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Abstract
The nucleolytic ribozymes carry out site-specific RNA cleavage reactions
by nucleophilic attack of the 2′-oxygen atom on the adjacent phosphorus
with an acceleration of a million-fold or greater. A major part of this arises
from concerted general acid–base catalysis. Recent identification of new
ribozymes has expanded the group to a total of nine and this provides a
new opportunity to identify sub-groupings according to the nature of the
general base and acid. These include nucleobases, hydrated metal ions,
and 2′-hydroxyl groups. Evolution has selected a number of different
combinations of these elements that lead to efficient catalysis. These
differences provide a new mechanistic basis for classifying these
ribozymes.
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Ribozymes are enzymes that are built from RNA rather than 
from protein. Although they plausibly played a key role in the 
emergence of primitive life early in the history of the planet, 
some are still with us, catalyzing some extremely important cel-
lular reactions such as the condensation of amino acids to form 
polypeptides in the core of the ribosome. Therefore, understand-
ing how RNA could catalyze cellular reactions is important and 
recently this field has seen considerable progress that is reviewed  
here. This review focuses on a sub-group of the ribozymes  
where some general principles can be discerned.

The nucleolytic ribozymes
The nucleolytic ribozymes are relatively small RNAs (all but 
one have fewer than 100 nucleotides) that bring about site- 
specific cleavage of the backbone1,2. In some ribozymes, the 
reverse (ligation) reaction can occur3–8. In the protein enzymes, 
such phosphoryl transfer reactions are catalyzed in one of two 
ways, either by the use of metal ions to organize and activate the 
active center or by general acid–base catalysis using histidine. 
RNA has a small fraction of the chemical resources of a protein.  
It has only four similar heterocyclic nucleobases, the 2′-hydroxyl 
group, and bound hydrated metal ions. Although some nucle-
olytic ribozymes certainly employ hydrated metal ions in 
their catalysis, the common theme among these species is the 
use of concerted general acid–base catalysis. Evolution has 
found a variety of ways of employing the limited resources of  
RNA in different combinations to accelerate the reactions by 
around one million-fold or more and it is this feat of chemical  
catalysis that we wish to understand.

There are now nine members within this group, and they 
have distinct folds that are generally based on helical junc-
tions or pseudoknot structures or both. The hammerhead9,10, 
hairpin3,11,12, Varkud satellite (VS)13, and hepatitis delta virus  
(HDV)14–16 ribozymes have been known for several decades, but 
more recently the group has expanded significantly thanks to 
the work of the Breaker lab, starting with the glmS ribozyme17. 
More recently, their bioinformatic pipeline18 has added four 
more distinct species: the twister, TS, pistol, and hatchet  
ribozymes19. This complete group (Table 1) now provides a 
new opportunity to compare structures and mechanisms and to  
contrast and perceive sub-groupings.

Mechanism and catalysis of phosphoryl transfer
The standard reaction carried out by the nucleolytic ribozymes 
is shown in Figure 1. The cleavage reaction (left to right) is 
brought about by nucleophilic attack of the O2′ on its adja-
cent phosphate group. The S

N
2 reaction passes through a 

trigonal bipyramidal phosphorane intermediate20 that is prob-
ably close to the transition state that decomposes by departure 
of the O5′to leave the cyclic 2′3′phosphate21. The reaction is  
typically accelerated by at least a million-fold by the ribozymes, 
although the estimation requires knowledge of the baseline 
rate of the uncatalyzed reaction which is not easy to estimate. 
If the products are held in place by the RNA structure, then 
the reverse ligation reaction (right to left) can also occur, as it  
does, for example, with the hammerhead and hairpin ribozymes.

Table 1. General bases and acids participating in the 
cleavage reactions of the nucleolytic ribozymes.

Group Ribozyme Base Acid

G + A

Hairpin G N1 A N1

VS G N1 A N1

G + A(N3)

Twister G N1 A N3

M + C

HDV M2+ OH− C N3

TS M2+ OH− C N3?

