

The current landscape of fecal microbiota transplantation in treating inflammatory bowel disease

Yajun Bi^{1,2#}, Bomin Cheng^{3#}, Biao Zou⁴, Shengxuan Liu⁴, Zhenze Cui^{1,2}

¹Department of Pediatrics, Dalian Women and Children's Medical Group, Dalian, China; ²Graduate School, Dalian Medical University, Dalian, China; ³Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China; ⁴Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Contributions: (I) Conception and design: Y Bi, B Cheng, Z Cui; (II) Administrative support: B Cheng, S Liu; (III) Provision of study materials or patients: B Zou, S Liu; (IV) Collection and assembly of data: Y Bi, B Cheng, Z Cui; (V) Data analysis and interpretation: Y Bi, Z Cui; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Biao Zou, PhD; Shengxuan Liu, PhD. Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China. Email: 464021552@qq.com; tongjishengxuanL@163.com; Zhenze Cui, PhD. Department of Pediatrics, Dalian Women and Children's Medical Group, Dalian, China; Graduate School, Dalian Medical University, 154 Zhongshan Road, Xigang District, Dalian 116044, China. Email: cuizhenze@126.com.

Abstract: Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic, immune-mediated disorder that impacts the intestinal tract. The gut microbiota, a diverse community of microorganisms, plays a pivotal role in the initiation, development, and progression of IBD by modulating inflammation, and immune responses, and maintaining gut homeostasis. Dysbiosis, or an imbalance in the gut microbiota, is frequently observed in IBD patients and is believed to contribute to the pathogenesis of the disease by disrupting the mucosal immune system. Fecal microbiota transplantation (FMT) involves transferring feces from a healthy donor (HD) into a recipient and has emerged as a promising therapeutic approach for IBD. The primary goal of FMT is to restore microbial balance in the recipient's gut, improving both microbiota composition and immune function. Numerous preclinical and clinical studies have demonstrated varying degrees of success in alleviating IBD symptoms through FMT. The benefits of FMT include modulation of gut bacteria abundance, restoration of microbial diversity, and enhancement of immune system regulation, all of which contribute to reducing IBD-related inflammation. This review presents a comprehensive analysis of animal studies and clinical trials exploring using FMT as a treatment for IBD. Understanding the underlying mechanisms of FMT in IBD is crucial for designing effective therapeutic strategies and optimizing its clinical impact.

Keywords: Inflammatory bowel disease (IBD); ulcerative colitis (UC); Crohn's disease (CD); fecal microbiota transplantation (FMT); inflammation

Received: 12 October 2024; Accepted: 04 March 2025; Published online: 11 June 2025.

doi: 10.21037/tgh-24-138

View this article at: https://dx.doi.org/10.21037/tgh-24-138

Introduction

Inflammatory bowel disease (IBD) is a chronic, immunemediated gastrointestinal disorder that is composed of two clinically and morphologically distinct entities: ulcerative colitis (UC) and Crohn's disease (CD) (1,2). The incidence of IBD has progressively increased over the past decades in developed and newly industrialized countries and its chronic feature leads to the need for long-term and expensive monitoring and treatment (3,4). The pathogenesis of IBD is multifactorial involving genetic, immunological, infectious, environmental factors, and the gut microbiota (5,6).

^{*}These authors contributed equally to this work as co-first authors.

Currently, the primary treatment approaches for IBD include pharmacological therapy and surgical intervention (7,8). Pharmacological approaches mainly include antiinflammatory drugs and biological agents, such as tumor necrosis factor-α antagonists, 5-aminosalicylic acid, corticosteroids, anti-interleukins, and immunosuppressive and biological agents (9). Although these drugs can temporarily maintain and reduce inflammatory episodes, they potentially elicit some serious side effects, including an increased risk of infection and certain cancers, and do not cure the underlying cause of IBD (10,11). Surgery, on the other hand, is not considered a first-line option for all patients with IBD and is typically reserved for cases where medical treatment has proven ineffective or serious complications have arisen. Even after surgery, patients may experience complications that require ongoing medication to maintain disease control and prevent relapse (12). Accordingly, approaches targeting the modulation of host-microbes catabolites, including fecal microbiota transplantation (FMT), probiotics, synbiotics, antibiotics, and micro-nanocarriers, are expected to provide novel strategies for IBD treatment (13,14).

The fundamental role of the intestinal microbiota in the development and progression of IBD inflammation is gradually being explored and recognized (15,16). The intestinal microbiota is a complex multicellular community (17). About 3.3 million microbial genes, up to 10 bacterial phyla, and 1,000 species of bacteria (>90% of the species belong to the phylum Bacteroidetes and Firmicutes), as well as commensal fungi and viruses, have been identified in the human intestine (18). Compared with normal controls, the number, species, and diversity of intestinal microbiota are characteristically altered in IBD, with a decrease in the abundance of anti-inflammatory bacteria and an increase in the abundance of pro-inflammatory bacteria, with a highly unstable state environment (19). For example, the number of the dominant flora, Firmicutes, and Bacteroides, decreases significantly in the intestine of patients with IBD, while the number of non-dominant flora, such as Actinomycetes, tends to increase. In addition, Roseburia spp. is significantly reduced in the gut microbiota of healthy individuals with a high genetic risk of IBD (20).

FMT is also known as fecal bacterial therapy, human probiotic infusion, fecal transplantation, intestinal microbiome restoration, and fecal transfer. FMT is designed to modify the composition and function of the recipient's intestinal microbiota by collecting fecal matter from a pre-

screened healthy donor (HD) and delivering prepared serums to the patient's gastrointestinal tract via nasogastric tube, colonoscopy, or enema (21). FMT has recently gained popularity for its successful treatment of *Clostridioides difficile* infection (CDI) and has also encouraged its application in patients with IBD to rebuild the microflora balance in patients with IBD (21). Thus, FMT has emerged as a promising effective method for treating IBD.

