
Phenotyping of Nod1/2 double deficient mice and
characterization of Nod1/2 in systemic inflammation
and associated renal disease

Ingrid Stroo1,*, Loes M. Butter1, Nike Claessen1, Gwen J. Teske1, Stephen J. Rubino2, Stephen E. Girardin2,
Sandrine Florquin1 and Jaklien C. Leemans1

1Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada

*Author for correspondence (i.stroo@amc.uva.nl)

Biology Open 1, 1239–1247
doi: 10.1242/bio.2012554
Received 13th December 2011
Accepted 19th September 2012

Summary
It is indispensable to thoroughly characterize each animal

model in order to distinguish between primary and secondary

effects of genetic changes. The present study analyzed Nod1

and Nod2 double deficient (Nod1/2 DKO) mice under

physiological and inflammatory conditions. Nod1 and Nod2

are members of the Nucleotide-binding domain and Leucine-

rich repeat containing Receptor (NLR) family. Several

inflammatory disorders, such as Crohn’s disease and

asthma, are linked to genetic changes in either Nod1 or

Nod2. These associations suggest that Nod1 and Nod2 play

important roles in regulating the immune system.

Three-month-old wildtype (Wt) and Nod1/2 DKO mice

were sacrificed, body and organ weight were determined, and

blood was drawn. Except for lower liver weight in Nod1/2

DKO mice, no differences were found in body/organ weight

between both strains. Leukocyte count and composition was

comparable. No significant changes in analyzed plasma

biochemical markers were found. Additionally, intestinal

and vascular permeability was determined. Nod1/2 DKO

mice show increased susceptibility for intestinal permeability

while vascular permeability was not affected. Next we

induced septic shock and organ damage by administering

LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice

and sacrificed animals after 2 and 24 hours. The systemic

inflammatory and metabolic response was comparable

between both strains. However, renal response was different

as indicated by partly preserved kidney function and tubular

epithelial cell damage in Nod1/2 DKO at 24 hours.

Remarkably, renal inflammatory mediators Tnfa, KC and

Il-10 were significantly increased in Nod1/2 DKO compared

with Wt mice at 2 hours.

Systematic analysis of Nod1/2 DKO mice revealed a

possible role of Nod1/2 in the development of renal disease

during systemic inflammation.
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an Open Access article distributed under the terms of the

Creative Commons Attribution Non-Commercial Share Alike

License (http://creativecommons.org/licenses/by-nc-sa/3.0).
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Introduction
Nod1 and Nod2 are members of the nucleotide-binding domain

and leucine-rich repeat containing receptor (NLR) family, which

are intracellular pattern recognition receptors (PRRs) involved in

the rapid response against invading bacterial pathogens. High
structural homology is found among NLR members, i.e. a C-

terminal leucine-rich repeat domain, and a central Nod (also

known as NACHT) domain. The N-terminal region of Nod1 and
Nod2 is composed of one or two caspase-recruitment domains

(CARD) respectively. Different sub-structures of peptidoglycan

(PGN), a component of the bacterial cell wall, can signal via

Nod1 and Nod2 to induce the production of pro-inflammatory
cytokines via NFkB activation (Inohara et al., 1999; Iwanaga et

al., 2003; Ogura et al., 2001). Nod1 senses diaminopimelic acid

(DAP)-containing PGN, which is found mainly in Gram2

bacteria (Chamaillard et al., 2003; Girardin et al., 2003a),
while Nod2 senses muramyl dipeptide (MDP) a component of

PGN present in Gram2 and Gram+ bacteria (Girardin et al.,

2003b; Inohara et al., 2003). Expression of both NLRs is found in

leukocytes and various tissues including lung, spleen, liver, and
kidney (Inohara et al., 1999; Iwanaga et al., 2003; Ogura et al.,

2001). Because of their high similarity, it is not surprising that

Nod1 and Nod2 contribute in a redundant manner to the immune

response following infection (Geddes et al., 2010; Kim et al.,
2008; Park et al., 2009).

Several groups have generated and used knockout mice to
unravel the role of Nod1 and Nod2 under normal circumstances,

in inflammatory disorders and during bacterial infection (Le

Bourhis et al., 2007). The analysis of phenotypic abnormalities in

these mice already provided some clues to the physiological role
of Nod1 or Nod2. Nod12/2 mice have reduced numbers of

isolated lymphoid follicles in the distal ileum and colon and

additionally the total bacterial flora was expanded 100-fold in the

ileum (Bouskra et al., 2008). Recently, Clarke et al. observed that
neutrophils from Nod12/2 mice showed defects in basal level of

bacterial killing (Clarke et al., 2010). Although Nod22/2 mice
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displayed macroscopically no abnormalities and no overt

symptoms of intestinal inflammation (Barreau et al., 2007;

Kobayashi et al., 2005; Petnicki-Ocwieja et al., 2009), abnormal

development and function of the Peyer’s patches, characterized

by an exaggerated immune response and increased intestinal

permeability, was observed (Barreau et al., 2007; Barreau et al.,

2010). In addition, increased bacterial loads were present in the

terminal ileum of Nod22/2 mice (Petnicki-Ocwieja et al., 2009).

