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Abstract. Two-color, multiparametric synthesis phase fraction (SPF) analysis of cytokeratin-labeled epithelial cells was
flow cytometrically performed on both benign (SPFb) and malignant tissue samples (if available, SPFt) from 132 mastec-
tomy/lumpectomy specimens. These data were then correlated with clinicopathologic features, including (1) tumor differenti-
ation, (2) the proportion of tumor comprised of duct carcinoma-in situ (DCIS), and (3) the histology of accompanying benign
breast tissue, classified by predominant microscopic pattern as intact, normal terminal duct lobular units (NTDLU, 34% of
cases), atrophic (AT, 33% of cases), proliferative fibrocystic (PFC, 26% of cases), and non-proliferative fibrocystic (NPFC, 7%
of cases). SPFt was inversely correlated with extent of DCIS (DCIS= 0−20% tumor volume – 12.7% mean SPFt, vs. DCIS
>20% tumor volume – 6.4% mean SPFt,p = 0.001).SPFt also correlated with the histology of background benign breast tis-
sue (NTDLU – 14.8% mean SPFt vs. AT – 6.9% mean SPFt vs. PFC – 12.7% mean SPFt,p = 0.05) but it did not correlate with
patient age or SPFb (overall mean= 0.73%). SPFb was correlated with patient age (>56 yr – 0.59% mean SPFb vs.<56 yr –
0.84% mean SPFb,p = 0.02), with background histology (NTDLU – 1.1% meanSPFb vs. AT – 0.43% mean SPFb vs. PFC
– 0.70% mean SPFb,p < 0.02) and with the grade of the neoplasm (well/moderate – 0.58% mean vs. poorly differentiated
– 0.85% mean,p = 0.04). Patients having a background of PFC were significantly older than patients with a background of
NTDLU (45.2 yr vs. 60.2 yr,p = 0.01).

We conclude: (1) breast carcinomas arising from a background of more actively cycling pre-involutional or proliferative
fibrocystic epithelium have a greater proliferative fraction than tumors arising from atrophic epithelium, implying that the
differentiation status of target cells may impact the effect(s) of tumorigenic events; (2) PFC may represent delayed, abnormal
or interrupted involution rather than a hyperproliferative state relative to NTDLU, suggesting that it facilitates neoplasia by
extending the period of exposure to promoter agents such as endogenous hormones, and (3) lowerSPFt in breast neoplasia
with more abundant “residual” DCIS may reflect a lengthier pre-invasive disease interval due to intrinsically less aggressive
phenotype.
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1. Introduction

Differentiation status or pathologic alterations involving benign breast tissue are widely held to be
important biological factors impacting the genesis and phenotype of breast carcinoma. Probably the
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best known example of this association is the greater frequency of hormone receptor positive neoplasms
which arise in older, post-menopausal patients. Breast tissues in such cases typically demonstrate a back-
ground of atrophic lobular epithelium, due to age-related involution. A second example is the increased
risk of breast carcinoma conferred by the presence of proliferative fibrocystic (PFC) change, most pat-
terns of which are generally considered to represent forms of hyperplasia. Some fibrocystic lesions, such
as atypical hyperplasia, exhibit pathologic features more in keeping with intra-epithelial neoplasia (i.e.,
dysplasia). Not all breast carcinomas, however, develop from a background of fibrocystic changes [1].
From a purely histopathologic stand point, in fact, breast carcinoma is almost unique among human
tumor systems for the sheer variety of “background” tissue patterns from which it may arise: these in-
clude “normal” terminal duct lobular unit (TDLU) parenchyma, atrophic TDLU parenchyma, a variety
of proliferative or non-proliferative fibrocystic changes (PFC/NPFC), or (most commonly) admixtures
of “normal”, atrophic and/or fibrocystic. Although relatively few authors have systematically evaluated
human breast carcinoma in the context of “background” breast histology, the above considerations would
imply that such analyses may reveal clues about the underlying basis of breast carcinogenesis and clini-
copathologic heterogeneity.