The mechanism of FMT in the treatment of IBD is still being explored. Several basic and clinical studies have been conducted to confirm the effectiveness of FMT to varying degrees. Overall, FMT can not only restore normal ecological and metabolic functions associated with beneficial commensal bacteria but also activate multiple anti-inflammatory mechanisms targeting mucosal immune cell types. Therefore, this review highlights the roles and mechanisms of FMT in improving IBD, hoping to fuel and foster the development of FMT strategies for IBD.

Preclinical studies of FMT in the treatment of IBD

Existing animal studies are mainly based on dextran sulfate sodium (DSS)-induced models of IBD in mice or rats. The gut microbiota reshapes the immune microenvironment in IBD by engaging in innate and adaptive immune responses (22). For instance, the immune-related Th17 function was impaired by bacterially produced bile acids, which is correlated to inflammatory pathophysiology in IBD (23). Immunomodulation of the intestine and improvement of the inflammatory state of IBD can be achieved through a rational microbiota-based therapeutic strategy with FMT, probiotic supplementation, and engineered microbiome (24).

In a DSS-induced IBD mouse model, Burrello *et al.* (25) found that FMT intervention resulted in downregulated proinflammatory genes, antimicrobial peptides genes, mucins genes, interferon-gamma (IFN- γ), interleukin-17 (IL)-17, IL-13, and increased IL-10 levels, with recovered microbial ecologies. In the DSS-induced IBD mouse model, FMT intervention with HD bacteria significantly decreased the inflammatory myeloperoxidase (MPO) and increased IL-10 expression (26). In the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced IBD rat model, Qiu *et al.* (27) demonstrated that FMT inhibited transforming growth factor-beta 1 (TGF- β 1) while upregulating anti-inflammatory Smad proteins, leading to improved disease activity and histology. Thus, it proved that FMT was a

feasible method to inhibit IBD inflammation via suppressing TGF- β 1/Smad pathway. FMT intervention could alleviate colitis symptoms by remodeling cytokine homeostasis, anti-inflammatory bacteria, and metabolites, to defend the intestinal mucosal barrier for lowering the sensitivity of DSS-induced colitis. Therefore, FMT could suppress chronic intestinal inflammation by regulating immune function and the composition of the intestinal flora.

Additionally, Huang et al. (28) established a mouse model of DSS-induced colitis and administered FMT therapy. The study found that FMT significantly alleviated colitis symptoms in the mice, improved the disease activity index, body weight, and colon length, and effectively restored the pathological structure of the colon tissue. Besides, FMT therapy partially restored the expression of the tight junction protein ZO-1 and promoted the repair of goblet cells, thereby enhancing the intestinal mucus secretion function. DSS mice exhibited a high proportion of IgA/ G-targeted bacteria, which returned to near-normal levels following FMT treatment. FMT also significantly reduced the proportion of IgA/IgG+ B cells, suggesting that FMT might restore the intestinal immune response by regulating the function of IgA/IgG+ B cells. Overall, FMT improved DSS-induced colitis and exerted a therapeutic effect by modulating the IgA/G-mediated immune response.

In the DSS-induced mouse IBD model, Ihekweazu et al. (29) found that triple-Bacteroides cocktail combination therapy was better than conventional FMT in terms of weight loss and mortality protection. Bacteroides ovatus ATCC 8483 was more effective than any single strain or combination of strains in avoiding weight loss, diminishing tissue damage, suppressing the inflammatory response, and promoting epithelial cell recovery. Moreover, Xu et al. (30) transplanted feces from donor mice with high diversity and abundance of Bacteroides and Faecalibacterium into a mouse model of colitis induced by DSS, significantly improving intestinal damage and immune imbalance. The key strains in the donor feces were identified as Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii. Furthermore, compared to single-bacterium therapy, dual-bacterium therapy notably enhanced intestinal healing, increased M2/M1 macrophage polarization, corrected Th17/Treg imbalance, elevated IL-10 levels produced by Treg cells, and increased lecithin abundance in the glycerophospholipid metabolic pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii may alleviate colitis in mice by promoting lecithin production and regulating IL-10 levels in intestinal Treg cells.

Clinical studies of FMT in the treatment of IBD

FMT in treating CD

CD is a prevalent chronic inflammatory gastrointestinal disorder associated with genetic susceptibility, environmental factors, and dysregulated immune responses (31). Personalized patient management will be crucial for improving therapeutic outcomes in CD (32). FMT is an emerging, safe, and effective treatment for CD, enhancing gut microbiome diversity and abundance (33).

About 65-75% of CD patients may develop malnutrition or emaciation status, which implicitly means that dietary or nutritional therapy has an important positive impact on the care of CD (34). Exclusive enteral nutrition (EEN) can to some extent, augment the beneficial microbiota, improve bile acid metabolism, and reduce the stimulation of unfavorable diets (35). EEN is a wellestablished therapy in inducing remission in pediatric CD, while its usefulness as a principal regimen for adult CD is yet to be determined. Hoelz et al. (36) evaluated whether FMT could promote EEN-induced clinical remission in pediatric CD patients. This result indicated that high pathogen load, low abundance microbiome, and practical deficiencies of EEN-conditioned fecal material may lead to poor efficacy of FMT in the treatment of CD (36). FMT may not be a good means of promoting EEN in some pediatric CD cases. Sokol et al. (37) performed a single FMT or false transplantation for CD patients who had achieved clinical remission on corticosteroids. The steroid-free clinical remission rate in the FMT group was higher than that in the sham group. Considering the small sample size and standardized detection method, this conclusion was not statistically significant and needed further confirmation.

In our previous retrospective study, we investigated the clinical and endoscopic remission rates and mucosal healing rates after FMT supplemented with partial enteral nutrition (PEN) for active CD in children as first-line treatment, by enrolling 25 pediatric patients from November 2016 to July 2019 (38). In a cohort of pediatric CD patients with a small sample size, repeated and multiple FMT plus PEN could facilitate not only the induction and maintenance of remission but also mucosal healing. Nevertheless, this study was not a randomized controlled trial and did not focus on alterations in the species and abundance of intestinal bacteria, and further prospective work is required to validate these findings.