G O2′

Hammerhead G N1 O2′

G + M

Pistol G N1 M2+ H2O

G + coenzyme

glmS G N1 Glc6P amine

The groups are named by the general base followed by the 
general acid in the cleavage reaction. M designates a hydrated 
divalent metal ion directly participating in catalysis. HDV, hepatitis 
delta virus; VS, Varkud satellite; Glc6P, glucosamine-6-phosphate

There are four potential elements to the catalysis22–24. First, 
if the RNA can facilitate a near in-line geometry of attack, 
this will provide a small contribution to rate enhancement.  
Second, the phosphorane could be stabilized by a combination 
of hydrogen bonding and electrostatics. Third, conversion of 
the 2′OH to an alkoxide by a general base will generate a much  
stronger nucleophile. Lastly, protonation of the O5′ by a gen-
eral acid will create a better leaving group. The last two 
jointly constitute concerted general acid–base catalysis and 
undoubtedly make the largest contribution to the catalytic rate  
enhancement25. Of course, ultimately, all catalytic strategy can 
be reduced to transition state stabilization, and general acid–base  
catalysis also reduces charge separation in the transition state.

The nucleolytic ribozymes use a variety of functionalities in dif-
ferent combinations to perform general acid–base catalysis. 
Nucleobases are used most frequently, and G, A, and C are all 
employed in different ribozymes. They suffer from the disadvan-
tage that their natural pK

a
 values are not close to neutrality. The 

observed rate of cleavage (k
obs

) will be related to the intrinsic  
rate (k

cat
) by:

k
obs

 = k
cat

 . f
A
 . f

B

f
A
 and f

B
 are the fractions of protonated acid and deproto-

nated base, respectively, at any given pH. For example, if a 
ribozyme uses a general base and acid of pK

a
 = 9 and 5, respec-

tively (values close to those of a typical G+A ribozyme), then  
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f
A
 . f

B
 will be 10−4 at neutrality. Application of this to the maxi-

mum rates observable for the VS ribozyme gives a k
cat

 that is 
not greatly slower than that of ribonuclease A26. By shifting  
pK

a
 values closer to neutrality and thus raising f

A
.f

B
, faster rates 

can be obtained. In an electronegative environment of RNA, it 
is easy to see how the pK

a
 of adenine or cytosine can be raised 

and an extreme case of this is observed in the twister ribozyme 
(see the “G + A(N3): the twister ribozyme” section below).  
Lowering a higher pK

a
 value will likely require juxtaposi-

tion of a metal ion. It should be noted that although the  
fraction of catalyst that is in the correct state of protonation 
is important, there is a degree of compensation between this  
and the reactivity of the groups undergoing proton transfer27.

General base catalysis by guanine nucleobases
The most common element in the mechanisms of the nucleo-
lytic ribozymes is a guanine nucleobase acting as a general 
base, which is true for the all the ribozymes except the group 
containing HDV and TS. The guanine nucleobase acts rather 
like the analog of the imidazole group of histidine in protein 
enzymes and accepts the proton from the O2′ nucleophile at its  
N1 position. In order to do this, it must be in its deproto-
nated form, and in each case this has been demonstrated by the 
pH dependence of the cleavage reaction, generally combined 
with atomic mutagenesis. The normal pK

a
 of guanine is around 

9.5; but for maximum catalytic efficiency, this would ideally 
be lowered. In the VS ribozyme, this has been measured at 
8.428, where proximity of a bound metal ion likely reduces the  
pK

a
.

Grouping the nucleolytic ribozymes
While guanine acting as general base is very common, the  
general acid is rather more variable. This is a nucleobase in 

(probably) five cases, in three of which it is adenine. But it is 
also frequently not a nucleobase. Consideration of the general 
base and acid provides a way to group the nucleolytic ribozymes  
mechanistically (Table 1 and Figure 2).

G + A: the hairpin and VS ribozymes
These ribozymes use the N1 of a guanine and an adenine in pro-
ton transfer. The role of an adenine nucleobase as a general acid 
has been proven by phosphorothiolate substitution in the hair-
pin29 and VS26 ribozymes, and despite having very different 
overall folds, the active centers of the hairpin and VS ribozymes 
are closely similar. Both are generated by interaction of two 
internal loops, and the disposition of the guanine general base, 
adenine general acid, and scissile phosphate is the same for  
both26,30,31. Both ribozymes exhibit activity in high concentra-
tions of monovalent ions as the sole ion32 and thus there is no 
evidence for a direct role for metal ions in these ribozymes, 
although some electrostatic stabilization of the transition  
state is possible. In order for adenine to act as a general acid, it 
must be protonated at N1. Thus, the concerted general acid–base 
catalysis requires an unprotonated guanine and a protonated 
adenine (Figure 2A). Although the pK

a
 of unperturbed adenine 

is 4 or lower, these values are typically raised in the electron-
egative context of the folded RNA. For example, that meas-
ured in the VS ribozyme is 5.228. The pH profile for the VS 
ribozyme is bell-shaped, reflecting the requirement for an 
unprotonated guanine acting as a general base and a protonated  
adenine acting as a general acid. By the principle of micro-
scopic reversibility, the ligation reaction will proceed via the 
same chemical mechanism in reverse, so that neutral adenine  
will act as the general base deprotonating the O5′ nucleophile, 
and neutral guanine will act as the general acid protonating  
the O2′ leaving group.