These results indicate that normal functionality of Nod1 and

Nod2 in the intestine is important in maintaining homeostasis

between microbiota and the host immune system. Nod1 and

Nod2 double knockout (Nod1/2 DKO) have, however, not yet

been characterized under physiological conditions.

NLRs are genetically linked to inflammatory disorders. A well

known association is the one between Nod2 and Crohn’s disease,

a chronic idiopathic inflammatory bowel disease. Reduced or lost

ability to sense MDP and subsequently activate NFkB has been

reported for some Crohn’s disease-associated Nod2 mutations

(Inohara et al., 2003; Ogura et al., 2003). In addition, several

missense mutations of Nod2, resulting in constitutive NFkB

activation and enhanced response to MDP, cause Blau syndrome

(Miceli-Richard et al., 2001) and early-onset sarcoidosis

(Kanazawa et al., 2005), two autosomal dominant disorders

characterized by early-onset granulomatous inflammation

involving the skin, eyes, and joints. Graft-versus-host disease

has also been reported to be more severe in patients bearing

certain Nod2 polymorphisms (Penack et al., 2010); however, this

could not be confirmed in a Japanese population (Tanabe et al.,

2011). Several Nod1 polymorphisms have been associated with

susceptibility to asthma (Hysi et al., 2005), atopic eczema

(Weidinger et al., 2005), and allergy (Eder et al., 2006). These

associations suggest that Nod1 and Nod2 play an important role

in regulating the immune system.

The ability of Nod1 or Nod2 agonist to induce an inflammatory

response in vivo is under debate. Several studies reported the

production of pro-inflammatory cytokines upon administration of

PGN, MDP or synthetic Nod1 or Nod2 agonists that was abolished

in Nod1 and/or Nod2 deficient mice (Cartwright et al., 2007;

Masumoto et al., 2006; Rosenzweig et al., 2008; Werts et al.,

2007). However, others have shown that stimulation with Nod1 or

Nod2 agonist alone does not induce the production of cytokines,

but co-administration of lipopolysaccharide and an agonist for

Nod1 or Nod2 enhances TLR-mediated responses (Chedid et al.,

1982; Kim et al., 2008; Kobayashi et al., 2005; Murch et al., 2008;

Park et al., 2009; Ribi et al., 1979). The reason for these

divergent results likely stems from the fact that different cell

populations respond to Nod stimulation with different

sensitivity thresholds.

In the present study we thoroughly analyzed Nod1/2 DKO

mice in order to gain insight into the possible physiological

significance of the simultaneous presence of Nod1 and Nod2

under basal conditions. In addition we analyzed systemic

inflammation occurring after co-administering LPS and PGN

into Wt and Nod1/2 DKO mice and focused on associated acute

kidney disease as this is the major cause of mortality during

sepsis (Chvojka et al., 2010).

Results
Weight, macroscopy and microscopy of Nod1/2 DKO mice

In order to characterize Nod1/2 DKO mice, we analyzed 3-

month-old Nod1/2 DKO mice and compared them with Wt mice

that were housed under the same circumstances. Body weight of

both mouse strains was comparable (Wt: 30.360.4 g; Nod1/2

DKO: 29.860.6 g) (Fig. 1a).

Upon sacrifice macroscopic analysis revealed no abnormalities

or differences between Wt and Nod1/2 DKO mice. Kidney,

Fig. 1. Body (a) and organ (b) weight of Wt
(white bars) and Nod1/2 DKO (black bars) mice
at the age of 3 months revealed no differences
except for liver weight, which was lower in Nod1/
2 DKO compared with Wt mice. (c) PasD-stained

kidney sections (magnification 206) of Wt
(upper) and Nod1/2 DKO (lower) mice showing
small cysts (asterisk). (d) HE-stained liver
sections (magnification 206) of Wt (upper) and
Nod1/2 DKO (lower) mice showing small
inflammatory infiltrates (white arrow). (e) HE-

stained small intestinal sections (magnification
46) of Wt (upper) and Nod1/2 DKO (lower) mice
including Peyer’s patches. Data are expressed as
mean 6 sem, n57. *P,0.05 compared with Wt.
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spleen, heart, small intestine and colon weight (per body weight)

were comparable between both mouse strains (Fig. 1b). Liver

weight was significantly lower in Nod1/2 DKO compared to Wt

(Wt: 51.761.3 g/kg body weight; Nod1/2 DKO: 43.761.6 g/kg

body weight, P,0.05) (Fig. 1b).