FMT in treating recurrent C. difficile infection (rCDI) with underlying IBD

CDI is a leading cause of hospital-acquired infection with diarrhea symptoms, accounting for considerable morbidity, mortality, and healthcare threat (39). The high incidence and difficulty in treating CDI and the frequent development of rCDI after successful treatment of CDI is making it a challenging clinical concern (40). Strategies to improve current and future management of rCDI are under clinical investigation and include narrow-spectrum antibiotics, monoclonal antibodies, and FMT, which aims to re-establish normal microbiota. The ability of FMT to effectively treat rCDI has motivated the exploration of scenarios for its application in treating rCDI with underlying IBD.

The collection, preparation, and storage of feces are critical to the effectiveness of FMT in treating rCDI (41). Costello *et al.* (42) found that in the environment of -80 °C, the fecal microorganisms in the fecal suspension of normal saline (NS) and 10% glycerol almost did not change at 2–6 months, and the number of fecal bacteria in NS decreased significantly after 6 months, while the number of fecal bacteria in 10% glycerol solution was almost unchanged. After 2–10 months of frozen stool storage in 10% glycerol, rCDI cure rates were 88% after a single FMT and 100% after repeated FMT. For rCDI therapy, fecal bacteria frozen in 10% glycerol was a safely stored method for sustaining their activity for at least 6 months.

FMT could act as a safe and valid protocol to remodel the indigenous component of the intestinal microbial population in rCDI patients for the final utilization in treating concurrent IBD (43). Fareed et al. (44) reported the 16S rRNA gene sequencing analysis among children with recurrent rCDI via FMT treatment, showing an increased abundance of Bacteroidetes and decreased Proteobacteria in post-FMT signatures. This study confirmed the efficacy of FMT with limited rCDI recurrence or re-infection in treating pediatric rCDI, accompanied by specific microbiome alteration during the FMT course. Gholam-Mostafaei et al. (45) evaluated changes in the gut microbiota after FMT in Iranian rCDI patients with underlying IBD. They performed the microbiological analysis of 21 fecal samples, including 14 samples before and after FMT and 7 samples from HDs, and found that the fecal microbiota characteristics of the recipients were more similar to those of the donor samples after transplantation. The patients with pre-FMT had

higher frequencies of *Enterococcus spp.* and *Streptococcus spp.*, and the relative abundance of anaphylactic bacteria was significantly increased after FMT, and the thick-walled phylum was significantly decreased. By treating 8 children (5 with underlying IBD) with FMT, Chen *et al.* (46) found a higher proportion of primary bile acids and a lower proportion of secondary bile acids in pre-FMT recipients compared to donors. After FMT, secondary bile acids gradually increased and primary bile acids gradually decreased. Thus, changes in bile acid profiles after FMT, compared to intestinal bacterial diversity, suggested that bile acids might contribute to FMT efficacy in different ways, which requires further investigation to explore the mechanism of FMT effectiveness.

In 113 adult patients with IBD undergoing FMT for rCDI, van Lingen et al. (47) reported a 39% decrease in IBD activity, a 71% CDI cure rate, and a 5% flare rate. During up to 2 years of follow-up, it was found that 27% of patients developed infections, 39% were hospitalized, 5% underwent colectomy, and 10% died with a median age of 72 years old. Therefore, FMT was safe and effective for rCDI in patients with IBD, without a few IBD exacerbations. Kelly et al. (48) performed FMT in 80 immunocompromised (IC) patients with recurrent, intractable, or severe CDI, and found that 89% of IC patients had remission after FMT and the majority of these patients with CDI had a remission (78%) after a single FMT, while 12 patients had serious adverse events (15%). Thus, FMT was effective in the treatment of CDI in a small number of IC patients with SAEs or related AEs and there were no associated infectious complications. Cho et al. (49) performed a retrospective study of FMT for rCDI in pediatric IBD. This study substantiated that FMT was a valid treatment for rCDI in children with IBD, but there seemed to be a certain late relapse rate of rCDI at day 60 post-FMT. In consideration of the small sample size and standardized detection method, this conclusion still needs to be further confirmed.

FMT is well recognized by patients and medical institutions as an effective treatment for rCDI, but there are still many unknown problems that need further studies, such as optimal parameters, safety, adaptation disease, complications, and the result of FMT (50). Furthermore, due to the differences in the diversity of gut flora and inconsistent maturation of the immune system between pediatric and adult populations, it is warranted to note that more large cohort studies are needed to determine the long-term remission of rCDI with FMT in pediatric patients with IBD and to seek out biomarkers and factors predicting relapse.

FMT in treating UC

UC is a lifelong inflammatory disease primarily affecting the rectum and colon, and its global incidence is increasing. Not only does this disease significantly affect patients' quality of life, but it can also lead to long-term complications (51). The main manifestation of UC is bloody diarrhea, which manifests as abdominal pain, diarrhea, and mucopurulent and bloody feces. Mutual interaction between environmental factors, genetics, and the immune system are important factors contributing to the inflammation of the intestinal mucosa (52). The imbalance of intestinal bacteria is closely related to the development of UC and is involved in the whole process of UC occurrence and development. The decrease in the diversity of bacteria and the abundance of dominant flora in UC patients, and the increase in multiple bacteria with pro-inflammatory effects, which are directly or indirectly involved in the inflammation (53). FMT by repeated administration and multiple donors is effective in relieving or curing active UC (54). The strength, dose, and long-term effectiveness of FMT on clinical outcomes of UC need to be further ascertained by large-scale multicenter investigations.