Figure 1. The chemical mechanism of the nucleolytic ribozymes, showing catalysis by general acid–base catalysis. The cleavage 
reaction is left to right and the ligation reaction right to left. The central phosphorane structure will be close to the transition state in the reaction 
trajectory. In the cleavage reaction, B− acts as a general base to deprotonate the O2′ nucleophile, and the general acid AH+ protonates the 
5′-oxyanion leaving group.
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G + A(N3): the twister ribozyme
The twister ribozyme33 is a third G+A ribozyme but with two sig-
nificant differences. It was the first of the group of new ribozymes, 
and three crystal structures have been determined, showing that 
the fold is a unique inverted double pseudoknot34–36. As a result 
of extensive mechanistic studies24 in addition to the structural 
analysis, it is arguably the best understood of the nucleolytic 
ribozymes. Although none of the structures is well aligned  
for nucleophilic attack (and the one that was closest has other 
significant disruption of the structure36), it was easy to see how 
to rotate the 5′ nucleotide in the active center to bring it into  
an in-line geometry34,37. Moreover, this had the effect of bring-
ing the guanine G33 that was known to act as a general base into 
position in addition to stabilizing the transition state by bonding 

its N2 to the scissile phosphate (Figures 2B and Figure 3).  
So with three catalytic strategies identified, what is the  
general acid? Surprisingly, it turned out to be the adenine  
immediately 3′ to the scissile phosphate (A+1). Moreover, it was 
not the usual N1 that acts in proton transfer (in fact, geometri-
cally, this is not possible given its position) but rather the much 
more acidic N3. This was confirmed by deaza substitution24.  
Microscopic pK

a
 values of the N1 and N3 atoms indicate that 

a proton will be 100-fold more likely to reside on N1 rather 
than N338 yet this is partially compensated by the unusual  
environment in the active center. The N6 of A+1 donates both its  
protons to successive phosphate groups. The net effect of this 
is to raise the pK

a
 of A+1 to neutrality, thus offsetting its low 

probability of protonation at N3. The twister is thus another  

Figure 2. The six mechanisms observed in the nucleolytic ribozymes, classified according to the general base and acid used. For 
clarity, charges are not shown in these depictions. The groupings correspond to those listed in Table 1. CoE refers to the use of an exogenous 
coenzyme; glmS binds glucosamine-6-phosphate to act as a general acid.
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G+A ribozyme but with a difference. The active site shows how 
evolution has generated a perfect environment for catalysis 
of the transesterification, comprising in-line attack, transition 
state stabilization, and concerted general acid–base catalysis  
(Figure 3). An alternative mechanism has been proposed for 
the twister ribozyme; for a neutral perspective on this, the 
reader is directed to an excellent critical evaluation by Breaker39  
and a very recent computational study40.

M2+ + C: metal ions as the general base and cytosine 
as the general acid: the HDV and TS ribozymes
Although the hairpin and VS ribozymes have been shown 
to retain some activity at pH = 8 in the presence of 4 M Li+ as 
the only metal ion32 and the hairpin ribozyme is fully active 
in Co(III) hexammine ions41–43, the HDV ribozyme is essen-
tially inactive in either condition44. This indicates a direct role 
for a metal in the catalytic mechanism. Nevertheless, the rate of 
cleavage by the HDV ribozyme depends upon pH44 in a manner 
consistent with general acid–base catalysis. The genomic and  
antigenomic forms of the ribozyme adopt a double pseudoknot  
fold45,46. In these structures, there are no guanine nucleobases 
closer than 9 Å from the scissile phosphate. However, there 
is a cytosine nucleobase oriented so that its N3 points toward 
the scissile phosphate at a distance of 3.7 Å. Doudna et al.45 
suggested that C75 could act as a general base to catalyze  
cleavage. Bevilacqua44 showed that the rate of cleavage of the 
HDV ribozyme increased log-linearly with pH up to 6.5 and 
remained at a plateau at higher pH values. The data fitted a pK

a
 

of 6, potentially corresponding to a cytosine in an electronega-
tive environment. However, in the absence of divalent cations, the 