PasD-stained kidney and HE-stained spleen, liver, mesenteric

lymph nodes and intestinal (divided roughly into jejunum,

duodenum, ileum, and colon) sections were analyzed

microscopically. Typical hallmarks of aging were observed in

several sections of both Wt and Nod1/2 DKO mice, such as small

cysts in the kidney and small foci of inflammatory infiltrates in

the liver (Fig. 1c,d). On histological level no differences in

phenotype were observed between Nod1/2 DKO and Wt mice.

Notably, in the intestines we did not observe a difference in the

number of isolated lymphoid follicles or Peyer’s patches as has

been shown before in Nod1 KO (Bouskra et al., 2008) and Nod2

KO (Barreau et al., 2007; Barreau et al., 2010) mice respectively.

In line with our results, Biswas et al. observed similar numbers of

Peyer’s patches in naive mice between Wt and Nod2 KO (Biswas

et al., 2010). Examples of sections of a small intestine from Wt

and Nod1/2 DKO mice are depicted in Fig. 1e.

Peripheral leukocyte count and composition of Nod1/2 DKO

mice

Total peripheral blood leukocyte number was comparable

between Wt and Nod1/2 DKO mice (Fig. 2a). In addition, no

differences between the numbers of lymphocytes, granulocytes or

monocytes between both strains was observed (Fig. 2a).

Although absolute numbers of leukocyte populations were

similar, there was a slight but significant lower percentage of

granulocytes in Nod1/2 DKO mice while lymphocyte and

monocyte percentages were similar between both strains

(Fig. 2b).

Plasma biochemical analysis of Nod1/2 DKO mice

Plasma of Wt and Nod1/2 DKO mice was used to determine

several biochemical parameters that are predictors of a number of
pathological conditions (Table 1). Lactate dehydrogenase (LDH),

a marker of general organ damage, was comparable between Wt
and Nod1/2 DKO mice. The enzyme ASAT (aspartate
aminotransferase), which is found in the liver, heart muscle,

kidney, brain and red blood cells, can be elevated in plasma when
one of these organs is damaged. No significant differences in

plasma ASAT levels were observed between both strains. Levels
of plasma ALAT (alanine aminotransferase), an enzyme

predominantly found in the liver, are indicative of liver
damage. In line with LDH and ASAT, comparable levels of
ALAT were present in plasma of Wt and Nod1/2 DKO mice.

Elevated alkaline phosphatase is associated with a number of
pathological conditions such as liver and bone disease. No

difference in plasma alkaline phosphatase was observed between
Wt and Nod1/2 DKO mice. Amylase, a marker of pancreatitis, is
not significantly different between Wt and Nod1/2 DKO mice.

The renal function parameters ureum and creatinine were similar
between both strains. Albumin is the most abundant protein in

plasma and is important in the maintenance of an oncotic
pressure difference between plasma and the interstitial space.

Low albumin levels can indicate liver or kidney disease,
inflammation, shock, or malnutrition while high albumin levels
usually reflect dehydration. In line with the aforementioned

damage markers, plasma albumin was comparable between Wt
and Nod1/2 DKO mice. Non-fasting plasma glucose and

triglyceride levels were not significant different between Wt
and Nod1/2 DKO mice. Total cholesterol levels were not

detectable in 3 out of 7 Wt and 6 out of 7 Nod1/2 DKO mice.

Overall, in plasma no evidence of organ damage due to a
deficiency for Nod1/2 was found.

Intestinal and vascular permeability of Nod1/2 DKO mice

Recently Barreau et al. have shown increased intestinal

permeability in mice deficient for Nod2 (Barreau et al., 2010).
In Nod1 deficient mice intestinal permeability was not altered

under basal conditions (Chen et al., 2008). To investigate whether
intestinal permeability is changed in Nod1/2 DKO mice, we
determined FITC-dextran in plasma after oral gavage. As FITC-

dextran is not actively absorbed by the gut, the amount of
fluorescence detected in the serum is a direct measure of

intestinal permeability in vivo. Wt mice showed marginal

Fig. 2. Absolute number of leukocytes (a) and relative numbers of the different

leukocyte subsets as a percentage of total leukocyte count (b) in blood of 3-
month-old Wt (white bars) and Nod1/2 DKO mice (black bars). No differences
between both strains were observed in the total number of leukocytes. Nod1/2
DKO mice had slightly lower percentage of granulocytes as compared with Wt
mice. Data are expressed as mean 6 sem, n57. *P,0.05 compared with Wt.

Table 1. Biochemical analysis of Wt and NOD1/2

DKO plasma.