In a randomized controlled trial, compared with the placebo group, FMT treatment in active UC patients observably promoted a higher remission rate and more diverse microbiota phenotype, with good biosafety (55). This study confirmed the efficacy of FMT in curing active UC and indicated the necessity of focusing on fecal donors and UC time for ultimate outcomes. In a randomized and controlled trial at three hospitals in Australia, compared with the placebo group, multi-donor intensive FMT treatment in active UC patients observably promoted higher remission and endoscopic response rates, with fewer adverse reactions (56). FMT treatment invoked a more heterogeneous microbiota phenotype, with some bacterial taxa associated with clinical outcomes. Especially, the existence of Fusobacterium spp. was implicated in the deficiency of remission. Additionally, Mańkowska-Wierzbicka et al. (57), UC patients with multiple FMT from HD fecal microbiota, showed a higher amount of Lactobacillaceaea, Micrococcaceae, Prevotellaceae, and TM7 phylum spp. oral clone EW055, and decreased Staphylococcaceae and Bacillaceae, by using 16S rRNA sequencing. Multi-session FMT was conducive to the rebuilding of microorganism ecology and exhibited excellent efficacy in alleviating active UC. In the trial of Crothers et al. (58), compared with sham treatment, UC patients with

encapsulated oral FMT (cFMT) showed a higher clinical remission and more significant changes in gut microbiota, with increased C-reactive protein (CRP) and decreased fecal calprotectin, IL-17A, and IFN-γ + MAIT cells. Thus, oral FMT was conducive to prolonging the persistence of the structural change index of the intestinal bacterial community and exhibited excellent efficacy in UC. Porcari et al. (59) reported that UC patients with rCDI infection showed negative Clostridium difficile toxin by FMT after 8 weeks. Finally, 32 patients with rCDI (91%) were cured by FMT, and sustained cure of repeat FMT with CDI was significant compared with single FMT. The study confirmed that FMT effectively treated rCDI infection in patients with concomitant UC. The majority of patients achieved remission or amelioration of UC symptoms, which further emphasized the importance of sequential FMT in combating UC with rCDI.

Dietary intervention may play a crucial role in enhancing the effectiveness of FMT in the treatment of UC. Leibovitzh *et al.* (60) compared two approaches to treating UC using the UC exclusion diet (UCED) combined with FMT: one with and one without donor dietary regulation. The results showed that the group receiving FMT from diet-regulated donors along with UCED experienced significant beneficial microbial changes and reduced gut inflammation, indicated by lower levels of fecal calprotectin. These findings suggested that incorporating dietary interventions for both donors and patients may enhance the effectiveness of FMT in treating UC.

FMT in treating CD and UC

In some studies, investigators have included both CD and UC patients and investigated the curative benefit of FMT for these patients. Karolewska-Bochenek et al. (61) reported that pediatric patients with IBD including 8 patients with UC and 2 patients with CD colitis via FMT for 2 weeks, showing nine out of 10 patients (7 with UC and 2 with CD) had a clinical remission, and half had reduced calprotectin, with only a few had short-term, self-limited side effects. This study substantiated that short-term enhancement of FMT was a valid treatment for IBD children. Allegretti et al. (62) enrolled 15 patients with CD colitis and 24 patients with UC to be treated by FMT, confirming that 33 out of 49 patients (11 with CD and 22 with UC) had a clinical remission, and 15 patients had no change in condition, with only 1 patient had new symptoms and no adverse events occurred. After FMT, the alpha diversity

of feces increased significantly, the primary bile acids decreased, and the secondary bile acids increased. This study substantiated that FMT was a safe and effective treatment for IBD after rCDI and that FMT presented a more therapeutic role in UC patients.

What is coming for FMT and derived therapies

Before the advent of microbiome-based therapies, the clinical prognosis for rCDI was poor. Traditional treatment regimens primarily rely on antibiotics, which effectively eliminate toxin-producing bacteria but cannot eradicate bacterial spores (63). Upon spore germination, the emergence of new bacterial populations can lead to recurrent infections. In this context, FMT emerged as a pivotal therapeutic approach, offering one of the most effective and cost-efficient solutions for rCDI.

Rebyota, the first Food and Drug Administration (FDA)-approved FMT-derived therapy for CDI, represents a significant milestone in the clinical application of FMT (64). Composed of feces from qualified donors, Rebyota contains no antibiotics and is administered via a single rectal dose (65). The therapy is designed to help patients restore their gut microbiota balance, thereby preventing CDI recurrence. In a clinical trial involving 262 patients, 70.6% of those in the Rebyota group successfully avoided CDI recurrence over 8 weeks, compared to 57.5% in the placebo group (66). Furthermore, more than 90% of patients who experienced successful treatment remained free from CDI recurrence for up to 6 months (66). These findings validate the efficacy and safety of Rebyota in clinical practice.

Following Rebyota, Vowst has emerged as the second FDA-approved microbiome-based therapy for CDI (67). Unlike Rebyota, which is administered rectally, Vowst is taken orally in capsule form (68). The capsules contain firmicute spores that are screened and purified from the stool of HDs. Vowst has shown promise in reducing CDI recurrence by restoring the gut microbiome and promoting bile acid profiles that inhibit C. difficile spore germination. In a phase 3, double-blind, randomized, placebo-controlled trial, Vowst (SER-109) significantly reduced CDI recurrence, with a recurrence rate of only 12% in the treatment group compared to 40% in the placebo group (69). The safety profile of Vowst was comparable to that of the placebo, further supporting its potential for clinical use. The successful application of Rebyota and Vowst highlights

the immense potential of microbiome-based therapies.

Both therapies are moving toward standardized, targeted approaches to microbiome treatment. By restoring gut microbiota balance, these therapies offer long-term health benefits, paving the way for the future development of microbiome-based interventions in clinical practice.

Limitations and perspectives

Here, we retrospectively analyzed the existing basic and clinical studies of FMT for IBD. However, the application of FMT for the treatment of IBD comes with a lot of confusion to be solved in terms of standardization of fecal preparation, therapeutic regimen, mechanism of action, and individual differences.

Firstly, in terms of safety assessment, there are genetic differences between the donor and the recipient, and there are more or less biological risks associated with transplanting the feces of other persons, such as viruses and pathogenic bacteria in the donor, host rejection of the transplanted microbiota, and differences in the recipient receptivity (70). The monitoring of adverse events requires a complete system to supervise the transplantation process from preparation to the administration of IBD (71). Obtaining fecal matter consists of two main types: one from a relative or friend recommended by the patient and the other from an undirected, unfamiliar donor (72). In addition, multi-donor FMT may increase the diversity of the gut microbiota even more (73). However, in either case, current studies have not been able to determine the optimal donor for FMT. Patients with different IBD genotypes and phenotypes and varying degrees of IBD severity will respond differently to FMT. Screening and selection to identify patients who respond to FMT have been a significant focus (74). Secondly, a standardized preparation of fecal bacteria for FMT still needs to be considered in terms of donor selection (relevant and irrelevant, whether it is the optimal donor), preparation (fresh, frozen or lyophilized, aerobic or anaerobic) or dosing (single versus multiple doses) (75) (Figure 1).

