no effective antigen presentation for T cells. Thus, immunotherapy has made use
of DC-based vaccines, and one of them has already been approved by the Food and Drug
Administration (FDA) of the United States for the treatment of prostate cancer [107]. DC
vaccines consist of the ex vivo pulse of dendritic cells with antigens associated with the
tumor. Right after the capture of antigens, the DCs reinserted in the patients must migrate
to the lymph nodes and, through the presentation of antigens to the T cells, reactivate
the antitumor immune response. However, results in clinical trials were unsatisfactory,
and less than 10% of DC-mediated immunotherapy was reported to be effective. The low
rate of migration of dendritic cells applied to the lymph nodes, together with the lack of
efficient antigen loading and low maturation of DCs, are the main reasons why vaccines
are failing to activate T cells and induce the immune system to fight cancer [147,148].
In this context, several nanocarriers are being designed to modulate dendritic cells, to
reduce the limitations present in this technique [118]. Several nanoparticle systems can
facilitate the delivery of the antigen in the cytosol and achieve cross-presentation. NPs are
also able to protect the antigen from degradation by enzymes that circulate in the blood,
which significantly increases the efficiency of intracellular uptake of the antigen through
endocytosis [148].

Current studies have shown that organic nanocarrier platforms have been successful
in delivering antigens and stimulating immune responses. Recently, it was demonstrated
that polyethylenimine nanoparticles (PEI) with the ovalbumin (OVA) antigen model,
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functionalized with mannose, increased the targeting for DCs. In addition, there was an
accelerated endosomal leak and improved presentation of the MHC-I antigen for cancer
immunotherapy [149]. Although most vaccines use OVA as an antigen, cancer-specific
antigens can be used. To deliver DNA vaccines specifically to the antigen-presenting
cell, the use of gold nanoparticles (AuNPs) decorated with a thiolate ligand (SGSH) and
a melanoma antigen (MARTI1) encoded DNA vaccine (Au-SGSHpCMV-MART1) was
efficient in vitro and in vivo. This presented immunization against melanoma in a murine
model for 180 days limited tumor growth, increased survival in mice, and presented a
DC-mediated improvement in the CD8+ T cells by elevating the IFN-γ secretion, showing
that inorganic nanocarriers can be associated with antigens and activate the immune
system [144].

Despite the high potential of DCs, some immunoregulatory factors, for instance IDO
(dioxygenase), can make the antitumor immune response become insufficient. Thus, to
outdo the negative activity of the immunoregulator, a nanoparticle using gold nanorods
(GNR) as a carrier of siRNA for IDO (siIDO) and also using mannose to target the DCs
(man), man-GNR-siIDO, was used as a knockdown for the IDO gene, and it resulted in
an effective silencing particle. This was effective both in vitro and CD11b +, promoted
the DC maturation and upregulated T cell proliferation, also decreasing the apoptosis of
CD4+ T and CD8+T cells with increased tumor-specific cytotoxicity [105]. It is not only
siRNAs that are delivered to DCs; plasmid DNA carried by mannosylated liposomes
can also be useful to encode specific modulators and is able to generate tumor-specific
cytotoxic T lymphocytes by DC mediation, providing a high anti-metastatic potential [110].
Thus, studies corroborate the idea that the construction of nanovaccines against cancer has
the potential to promote the maturation of DCs, since after phagocytosis, they released
antigens in a controlled manner, leading to an increased cellular and humoral immune
response [111,150–152].

9. T Cells

The tumor microenvironment is characterized by being an immunosuppressive en-
vironment, which prevents an immune system response against cancer. Immunotherapy
seeks to reverse this scenario through the activation of different pathways, one of which is
the reactivation of T cell-mediated immunity. Thus, the induction of a strong cytotoxic T cell
response is an important prerequisite for successful treatment against tumors [153,154].
Under these circumstances, the adoptive transfer of T cells derived from patients with
chimeric antigen receptors (CARs) is a potential therapeutic strategy in the treatment of
cancer. CAR T cells can initiate the production of antitumor cytokines and proliferate
exponentially, which results in an amplified immune response and the elimination of tumor
cells. Although this technique has promising results, there are still limitations, such as
the lack of efficient targeting to the tumor, limited response rate, laborious manufacturing
processes, and high cost. Thus, nanocarriers have emerged as an alternative means to
overcome these obstacles and amplify the use of this technique [117,155].