Wt Nod1/2 DKO

LDH (U/L) 229660 150619
ASAT (U/L) 127637 87612
ALAT (U/L) 4165 33610
Alkaline Phosphatase (U/L) 5766 5762
Amylase (U/L) 43116424 55886563
Ureum (mM) 9.560.6 8.361.2
Creatinine (mM) 1161 1162
Albumin (g/L) 1965 2561
Glucose (mM) 15.261.1 12.561.4
Triglyceride (mM) 1.560.1 1.360.2

Data are presented as mean 6 sem n57.
ALAT 5 alanine aminotransferase; ASAT 5 aspartate aminotransferase;

LDH 5 lactate dehydrogenase.
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intestinal permeability as indicated by low levels of FITC in

plasma (Fig. 3a). Interestingly, 2 out of 6 Nod1/2 DKO mice
showed markedly increased intestinal permeability while the rest

of the Nod1/2 DKO mice had levels comparable to Wt mice. This
might indicate that the Nod1/2 DKO mice are more susceptible to

increased intestinal permeability.

In addition we have determined the vascular permeability in

several organs by quantifying the amount of Evan’s Blue Dye
(EBD) per gram tissue 1 hour after intravenous administration.

EBD binds to albumin in the plasma and when extravasated is a
determinant of protein leakage and hence vascular permeability.
All examined organs had comparable levels of EBD between Wt

and Nod1/2 DKO mice indicating that vascular permeability was
similar (Fig. 3b).

Nod1/2 DKO mice and septic shock

To evaluate the role of Nod1 and Nod2 in septic shock, we

subjected Wt and Nod1/2 DKO mice to a model of severe
systemic inflammation resulting in multiple organ failure. First

we determined whether intraperitoneal administration of PGN
was sufficient to cause organ damage in Wt mice. Although

plasma LDH levels were increased 2 hours after injection, mice
showed no signs of discomfort and did not develop acute kidney

injury (AKI) after 24 hours as determined by plasma ureum and
creatinine levels (data not shown). We therefore co-administered

LPS and PGN to induce systemic inflammation and organ
damage in Wt and Nod1/2 DKO mice.

To investigate the systemic inflammatory response, plasma

cytokine levels were determined. Two hours after LPS+PGN
injection Tnfa, Il-1b, and KC were significantly increased in Wt

and Nod1/2 DKO mice and declined after 24 hours, no difference
between both strains was observed (Fig. 4a–c). Two hours after

LPS+PGN injection comparable Il-10 levels were observed in Wt
and Nod1/2 DKO mice, while after 24 hours Nod1/2 DKO had

significantly less Il-10 compared with Wt mice (Fig. 4d).

General organ damage was determined by plasma LDH. Two

and 24 hours after LPS+PGN injection plasma LDH levels were
significantly increased in Wt and Nod1/2 DKO mice, no
difference between both strains was observed (Fig. 4e).

Twenty-four hours following LPS+PGN injection, plasma
ASAT and ALAT levels were significantly increased in both

strains compared to control, however, no difference between both
strains was observed (Fig. 4f,g).

Since AKI is the major cause of mortality in severe sepsis, with
a prevalence of 20–50% (reviewed by Chvojka et al., 2010), we

investigated the role of Nod1 and Nod2 in sepsis-induced AKI in
more detail. First we determined the renal expression of Nod1

and Nod2 2 and 24 hours following LPS+PGN injection. Nod1

mRNA is significantly increased at both examined time-points,

while Nod2 mRNA is significantly increased 2 hours following

LPS+PGN injection and has returned to control levels at 24 hours

(Fig. 5a,b). Next we determined whether renal function was

differentially influenced by inducing septic shock in Wt and

Nod1/2 DKO mice. Renal function was determined by ureum and

creatinine plasma levels. Ureum was significantly increased

24 hours after LPS+PGN injection in both strains, no significant

difference between Wt and Nod1/2 DKO mice was observed

(Fig. 5c). Interestingly, creatinine was significantly increased in

Wt and not in Nod1/2 DKO mice 24 hours after injection. As a

consequence serum creatinine was significantly higher in Wt

compared to Nod1/2 DKO mice at this time-point (Fig. 5d). Thus

renal function was partly preserved in Nod1/2 DKO mice after
inducing systemic inflammation. PasD-stained kidney sections

were examined for histological signs of renal damage. Although

renal function was impaired in LPS+PGN treated mice, no

histological changes were present 2 or 24 hours following

treatment compared with control mice. This is in line with

previous reports showing only mild non-specific renal

histological changes in human and animal sepsis even when

renal dysfunction is evident (Langenberg et al., 2008). Since it is

difficult to demonstrate renal damage on histological level in this

mouse model, we analyzed the renal expression of kidney injury

molecule-1 (Kim-1), and neutrophil gelatinase-associated

lipocalin (Ngal) both sensitive biomarkers for AKI (Ko et al.,

2010). Both Kim-1 and Ngal are remarkably increased 24 hours
following LPS+PGN injection (Fig. 5e,f). Additionally, we

observed significant lower Kim-1 expression after 24 hours in

Nod1/2 DKO mice compared to Wt mice (Fig. 5e).