pH dependence inverted44. Since the rate fell with increasing pH, 
this indicates that C75 acts as the general acid. This was proven 
by Das and Piccirilli47, who obtained almost full restoration of 
activity of a C-to-U variant when coupled with 5′-phosphorothi-
olate substitution. The bridging sulfur substitution creates a facile  
leaving group that no longer requires acid catalysis, consist-
ent with cytosine acting as the general acid in the cleavage 
reaction. Taken together, the data suggest a model for cataly-
sis in which a metal hydroxide acts as the general base and  
cytosine N3 acts as the general acid (Figure 2C). The positions 
of these functionalities in available crystal structures45,46 are not 
fully consistent with their mechanistic roles, suggesting that the  
structures may not fully reflect the active conformation.

The TS ribozyme was identified by bioinformatic analy-
sis and called twister-sister19, and two structures have been 
solved in different forms48,49. The rate of cleavage of the 
ribozyme increases with pH up to neutrality, remaining at a  
plateau at higher pH, and increased log-linearly with Mg2+ ion  
concentration19. However, the activity was extremely low in  
either 1 M Li+ or 1 mM Co(III) hexammine ions48. Withdrawal 
of divalent cations had an effect similar to that in HDV, sug-
gesting direct participation of a metal ion in the reaction. 
Importantly, the rate of cleavage was log-linearly depend-
ent on the pK

a
 of the divalent metal ion present (that is, the ease  

of deprotonation of an inner-sphere water molecule)48. This 
showed that a hydrated metal ion is involved in proton trans-
fer. A metal ion directly bound to the cytosine immediately 5′ 
to the scissile phosphate was observed in the crystal48, plac-
ing an inner-sphere water molecule close to the O2′nucleophile.  

Figure 3. The proposed structure of the active site of the twister ribozyme. This is derived from the crystal structure, with a rotation of U-1 
that brings the O2′ (modeled) into an in-line position34. G33 both acts as a general base (accepting a proton at N1) and stabilizes the transition 
state (N2 donates a proton to the proR non-bridging O atom of the scissile phosphate). A+1 acts as a general acid, donating a proton from 
N3. Its N6 donates protons to successive phosphates in the backbone, thereby raising its pKa.
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However, the geometry around the scissile phosphate was 
far from in-line and it is likely that this structure would 
require significant reorganization to move into the active  
conformation. If the hydrated metal ion acts as a general base 
in cleavage, that leaves the question of what acts as a general 
acid. Mutagenesis suggests that modification of a cytosine 
(C7) results in the largest reduction of cleavage activity. In 
our crystal structure, C7 is 12 Å from the scissile phosphate  
and is involved in an H-bonded network. But remodeling the 
active center to create the required in-line geometry might  
also reposition C7, allowing it to participate in catalysis. Com-
putational modeling has indicated that the geometry around 
the active center can be readily altered and that C7 can move 
closer to the scissile phosphate, whereupon it could either act as 
a general acid or bind a metal ion that acts as a general acid50.  
In a more recent crystal structure of the TS ribozyme49, the 
conformation about the scissile phosphate is quite differ-
ent (though still far from in-line), consistent with the TS active 
center being quite malleable. Interestingly, in that structure,  
C7 is rather closer to the O5′ atom. Although TS remains one 
of the most incompletely understood ribozymes, the key cata-
lytic participants are most probably a bound hydrated metal 
ion and a cytosine nucleobase. Thus, TS is provisionally placed  
with the HDV ribozyme as a discrete sub-group of the nucleo-
lytic ribozymes (Table 1). For both ribozymes, it is likely 
that the crystal structures are not fully reflective of the active  
conformations.

G + O2′ and G + M2+: the hammerhead and pistol 
ribozymes
It might not be immediately obvious that the hammerhead and 
pistol ribozymes should be discussed together, but there are 
striking structural and mechanistic similarities. Even com-
parison of the secondary structures and location of conserved 
nucleotides suggests a strong similarity between the two  
ribozymes51. A new class of hammerhead ribozymes in which 
stems I and II interact through a pseudoknot has been described19. 
A pseudoknot is also a key feature in the pistol ribozyme  
structure19,52, and if the two ribozyme secondary structures are 
rotated into the same frame, the strong similarity is apparent, and 
the positions of the conserved nucleotides and the scissile phos-
phate are very similar51. Comparison of the three-dimensional 
structures in crystals of the hammerhead53 and pistol51,54,55  
ribozymes also reveals a close similarity. If the pseudoknot 
interactions are stripped away, what remains is a three-way  
helical junction in both cases and the scissile phosphate is at 
the center. In both cases, the nucleotide 3′ to the scissile phos-
phate is base-paired to splay apart the 5′ and 3′ nucleotides,  
thereby generating the local geometry required for in-line 
attack. Furthermore, in both cases, there is a guanine nucleobase 
poised to remove the proton from the O2′ nucleophile. These 
(G12 in the hammerhead56,57 and G40 in the pistol51) have been  
demonstrated to act as the general bases in the cleavage reactions.