Studies show that nanocarriers can efficiently introduce CAR genes into T cell nuclei,
inducing tumor recognition and regression [117,156–159]. The experiments carried out by
Bai et al. (2020) [160] demonstrated that polymers of multivalent aptamers could fulfill the
CAR-T function, since they were able to increase the proliferation of T cells, reverse the
inhibitory effect of the secretion of antitumor cytokines, and inhibit the growth of mouse
melanoma B16 cells both in vitro and in vivo [157]. The use of nanotechnology for the
transient induction of CAR in T cells can also mitigate the side effects caused by the current
method of using viral delivery vectors for the reprogramming of T lymphocytes [145]. The
use of ionizable lipid nanoparticles (LNPs) for the delivery of CAR mRNA to primary
human T cells was described by Billingsley et al. (2020) [159], which pointed out the use
of this platform as promising for the expansion of T cell engineering. The results of the
study showed the ability of LNPs to deliver mRNA from the CAR to primary T cells and
generate functional CAR T cells that have the potential to induce cancer cell death [159].
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Furthermore, another approach to reprogramming T cells is to use nanocarriers to deliver
drugs, antibodies, and interleukins, as they can protect T cells from immunosuppression
and activate CD8+ T cells [160–164].

NPs can deliver drugs and monoclonal antibodies that block negative feedback, such
as cytotoxic protein associated with T 4 lymphocyte (CTLA-4), programmed cell death pro-
tein 1 (PD-1), and indoleamine 2,3-dioxygenase (IDO) [165–167]. The targeted and effective
delivery of these compounds to CD8+ T cells is achieved by modifying the surface of the
nanoparticles with the target ligand or antibody. An example of an NP that has been widely
used to transport immunomodulating agents is the copolymer of lactic acid and glycolic
acid (PLGA), due to low immunogenicity and good biodegradability [163,167–169]. Over-
all, the studies presented demonstrate that nanocarriers are a promising platform for cancer
immunotherapy. Examples of nanocarriers used to modulate the tumor microenvironment
are summarized in Table 1.

Table 1. Nanocarriers used to modulate the tumor microenvironment.

NP Platform Immunotherapeutic Agent Function Ref.

Organic NP
iDR-NCs shRNA CD activation 117

Peptide assembling DPPA-1; NLG919; IDO inhibitor To block immune checkpoints and
tryptophan metabolism 122;164

Protein nanogels (NGs) IL-15; Anti-CD45 Active T cell 155
Lipid-CaO2 CaO2 TME modulation (hypoxia) 114

Man-PEG-Lipo Curcumin Macrophage polarization 136
CaP/miR@pMNPs Genetic information (miRNA 155) Macrophage polarization 129

Polyethylenimine (PEI) OVA CD activation 148
Aptamer nanoparticles Genetic information Activate T cells 156

Lipid nanocapsules (NCs) mRNA Activate T cells 158
Polymeric NP
PeiPLGA-MTX Methotrexate Macrophage polarization 127

PGLA IL-12 Activate T cells 164
PEG-PMT Doxorubicin TME modulation 43

mPEG-PGA Doxorubicin TME modulation 41
Inorganic NP

Iron oxide NPs Intrinsic therapeutic effect Macrophage polarization 130;101
CD163-GNPs Intrinsic therapeutic effect macrophage polarization 137

Gold nanorods siRNA specific for IDO CD activation 146
Au-SGSH genetic information CD activation 143
Platinum BLZ-945 Macrophage polarization 124

NP = Nanoparticles

10. Conclusions and Future Prospects

Years of research have investigated therapeutic alternatives for treating cancer, includ-
ing surgery, radiation therapy, chemotherapy, hormonal therapy, and target therapy, which
are provided according to their type, stage, and location. Currently, it is known that the
common therapeutic approaches applied to the treatment of this disease, despite promoting
a good prognosis for the patient, cause damage to healthy tissues, incomplete eradica-
tion of tumor cells, and adverse effects on patients. Observing these various problems
associated with current treatments, new therapies have been sought that are non-invasive
and have low systemic toxicity, such as nanobiotechnology. The nanotechnology field has
established recently promoted cancer treatment methods. Several nanocarriers studied in
this field have allowed researchers to overcome the limitations of conventional therapies,
thus increasing their efficiency in guiding the delivery of these therapeutic agents.

The studies reinforced the concept that nanocarriers can be developed to promote the
recruitment of immune cells and overcome the anergy of tumor-specific T cells by blocking
immunosuppressive pathways. The use of nanocarriers is a promising strategy, because it
is possible to have a modular response in the TME, activate an accurate CTL response, and
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improve antitumor efficacy. In this context, immunotherapy combined with nanoparticles
will have a significant impact on clinical performance to enhance the immune system in
cancer therapy. However, there is still a need for studies to gain a deeper understanding of
the mechanisms underlying the immune system and the safety profiles of nanoparticles, to
ensure effective delivery of nanocarriers to the target tissue and avoid toxicity.
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