Since kidney function and tubular damage were partly

preserved in Nod1/2 DKO mice, we determined whether there

was a difference in renal pro- and anti-inflammatory cytokines
following LPS+PGN injection. In line with plasma cytokine

levels Tnfa, KC, Il-1b, and Il-10 were significantly increased

after 2 hours and returned to control levels after 24 hours

(Fig. 5g–j). Interestingly, Tnfa, KC and Il-10 were significantly

higher in Nod1/2 DKO compared with Wt mice 2 hours

following LPS+PGN injection (Fig. 5g,i,j).

In addition the influx of granulocytes and lymphocytes was

determined by scoring Ly6 and CD3e stained kidney sections

respectively. Two hours following LPS+PGN administration a

slight influx of granulocytes was observed that was similar

between both mouse strains. After 24 hours no infiltrating

granulocytes could be detected in kidneys of both mouse

strains (data not shown). Interstitial lymphocytes were not

increased following treatment at all examined time-points (data

not shown).

Although no significant differences in the systemic response

between Wt and Nod1/2 DKO were found upon LPS+PGN

Fig. 3. (a) Intestinal permeability was determined by the
concentration of FITC ([FITC]) in plasma of Wt (white bars) and
Nod1/2 DKO (black bars) 4 hours after oral administration of
4 kDa dextran-FITC. Low levels of FITC were detected in Wt
plasma. Two out of 6 Nod1/2 DKO mice showed markedly

increased plasma FITC levels indicating an increased intestinal
permeability as compared with Wt mice. (b) Vascular
permeability was determined 1 hour after i.v. injection of
20 mg/kg Evan’s Blue Dye (EBD). No differences between Wt
(white bars) and Nod1/2 DKO (black bars) mice was observed in
the extravasation of EBD into various organs. Data are expressed

as mean 6 sem, n56 (a) or n59 (b).
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injection, we did observe an altered response in the kidney in the

absence of Nod1/2.

Discussion
Prior to subjecting knockout mice to disease models, it is

important to first assess the phenotype of these animals in order

to distinguish between the primary and secondary effects of

genetic changes. Systemically analysis of over 100 mutant mice

revealed new and unexpected phenotypes in 96% of these

mutants, approximately one-third of these mouse lines had no

previously described phenotype, suggesting that phenotypes have

been overlooked even in mouse models that have been studied

extensively (Beckers et al., 2009). The present study is the first

that analyzed the phenotype of Nod1/2 DKO mice extensively,

and although our phenotypic screening is just a starting point, it

provides us already with essential information.

An interesting observation is the lower liver weight in Nod1/2

DKO mice while no differences in other organs or total body

weight were observed. Importantly, we observed no macro- or

microscopical abnormalities in all examined organs and, except

for increased number of Peyer’s Patches in two studies (Barreau

et al., 2007; Barreau et al., 2010), so far no microscopical

abnormalities are described for Nod2 KO mice (Barreau et al.,

2007; Body-Malapel et al., 2008). Recently Schertzer et al.

reported lower liver weight in Nod1/2 DKO mice after 16 weeks

on a high fat diet as compared to Wt mice (Schertzer et al., 2011).

They, however, do not report on the liver weights of mice

receiving a non-high fat diet. Interestingly, a role for Nod

proteins in diet-induced metabolic syndrome has been proposed

by Schertzer et al. (Schertzer et al., 2011).

Exciting discoveries in the last few years support a role for gut

microbiota as responsible for, and involved in, the perpetuation

of both insulin resistance and low-grade chronic inflammation

(Petruzzelli and Moschetta, 2010). Vijay-Kumar et al. were the

first to provide evidence of the direct relationship between

development of the metabolic syndrome, malfunction of the

innate immune system, and changes in the composition of the gut

microbiota (Vijay-Kumar et al., 2010). Mice deficient in the PRR

Tlr5, a main component of the innate immune system in the gut

mucosa, presented increased adiposity, which was associated

with clinical signs of metabolic syndrome such as elevated serum

triglycerides and cholesterol levels, increased blood pressure, and

insulin resistance (Vijay-Kumar et al., 2010). Since Nod1/2 DKO

mice have a lower risk at developing metabolic syndrome

Fig. 4. Plasma analysis of Wt (white bars) and Nod1/2
DKO (black bars) mice 2 hours and 24 hours after i.p.
injection of LPS+PGN or saline (control). Pro-
inflammatory cytokines Tnfa (a), Il-1b (b) and KC (c) were
significantly increased upon LPS+PGN injection and
returned to control levels after 24 hours, no differences

between both strains was observed. The anti-inflammatory
cytokine Il-10 (d) was not detectable in plasma of control
mice; however, it was present 2 and 24 hours after
LPS+PGN challenge with a significant lower level Nod1/2
DKO mice at 24 hours as compared with Wt mice. Plasma
damage marker LDH (e) was significant increased 2 hours

after LPS+PGN injection and increased further at 24 hours.
ASAT (f) and ALAT (g), two other organ damage markers,
were significantly increased 24 hours upon LPS+PGN
administration. All three damage markers were comparable
between Wt and Nod1/2 DKO mice at all examined time-
points. Data are expressed as mean 6 sem, n55–8.
*P,0.05
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(Schertzer et al., 2011), this might imply that in the gut Tlr and

Nod signaling have opposite effects. Indeed, it seems that Nod

signaling is important to control the inflammatory response

against commensal microbiota in the gut, as loss of function

results in inflammatory bowel disease (Strober et al., 2008).