This leaves the question of what serves as a general acid in 
these ribozymes. In neither structure is there a nucleobase 
close to the O5′ leaving group. However, in the hammer-
head ribozyme, the O2′ of G8 is 3.2 Å from the O5′ atom and 
therefore could serve as the general acid. The pK

a
 of a 2′-OH 

group is very high, but computations of York et al.58 suggested  
that a metal ion could move close and thus lower the pK

a
. Tho-

mas and Perrin57 showed that the reduced cleavage activity of 
a G8 O2′H variant could be restored by 5′-phosphorothiolate 
substitution at the scissile phosphate. This demonstrated the 
importance of the G8 O2′, but the effect could be indirect. The 
direct role of the G8 O2′ was demonstrated by substitution by  
2′-amino ribose, whereupon the pH profile changed completely 
to a flattened bell shape51. The modified ribozyme, rather like 
the hairpin or VS ribozymes, operates with one participant  
of high pK

a
 (G12 N1) and one of low pK

a
 (G8, 2′NH

2
).

When the same 2′NH
2
 substitution was performed at A32 in 

the pistol ribozyme (this lies in an analogous position to G8 
in the hammerhead), a very different response was found. 
While absolute rates of cleavage were reduced, the shape of 
the pH profile was essentially unchanged from the unmodified  
ribozyme51. Thus, unlike the hammerhead ribozyme, the cor-
responding 2′OH clearly does not act directly as the general 
acid. Instead, the available evidence indicates that pistol is the 
first ribozyme known to employ a hydrated metal ion as the  
general acid. The rate of cleavage increases in a log-linear  
manner with the pK

a
 of the metal ion used, consistent with an 

increase in reactivity of inner-sphere water molecules acting  
as a general acid51. A metal ion is observed in the crystal struc-
tures of the pistol ribozyme51,54, directly bound to N7 of G33. 
Inner-sphere water molecules can be modeled so as to be bound 
to a number of active center functionalities, including the  
G32 O2′. The reaction rate is lowered if this O2′ is modi-
fied. The water molecule that is in the axial position with 
respect to G33 N7 is just 3.1 Å from the O5′ and thus is well  
positioned to act as the general acid (Figure 4).

In many ways, the hammerhead and pistol ribozymes are very 
similar but ultimately they are mechanistically distinct. In terms 
of the general acid, they are in sense mirror images. The ham-
merhead uses an O2′ that is probably activated by a metal  
ion (Figure 2D), whereas the pistol ribozyme uses a hydrated  
metal ion that is held in part by an O2′ (Figure 2E).

Some final perspectives
Two of the nucleolytic ribozymes have not been discussed. The 
structure of the glmS ribozyme17 is known59,60 and it is another 
ribozyme that uses guanine N1 as the general base in cleavage61. 
However, uniquely, the general acid is the amine of bound  
glucosamine-6-phosphate (Figure 2F); that is, this ribozyme uses 
a coenzyme. At this time, the structure of the hatchet ribozyme 
is not known19. However, biochemical data62 are consistent  
with another metalloenzyme ribozyme of the HDV type.

Overall, we see that the use of nucleobases in proton trans-
fers occurs frequently, and guanine is used as a general base 
in 6/8 ribozymes. However, the general acid is much more  
variable, and every possibility has been exploited in the group 
overall. Despite the limited catalytic resources of RNA, evolution  
has refined the use of various combinations of functional 
groups, hydrated metal ions, and even a coenzyme. But the 
expanding number of these ribozymes now allows these to be  
rationalized into a number of distinct mechanistic classes.
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Figure 4. The proposed structure of the active site of the pistol ribozyme. This is derived from the crystal structure of the ribozyme51. G40 
acts as a general base, accepting a proton at N1 from the O2′ nucleophile. The green sphere is a Mg2+ ion that is directly bound to N7 of the 
guanine nucleobase. The red spheres are inner-sphere water molecules, the positions of which have been modeled to maximize interactions 
with the RNA. The water molecule apical with N7 is well positioned to act as a general acid, protonating the O5′ leaving group.
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