A standardized preparation process maximizes the biodiversity and overall viability of the microbiota, which can be of benefit to FMT efficacy (76). It is also worth noting that most studies on pediatric FMT used adult fecal donors (13,46). Further confirmation of the efficiency and safety of FMT in different age groups is needed. Rigorous screening of donor and donor feces remains particularly important (77).

Thirdly, a major problem with the use of FMT for IBD

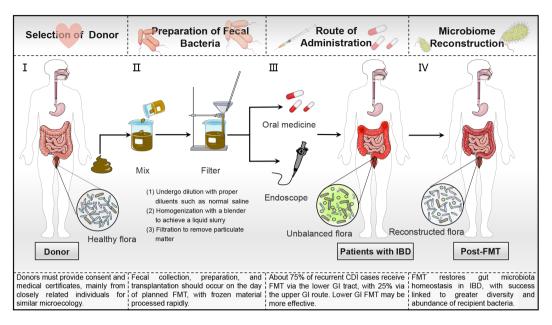


Figure 1 Flow chart of FMT. FMT is an effective technique to achieve intervention and treatment of IBD, which mainly includes donor selection, fecal bacteria preparation and preservation, route of administration, and observation of outcomes related to microbiome reconstruction. FMT involves extracting specific flora from the stool of selected healthy donors through mixing, stirring, and filtering steps, and then transplanting them into the intestine of recipient patients with IBD by oral administration or enema, to rebuild the intestinal micro-ecosystem of the recipient patients with IBD. CDI, *Clostridioides difficile* infection; FMT, fecal microbiota transplantation; GI, gastrointestinal; IBD, inflammatory bowel disease.

is the difficulty of achieving sustained remission (78). This condition requires long-term and repeated FMT treatment. The type of feces, the optimal dose, the best frequency, and the route of administration of FMT, including enemas, colonoscopic administration, or application of oral capsules, are all aspects that require extra attention regarding the treatment of IBD in treatment protocol development (79). Clinical remission rates for FMT for IBD are moderate, and patient response varies widely, even among patients receiving the same treatment regimen (80). These suggest that FMT treatment of IBD possesses significant individual differences in efficacy. The lack of adequate predictive targets or diagnostic models has caused the clinical long-term effectiveness of FMT in patients with IBD to be unmeasured (81). In particular, it is a worthwhile direction to explore the effects and long-term benefits that FMT may have on high-risk patients with IBD with poor prognoses (82).

Lastly, despite the wealth of studies included in this review, there are several important limitations of the current review that should be noted. The current research on FMT for IBD is sparse and the mechanisms are not yet fully

understood, with existing studies primarily focusing on the microbiological and metabolomic changes in the recipient's gut and their relationship with clinical outcomes (83,84). However, many other key factors such as mucosal immunity, immune-mediated regulation of microbial communities, and their interactions with host responses have not been sufficiently explored in the literature (85). This limitation indicates a gap in our understanding of the full range of mechanisms that contribute to the therapeutic effects of FMT.

In addition, some studies included in this review were limited by small sample sizes, and there was variability in the follow-up duration and standardization of counseling and follow-up procedures. These methodological inconsistencies reduce the reliability of the results. Moreover, the data supporting the efficacy of FMT for IBD could have been strengthened by more robust and standardized trial designs (86,87). Inconsistent outcomes are also likely influenced by factors such as differences in donor selection, fecal administration methods, and preparation techniques (88,89), making it difficult to definitively determine the effectiveness of various FMT regimens.

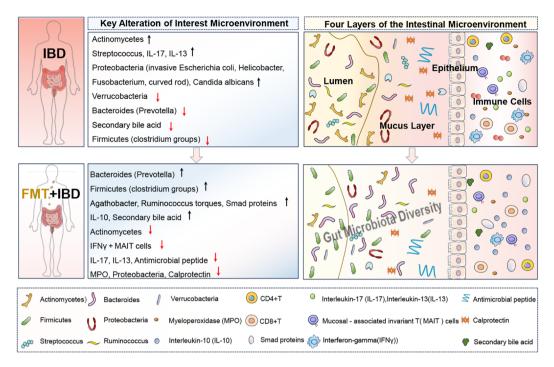


Figure 2 Changes in microflora, immune cells, and inflammatory factors in recipient patients with IBD by FMT. In patients with IBD, the abundance of *Bacteroides* and *Firmicutes* is reduced, leading to an immune imbalance characterized by a disrupted T cell composition. Additionally, there is a decrease in *Verrucobacteria* and secondary bile acids, while *Proteobacteria* and *Actinobacteria* are increased, contributing to the exacerbation of intestinal inflammation. Following FMT therapy, levels of antimicrobial peptides, calprotectin, IFN-γ, MAIT cells, IL-17, MPO and IL-13 are downregulated, while Smad proteins and IL-10 are upregulated. Furthermore, part of the *Bacteroides* and *Firmicutes* populations are restored. FMT, fecal microbiota transplantation; IBD, inflammatory bowel disease; IFN-γ, interferon-gamma; IL, interleukin; MAIT, mucosal-associated invariant T; MPO, myeloperoxidase.

Another issue is the heterogeneity of study designs (90). For example, differences in criteria for defining biological response, length of follow-up, sample size, ethnicity, disease subtype, and type of biological agent can all affect the generalizability of predictive models (91,92). The number of IBD studies is relatively small and more multicenter studies must be conducted to increase the number of samples and variables, such as IBD characteristics, phenotypic and genotypic characteristics of patients, and standardization of treatment regimens (41). Matijašić et al. (93) summarized present treatment options with gut microbiota composition and regulation of metabolic activity to treat or prevent the progression of IBD, such as dietary interventions, the use of probiotics, prebiotics, synbiotics, and antibiotics, and FMT. However, the underlying mechanisms of IBD were not fully interpreted, and knowledge of specific triggers and diagnostic markers for interventional approaches to IBD remained lacking (94,95). Thus, larger studies are needed to determine the role of microbiome in treating and

preventing IBD.