Moreover, recently PGN is proposed as a potential trigger for

metabolic syndrome (Schertzer et al., 2011).

The role for Nods, especially Nod2, in the maintenance of

intestinal and microbiotic homeostasis has been described by

several groups. Nod2 is important in the maintenance of intestinal

epithelial integrity as has been shown by increased intestinal

permeability (Barreau et al., 2007; Barreau et al., 2010) in Nod2

KO mice. In the present study we demonstrate an increased

intestinal permeability in one-third of the Nod1/2 DKO mice. We

did not observe this in all our Nod1/2 DKO mice, which implies

that intestinal permeability is not a gradual phenomenon and

might need another trigger besides Nod1/2 deficiency to occur.

Next we questioned whether vascular integrity was also affected

by Nod1/2 deficiency. Expression of Nod1 and Nod2 in

endothelial cells has been shown previously (Davey et al.,

Fig. 5. Analysis of renal parameters in Wt (white
bars) and Nod1/2 DKO (black bars) 2 and 24 hours
after LPS+PGN or 24 hours after saline (control)
administration. In Wt mice the renal expression of
Nod1 (a) and Nod2 (b) was determined. Nod1 and

Nod2 mRNA was significantly increased 2 hours
after LPS+PGN injection, Nod1 mRNA increased
further at 24 hours while Nod2 expression returned to
control levels. Renal function was determined by
plasma ureum (c) and creatinine (d). Twenty-four
hours following LPS+PGN injection Wt mice

showed elevated levels of ureum and creatinine
indicating a decrease in renal function. Plasma
creatinine was not significantly increased in Nod1/2
DKO mice following LPS+PGN injection and was
significantly lower as compared to Wt mice at
24 hours following LPS+PGN injection. Renal
mRNA expression of Kim-1 (e), and Ngal (f) was

significantly increased 24 hours following LPS+PGN
compared with control, indicative of acute kidney
injury. Significantly lower Kim-1 levels were
observed in Nod1/2 DKO mice compared with Wt
mice at 24 hours after LPS+PGN injection. Renal
pro-inflammatory cytokine protein levels of Tnfa
(g), Il-1b (h) and KC (i) and the anti-inflammatory
cytokine Il-10 (j) were significantly increased after
2 hours and returned to control levels after 24 hours
in both strains. Significantly higher levels of Tnfa,
KC, and Il-10 were observed in Nod1/2 DKO mice as
compared with Wt mice after 2 hours. Data are

expressed as mean 6 sem, n55–8. *P,0.05
compared with control (a,b) or Wt (c–j).
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2006; Oh et al., 2005; Opitz et al., 2005; Scurrell et al., 2009);
however, their role in endothelial integrity has not been

described. We did not observe an altered vascular permeability
in mice deficient for Nod1/2. This indicates that although Nod1/2
plays a role in epithelial cell integrity, as demonstrated by

intestinal permeability, endothelial cell integrity is likely not
regulated by Nod1/2.

To investigate the role of Nod1/2 during systemic

inflammation we used the bacterial cell wall components PGN
and LPS to mimic the inflammatory response taking place during
sepsis. In our hands PGN alone did not induce a significant

inflammatory response resulting in organ damage – in contrast
with studies in rat, which show that PGN from S. aureus caused
moderate but significant increases in various plasma pro-
inflammatory and damage markers (Myhre et al., 2004; Wang

et al., 2004). This discrepancy can be explained by the different
PGN formulation we have used (E. coli versus S. aureus), or by a
difference in response among species (mouse versus rat).

However, in line with our results, others did not observe a
systemic effect of PGN administration alone (De Kimpe et al.,
1995). Several studies have reported a synergistic effect of Nod

agonist in combination with TLR agonist, either bacterial or viral
(Chamaillard et al., 2003; Fritz et al., 2006; Kim et al., 2011;
Park et al., 2007). Therefore we induced systemic inflammation
by co-administration of LPS and PGN. Although we did not

observe any differences between systemic responses of Wt and
Nod1/2 DKO mice, we did see significant differences in the
kidney indicating that there are tissue specific effects of Nod1/2

signaling. LPS+PGN injection resulted in a rapid increase in
Nod1 and Nod2 mRNA expression in the kidney. Surprisingly the
inflammatory response, both pro- and anti-inflammatory, was

significantly higher in Nod1/2 DKO compared with Wt mice.
This seemingly paradoxical result was also observed in a uveitis
model, where the inflammatory response was increased in the

absence of Nod2 (Rosenzweig et al., 2008). Our results may
imply that the presence of Nod1/2 is critical to suppress an
inflammatory response in the kidney. Although we observed an
increased early renal inflammatory response, at 24 hours renal

outcome was better in Nod1/2 DKO mice as demonstrated by
preserved renal function and less renal damage. A possible
explanation would be that the enhanced inflammatory response

results in a faster recovery of the kidney. Alternatively, Nod1/2
deficiency could have a beneficial effect on renal outcome by
affecting cell damage in a direct manner. Indeed, signaling via

Nod1 leads to induction of apoptosis (da Silva Correia et al.,
2007).

Overall, our phenotypic screening confirmed a role for Nod1/2

in protecting intestinal integrity. Most parameters of inflammation
and organ damage were, however, not affected by Nod1/2
deficiency under physiological or systemic inflammatory

conditions. One striking exception is the renal response upon
systemic inflammation; our results clearly indicate a role for Nod1
and/or Nod2 in sepsis-induced acute renal disease. Further

research is needed to identify the role of Nods in other renal
disorders.

Materials and Methods
Mice
C57Bl/6 (Wt) mice were purchased from Janvier (Le Genest, France). Nod1 and
Nod2 double knockout (Nod1/2 DKO) mice were generated as described before
(Geddes et al., 2010; Schertzer et al., 2011), and bred in the animal facility of the
Academic Medical Center in Amsterdam. Mutant mice were backcrossed at least

10 generations into the C57Bl/6 background. Age-matched male mice were used in
all experiments. The Animal and Use Committee of the University of Amsterdam
approved all experiments.

Phenotype analysis
Three-month-old mice were used to perform phenotype analysis (n57). Wt mice
were purchased at the age of 7 weeks and maintained in our animal facility until
sacrifice. At the time of sacrifice weight was determined and mice were
anesthetized by inhalation of 3% isofluran, 0.2% N2O and 2% O2. Blood was
collected by heart puncture in heparin-containing tubes. Liver, spleen, kidneys,
intestines (divided into jejunum, duodenum, ileum, and colon), and mesenteric
lymph nodes were removed and stored o/n in 10% formalin prior to embedding in
paraffin. The intestinal parts were cut open longitudinal and rolled up before
embedding in paraffin.

Histology
Formalin-fixed tissue was embedded in paraffin using standard procedures. Four-
mm thick sections were cut and used for all stainings. For examining renal
histology, sections were stained with periodic acid-Schiff reagents after diastase
digestion (PasD). Histology of all other organs was examined on Haematoxylin/
Eosin (HE) stained sections. PasD and HE stained sections were analyzed in a
blinded fashion by a pathologist.

Leukocyte analysis
Count and composition of leukocytes was determined in whole blood using a
Coulter Ac T diff2 (Beckman Coulter, Mijdrecht, The Netherlands).

Plasma biochemical analysis
Using standard autoanalyzer methods plasma levels of ureum, creatinine, alanine
aminotransferase (ALAT), aspartate aminotransferase (ASAT), lactate dehydrogenase
(LDH), albumin, alkaline phosphatase, amylase, glucose, total cholesterol, and
triglyceride were determined by our hospital research facility.

Intestinal permeability
Three-month-old Wt and Nod1/2 DKO mice (n56) were fasted o/n (water ad

libitum). The following morning 500 mg/kg FITC-dextran (4 kD; Sigma–Aldrich,
Zwijndrecht, The Netherlands) was administered orally. After 4 hours mice were
sacrificed and blood was collected by heart puncture in heparin-containing tubes.
The concentration of FITC in plasma was measured with a Synergy HT Multi-
Mode microplate reader (BioTek, Bad Friedrichshall, Germany).

Vascular permeability
One hour after intravenous administration of 20 mg/kg Evan’s Blue Dye (Sigma–
Aldrich), 3-month-old Wt and Nod1/2 DKO mice (n59) were sacrificed by
perfusion through the left cardiac ventricle with ice-cold PBS. Colon, ileum, heart,
kidney, liver, lung, and spleen were removed, dried and weighed. Tissues were
homogenized in 4 ml/g formamide, and EBD was extracted by incubation for
48 hours at room temperature. Tissue debris was removed by spinning down for
30 min at 5000 g, concentration of EBD in the supernatant was determined at
620 nm. Extravasation is expressed as mg EBD per g tissue (dry weight).

Systemic inflammation
Eight to 12-week-old Wt and Nod1/2 DKO mice (n56–8) received an
intraperitoneal injection of 7.5 mg/kg LPS (from E. coli O111:B4; Sigma) and
1 mg/kg PGN (from E. coli K12; InvivoGen, San Diego, CA, USA) in saline. Two
and 24 hours after LPS+PGN injection mice were sacrificed, blood was collected
by heart puncture in heparin-containing tubes and kidneys were removed. Kidneys
were snap frozen in liquid nitrogen and stored at 280 C̊ or fixed in 10% formalin
o/n prior to further processing. Control mice were sacrificed 24 hours after
intraperitoneal injection of saline.