Conclusions

In conclusion, we have systematically retrospectively analyzed animal studies and clinical studies of FMT in the treatment of rCDI, CD, and UC, showing that FMT has definite advantages in improving IBD by improving the abundance and composition of the intestinal bacteria (*Figure 2*).

The therapeutic effect of FMT can be combined with other nutritional and endoscopic treatments, to possibly achieve a synergistic effect. In addition, FMT has displayed certain differences in different cohorts due to differences in age groups, disease duration, and populations. Subsequent extensive basic and clinical studies focusing on the preservation of fecal bacteria, the selection of donor recipients, and the optimization of treatment protocols are still needed to comprehensively uncover and promote the cutting-edge progress of FMT for IBD.

Acknowledgments

None.

Footnote

Peer Review File: Available at https://tgh.amegroups.com/article/view/10.21037/tgh-24-138/prf

Funding: This work was supported by the Nature Science Foundation of Hubei Province (No. 2020CFB685), and the Public Hygiene and Health Commission of Shenzhen Municipality of Integration of Medical and Preventive Services with Traditional Chinese Medicine Group Project (No. [2019]No.25).

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://tgh.amegroups.com/article/view/10.21037/tgh-24-138/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Danne C, Skerniskyte J, Marteyn B, et al. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024;21:184-97.
- Honap S, Jairath V, Danese S, et al. Navigating the complexities of drug development for inflammatory bowel disease. Nat Rev Drug Discov 2024;23:546-62.
- Balderramo D, Quaresma AB, Olivera PA, et al.
 Challenges in the diagnosis and treatment of inflammatory bowel disease in Latin America. Lancet Gastroenterol Hepatol 2024;9:263-72.

- 4. Dibley L, Duffy M. Inflammatory bowel disease health care for LGTBQIA+ patients. Lancet Gastroenterol Hepatol 2024;9:100-1.
- 5. Sebastian S, Siegmund B, Teferra F, et al. Promoting equity in inflammatory bowel disease: a global approach to care. Lancet Gastroenterol Hepatol 2024;9:192-4.
- van Munster KN, Bergquist A, Ponsioen CY. Inflammatory bowel disease and primary sclerosing cholangitis: One disease or two? J Hepatol 2024;80:155-68.
- Hashash JG, Elkins J, Lewis JD, et al. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024;166:521-32.
- Pan Y, Zhang H, Li M, et al. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024;16:2356284.
- Imdad A, Pandit NG, Zaman M, et al. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 2023;4:CD012774.
- Nielsen OH, Gubatan JM, Kolho KL, et al. Updates on the management of inflammatory bowel disease from periconception to pregnancy and lactation. Lancet 2024;403:1291-303.
- 11. Singh S, Boland BS, Jess T, et al. Management of inflammatory bowel diseases in older adults. Lancet Gastroenterol Hepatol 2023;8:368-82.
- 12. Hou M, Leng Y, Shi Y, et al. Astragalus membranaceus as a Drug Candidate for Inflammatory Bowel Disease: The Preclinical Evidence. Am J Chin Med 2023;51:1501-26.
- Gu X, Chen ZH, Zhang SC. Fecal microbiota transplantation in childhood: past, present, and future. World J Pediatr 2023;19:813-22.
- Federici S, Kviatcovsky D, Valdés-Mas R, et al. Microbiome-phage interactions in inflammatory bowel disease. Clin Microbiol Infect 2023;29:682-8.
- Zhang Y, Wang T, Sun M, et al. Advanced Nanomedicine: Redefining Therapeutic Paradigms for Inflammatory Bowel Disease. Adv Healthc Mater 2023;12:e2300069.
- 16. Zou C, Zan X, Jia Z, et al. Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin Transl Med 2023;13:e1479.
- 17. Sugihara K, Kamada N. Metabolic network of the gut microbiota in inflammatory bowel disease. Inflamm Regen 2024:44:11.
- 18. Macaluso FS, Caprioli F, Benedan L, et al. The management of patients with inflammatory bowel disease-associated spondyloarthritis: Italian Group for

- the Study of Inflammatory Bowel Disease (IG-IBD) and Italian Society of Rheumatology (SIR) recommendations based on a pseudo-Delphi consensus. Autoimmun Rev 2024;23:103533.
- Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol 2020;145:16-27.
- Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018;67:108-19.
- 21. Porcari S, Benech N, Valles-Colomer M, et al. Key determinants of success in fecal microbiota transplantation: From microbiome to clinic. Cell Host Microbe 2023;31:712-33.
- 22. Conrad MA, Bittinger K, Ren Y, et al. The intestinal microbiome of inflammatory bowel disease across the pediatric age range. Gut Microbes 2024;16:2317932.
- 23. Paik D, Yao L, Zhang Y, et al. Human gut bacteria produce T(H)17-modulating bile acid metabolites. Nature 2022;603:907-12.
- 24. Wang S, Dong Z, Wan X. Global, regional, and national burden of inflammatory bowel disease and its associated anemia, 1990 to 2019 and predictions to 2050: An analysis of the global burden of disease study 2019. Autoimmun Rev 2024;23:103498.
- 25. Burrello C, Giuffrè MR, Macandog AD, et al. Fecal Microbiota Transplantation Controls Murine Chronic Intestinal Inflammation by Modulating Immune Cell Functions and Gut Microbiota Composition. Cells 2019;8:517.
- 26. Yang Y, Zheng X, Wang Y, et al. Human Fecal Microbiota Transplantation Reduces the Susceptibility to Dextran Sulfate Sodium-Induced Germ-Free Mouse Colitis. Front Immunol 2022;13:836542.
- 27. Qiu J, Wu C, Gao Q, et al. Effect of fecal microbiota transplantation on the TGF- β 1/Smad signaling pathway in rats with TNBS-induced colitis. Ann Transl Med 2022;10:825.
- Huang WQ, Huang HL, Peng W, et al. Altered Pattern of Immunoglobulin A-Targeted Microbiota in Inflammatory Bowel Disease After Fecal Transplantation. Front Microbiol 2022;13:873018.
- Ihekweazu FD, Fofanova TY, Queliza K, et al. Bacteroides ovatus ATCC 8483 monotherapy is superior to traditional fecal transplant and multi-strain bacteriotherapy in a murine colitis model. Gut Microbes 2019;10:504-20.
- 30. Xu B, Fu Y, Yin N, et al. Bacteroides thetaiotaomicron and

- Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis. Am J Physiol Gastrointest Liver Physiol 2024;326:G607-21.
- 31. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn's disease. Lancet 2017;389:1741-55.
- 32. Wu R, Xiong R, Li Y, et al. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023;141:103062.
- Aitken JM, Aitken JE, Agrawal G. Mycobacterium avium ssp. paratuberculosis and Crohn's Disease-Diagnostic Microbiological Investigations Can Inform New Therapeutic Approaches, Antibiotics (Basel) 2024;13:158.
- 34. Caio G, Lungaro L, Caputo F, et al. Nutritional Treatment in Crohn's Disease. Nutrients 2021;13:1628.
- Hansen T, Duerksen DR. Enteral Nutrition in the Management of Pediatric and Adult Crohn's Disease. Nutrients 2018;10:537.
- 36. Hoelz H, Heetmeyer J, Tsakmaklis A, et al. Is Autologous Fecal Microbiota Transfer after Exclusive Enteral Nutrition in Pediatric Crohn's Disease Patients Rational and Feasible? Data from a Feasibility Test. Nutrients 2023;15:1742.
- 37. Sokol H, Landman C, Seksik P, et al. Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. Microbiome 2020;8:12.
- 38. Zou B, Liu S, Li X, et al. Repeated and multiple fecal microbiota transplantations plus partial enteral nutrition as the first-line treatment in active pediatric Crohn's disease. Front Cell Infect Microbiol 2023;13:1083236.
- 39. Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024;23:381-403.
- 40. Song JH, Kim YS. Recurrent Clostridium difficile Infection: Risk Factors, Treatment, and Prevention. Gut Liver 2019;13:16-24.
- 41. Minkoff NZ, Aslam S, Medina M, et al. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst Rev 2023;4:CD013871.
- 42. Costello SP, Conlon MA, Vuaran MS, et al. Faecal microbiota transplant for recurrent Clostridium difficile infection using long-term frozen stool is effective: clinical efficacy and bacterial viability data. Aliment Pharmacol Ther 2015;42:1011-8.
- 43. Porcari S, Baunwall SMD, Occhionero AS, et al. Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease:

- A systematic review and meta-analysis. J Autoimmun 2023;141:103036.
- 44. Fareed S, Sarode N, Stewart FJ, et al. Applying fecal microbiota transplantation (FMT) to treat recurrent Clostridium difficile infections (rCDI) in children. PeerJ 2018:6:e4663.
- 45. Gholam-Mostafaei FS, Azimirad M, Naseri K, et al. Intestinal microbiota changes pre- and post-fecal microbiota transplantation for treatment of recurrent Clostridioides difficile infection among Iranian patients with concurrent inflammatory bowel disease. Front Microbiol 2023;14:1147945.
- 46. Chen LA, Oliva-Hemker M, Radin A, et al. Longitudinal Bile Acid Composition Changes Following Faecal Microbiota Transplantation for Clostridioides difficile Infection in Children With and Without Underlying Inflammatory Bowel Disease. J Crohns Colitis 2023;17:1364-8.
- 47. van Lingen EE, Baunwall SSMD, Lieberknecht SSC, et al. Short- and long-term follow-up after fecal microbiota transplantation as treatment for recurrent Clostridioides difficile infection in patients with inflammatory bowel disease. Therap Adv Gastroenterol 2023;16:17562848231156285.
- 48. Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014;109:1065-71.
- Cho S, Spencer E, Hirten R, et al. Fecal Microbiota Transplant for Recurrent Clostridium difficile Infection in Pediatric Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2019;68:343-7.
- Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med 2016;11:56-61.
- 51. Ordás I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet 2012;380:1606-19.
- 52. Krugliak Cleveland N, Torres J, Rubin DT. What Does Disease Progression Look Like in Ulcerative Colitis, and How Might It Be Prevented? Gastroenterology 2022;162:1396-408.
- 53. Nakase H, Sato N, Mizuno N, et al. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev 2022;21:103017.
- 54. Shen ZH, Zhu CX, Quan YS, et al. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 2018;24:5-14.

- 55. Moayyedi P, Surette MG, Kim PT, et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015;149:102-109.e6.
- Costello SP, Hughes PA, Waters O, et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA 2019;321:156-64.
- 57. Mańkowska-Wierzbicka D, Stelmach-Mardas M, Gabryel M, et al. The Effectiveness of Multi-Session FMT Treatment in Active Ulcerative Colitis Patients: A Pilot Study. Biomedicines 2020;8:268.
- 58. Crothers JW, Chu ND, Nguyen LTT, et al. Daily, oral FMT for long-term maintenance therapy in ulcerative colitis: results of a single-center, prospective, randomized pilot study. BMC Gastroenterol 2021;21:281.
- Porcari S, Severino A, Rondinella D, et al. Fecal microbiota transplantation for recurrent Clostridioides difficile infection in patients with concurrent ulcerative colitis. J Autoimmun 2023;141:103033.
- 60. Leibovitzh H, Sarbagili Shabat C, Hirsch A, et al. Faecal Transplantation for Ulcerative Colitis From Diet Conditioned Donors Followed by Dietary Intervention Results in Favourable Gut Microbial Profile Compared to Faecal Transplantation Alone. J Crohns Colitis 2024;18:1606-14.
- 61. Karolewska-Bochenek K, Grzesiowski P, Banaszkiewicz A, et al. A Two-Week Fecal Microbiota Transplantation Course in Pediatric Patients with Inflammatory Bowel Disease. Adv Exp Med Biol 2018;1047:81-7.
- 62. Allegretti JR, Kelly CR, Grinspan A, et al. Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent C. difficile Infection. Inflamm Bowel Dis 2021;27:1371-8.
- 63. Tian H, Cui J, Ye C, et al. Depletion of butyrate-producing microbes of the Firmicutes predicts nonresponse to FMT therapy in patients with recurrent Clostridium difficile infection. Gut Microbes 2023;15:2236362.
- Walter J, Shanahan F. Fecal microbiota-based treatment for recurrent Clostridioides difficile infection. Cell 2023;186:1087.
- Benech N, Barbut F, Fitzpatrick F, et al. Update on microbiota-derived therapies for recurrent Clostridioides difficile infections. Clin Microbiol Infect 2024;30:462-8.
- 66. Khanna S, Assi M, Lee C, et al. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent

- Clostridioides difficile Infection. Drugs 2022;82:1527-38.
- 67. Blair HA. SER-109 (VOWSTTM): A Review in the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2024;84:329-36.
- 68. McChalicher CWJ, Lombardo MJ, Khanna S, et al. Manufacturing Processes of a Purified Microbiome Therapeutic Reduce Risk of Transmission of Potential Bacterial Pathogens in Donor Stool. J Infect Dis 2023;228:1452-5.
- 69. Kraft CS, Sims M, Silverman M, et al. Integrated Safety and Efficacy Analyses of Phase 3 Trials of a Microbiome Therapeutic for Recurrent CDI. Infect Dis Ther 2024;13:2105-21.
- 70. Yau YK, Lau LHS, Lui RNS, et al. Long-Term Safety Outcomes of Fecal Microbiota Transplantation: Real-World Data Over 8 Years From the Hong Kong FMT Registry. Clin Gastroenterol Hepatol 2024;22:611-620.e12.
- Hediyal TA, Vichitra C, Anand N, et al. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024;15:1324018.
- 72. Ianiro G, Bibbò S, Scaldaferri F, et al. Fecal microbiota transplantation in inflammatory bowel disease: beyond the excitement. Medicine (Baltimore) 2014;93:e97.
- 73. Andary CM, Al KF, Chmiel JA, et al. Dissecting mechanisms of fecal microbiota transplantation efficacy in disease. Trends Mol Med 2024;30:209-22.
- 74. Cui B, Li P, Xu L, et al. Step-up fecal microbiota transplantation (FMT) strategy. Gut Microbes 2016;7:323-8.
- Wang ZK, Yang YS, Chen Y, et al. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol 2014;20:14805-20.
- 76. Nooij S, Vendrik KEW, Zwittink RD, et al. Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. Genome Med 2024;16:37.
- 77. Lam S, Bai X, Shkoporov AN, et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol 2022;7:472-84.
- 78. Jamal R, Messaoudene M, de Figuieredo M, et al. Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol 2023;67:101754.
- 79. Kelly CR, Kim AM, Laine L, et al. The AGA's Fecal

- Microbiota Transplantation National Registry: An Important Step Toward Understanding Risks and Benefits of Microbiota Therapeutics. Gastroenterology 2017;152:681-4.
- 80. Ianiro G, Punčochář M, Karcher N, et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat Med 2022;28:1913-23.
- 81. Liu Q, Xu Z, Dai M, et al. Faecal microbiota transplantations and the role of bacteriophages. Clin Microbiol Infect 2023;29:689-94.
- 82. Shao T, Hsu R, Hacein-Bey C, et al. The Evolving Landscape of Fecal Microbial Transplantation. Clin Rev Allergy Immunol 2023;65:101-20.
- 83. Yuan C, He Y, Xie K, et al. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023;13:1282431.
- 84. Qu Z, Tian P, Yang B, et al. Fecal microbiota transplantation for diseases: Therapeutic potential, methodology, risk management in clinical practice. Life Sci 2022;304:120719.
- 85. Hocking L, Ianiro G, Leong RW, et al. Faecal microbiota transplantation for recurrent C. difficile infections: challenges and improvement opportunities for clinical practice and healthcare systems. Aliment Pharmacol Ther 2023;57:549-64.
- 86. Wu D, Zhang C, Liu Y, et al. Beyond faecal microbiota transplantation, the non-negligible role of faecal virome or bacteriophage transplantation. J Microbiol Immunol Infect 2023;56:893-908.
- 87. Behling AH, Wilson BC, Ho D, et al. Horizontal gene transfer after faecal microbiota transplantation in adolescents with obesity. Microbiome 2024;12:26.
- 88. Podlesny D, Durdevic M, Paramsothy S, et al. Identification of clinical and ecological determinants of strain engraftment after fecal microbiota transplantation using metagenomics. Cell Rep Med 2022;3:100711.
- 89. Hartikainen AK, Khan I, Karjalainen EK, et al. Microbiota and mucosal gene expression of fecal microbiota transplantation or placebo treated patients with chronic pouchitis. Gut Microbes 2024;16:2295445.
- 90. Rashidi A, Ebadi M, Rehman TU, et al. Long- and short-term effects of fecal microbiota transplantation on antibiotic resistance genes: results from a randomized placebo-controlled trial. Gut Microbes 2024;16:2327442.
- 91. Ting NL, Lau HC, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022;71:1412-25.

- 92. Yan M, Man S, Sun B, et al. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023;8:443.
- 93. Matijašić M, Meštrović T, Perić M, et al. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. Int J Mol Sci 2016;17:578.
- 94. Macareño-Castro J, Solano-Salazar A, Dong LT, et

doi: 10.21037/tgh-24-138

Cite this article as: Bi Y, Cheng B, Zou B, Liu S, Cui Z. The current landscape of fecal microbiota transplantation in treating inflammatory bowel disease. Transl Gastroenterol Hepatol 2025;10:55.

- al. Fecal microbiota transplantation for Carbapenem-Resistant Enterobacteriaceae: A systematic review. J Infect 2022;84:749-59.
- 95. Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. Adv Sci (Weinh) 2023;10:e2301097.