RNA isolation and quantitative real-time RT-PCR
Total RNA was isolated from snap frozen kidney using the TRIzolH reagent
(Invitrogen, Breda, the Netherlands) method. Complementary DNA (cDNA) was
synthesized using the M-MLV RT enzyme kit (Invitrogen), oligo dT primers
(Sigma) and RNase inhibitor (Applied Biosystem, Nieuwerkerk a/d Ijssel, the
Netherlands) according to the manufacturer’s protocol. Primer sequences were
designed based on Primer3 software (Rozen and Skaletsky, 2000): Nod1 forward
59-tcagactcagcgtcaaccag-39 and reverse 59-taaacccaggaacgtcacga-39, Nod2 forward
59-gggagatgttggagtggaac-39 and reverse 59-agcgaagagcacactcaacc-39, Kim-1

forward 59-tggttgccttccgtgtctct-39 and reverse 59-tcagctcgggaatgcacaa-39, Ngal

forward 59-gcctcaaggacgacaacatc-39 and reverse 59-ctgaaccattgggtctctgc-39, and
Hprt forward 59-tcctcctcagaccgctttt-39 and reverse 59-cctggttcatcatcgctaatc-39. All
primers were synthesized by Eurogentec (Maastricht, the Netherlands).
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Quantitative real-time RT-PCR was performed on a LightCyclerH 480 System
(Roche) using LightCyclerH 480 SYBR Green I Master mix (Roche). Forty-five
cycles were carried out at an annealing temperature of 58 C̊. The starting
concentrations of RNAs were calculated by the LinRegPCR program (version 9.30
beta) as described previously (Ramakers et al., 2003). The expression of genes was
normalized towards the housekeeping gene Hprt. The data are presented as fold
increase compared with Wt control kidney.

ELISA
Frozen kidneys were blended in PBS containing 1% Triton X-100, 1 mM EDTA
and 1% protease inhibitor cocktail II (Sigma–Aldrich). KC, Il-1b, Il-10, and Tnfa
DuoSet ELISA kits (R&D Systems, Abingdon, UK) were performed according to
the supplied protocols. Renal cytokine levels were corrected for protein content per
sample using Bio-Rad Protein Assay (Bio-Rad, Veenendaal, The Netherlands).

Statistical analyses
All statistical analyses were performed using Graphpad 4 software (San Diego,
CA, USA). Data were analyzed using the non-parametric Mann–Whitney U-test
and these results are expressed as mean 6 standard error of the mean (sem).
Values of P#0.05 were considered statistically significant.
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Matějovič, M. (2010). New developments in septic acute kidney injury. Physiol. Res.

59, 859-869.

Clarke, T. B., Davis, K. M., Lysenko, E. S., Zhou, A. Y., Yu, Y. and Weiser, J. N.
(2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances
systemic innate immunity. Nat. Med. 16, 228-231.

da Silva Correia, J., Miranda, Y., Leonard, N., Hsu, J. and Ulevitch, R. J. (2007).
Regulation of Nod1-mediated signaling pathways. Cell Death Differ. 14, 830-839.

Davey, M. P., Martin, T. M., Planck, S. R., Lee, J., Zamora, D. and Rosenbaum,
J. T. (2006). Human endothelial cells express NOD2/CARD15 and increase IL-6
secretion in response to muramyl dipeptide. Microvasc. Res. 71, 103-107.

De Kimpe, S. J., Kengatharan, M., Thiemermann, C. and Vane, J. R. (1995). The
cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus
aureus act in synergy to cause shock and multiple organ failure. Proc. Natl. Acad. Sci.

USA 92, 10359-10363.

Eder, W., Klimecki, W., Yu, L., von Mutius, E., Riedler, J., Braun-Fahrländer, C.,

Nowak, D., Holst, O., Martinez, F. D. and the ALEX-Team. (2006). Association
between exposure to farming, allergies and genetic variation in CARD4/NOD1.
Allergy 61, 1117-1124.

Fritz, J. H., Ferrero, R. L., Philpott, D. J. and Girardin, S. E. (2006). Nod-like
proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250-1257.

Geddes, K., Rubino, S., Streutker, C., Cho, J. H., Magalhaes, J. G., Le Bourhis, L.,

Selvanantham, T., Girardin, S. E. and Philpott, D. J. (2010). Nod1 and Nod2
regulation of inflammation in the Salmonella colitis model. Infect. Immun. 78, 5107-
5115.

Girardin, S. E., Boneca, I. G., Carneiro, L. A., Antignac, A., Jéhanno, M., Viala, J.,
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