Using suspensions of dissociated cells with intact cytoplasm, this study employs “two-color” multi-
parametric flow cytometry in order to compare cell cycle analyses from samples of both neoplasm and
accompanying benign tissues derived from lumpectomy/mastectomy specimens. Multiparametric DNA
analysis employs computer “gating” to select for, and thereby restrict analysis to cells which have been
“labelled” with a fluorescent-tagged antibody; herein we employed cytokeratin, a cytoplasmic intermedi-
ate filament specific for epithelial cells. In this manner, the DNA and cell cycle calculations were limited
to the populations of interest, excluding stromal/inflammatory contaminants. This is important due to the
fact that at least 50% of cells in benign (or malignant) breast tissue are non-epithelial. These events would
contaminate DNA histograms and interfere with cell cycle calculations. Epithelial cell specific synthesis
phase fractions from both neoplastic and benign breast tissues were then correlated with clinicopatho-
logic features, especially histologic patterns of “background” benign tissues. In view of the issues noted
previously, it was our hypothesis that benign “background” epithelial cell proliferation and histology are
variables which may be reflected in the clinicopathologic patterns of human breast neoplasia.

2. Materials and methods

2.1. Case selection and pathologic assessment

Lumpectomy and/or mastectomy specimens (N = 150) submitted to the Department of Pathology at
Harper Hospital, Detroit, Michigan (years 1996–97 inclusive) were obtained and evaluated in a prospec-
tive manner. Mean patient age was 55.8 years. Following careful dissection and gross examination,
representative 1 cm in dimension tissue slices of both benign and malignant tissue (if available) were
partitioned from fresh specimens and placed in RPMI transport medium. Grossly benign samples, when
possible, were obtained from a quadrant not involved by the neoplasm and were free of focal lesions such
as cysts, fibroadenomas, papillomas or prior biopsy tracts. A “mirror image” slice of each benign sample
was fixed in formalin and utilized to prepare a paraffin-embedded, hematoxylin and eosin stained tissue
section. This served not only to confirm the absence of malignant neoplasm but also to characterize the
microscopic features of the benign sample. This was performed by one author (DV). Each benign sample
was classified histologically into one of four groups employing criteria as follows:
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1© normal (intact, non-atrophic terminal duct lobular units comprising at least 80% of the sampled
epithelium),

2© atrophic (small, involuted terminal duct lobular units, or ducts without acini, comprising at least
80% of the sampled epithelium),

3© non-proliferative fibrocystic (apocrine metaplasia, lobular distortion without hyperplasia with or
without fibrosis involving at least 50% of the section), or

4© proliferative fibrocystic (any form of epithelial hyperplasia, including adenosis, duct hyperplasia or
atypical hyperplasia involving at least one third of sampled epithelium).

With the exception of3© and 4© these categories are mutually exclusive. If a sample fulfilled criteria
for both 3© and 4©, it was arbitrarily classified as4©. As a further histologic control, Papanicolaou-stained
cytospin preparations of all dissociated cell suspensions were microscopically examined for the presence
(or absence) of benign/malignant epithelial cells. Cases in which “benign” samples contained any his-
tologic or cytologic evidence of malignant cells were excluded (N = 18) resulting in a sample size of
132.

All routinely-obtained histologic slides from the main specimen (and prior biopsies, if available,
N = 83) were examined in order to characterize both the neoplasm and the accompanying benign
breast parenchyma. Each neoplasm was evaluated for differentiation (well, moderate, poor) as well as
the approximate volume (expressed as the percent of total volume) ofin situ carcinoma. Finally, from
routinely obtained sections derived from biopsy/lumpectomy/mastectomy specimens, “background” be-
nign tissue from each case was evaluated for its approximate composition (expressed as a percentage)
of normal vs. atrophic vs. non-proliferative or proliferative fibrocystic areas, and then classified using
criteria as previously described. All cases had at least one random section obtained from quadrants/areas
not involved by neoplasm (minimum number of sections containing benign tissue= 8, mean= 12).

2.2. Multiparametric cell cycle analysis

Intact single cell suspensions were obtained mechanically, by scraping the surfaces of tissue speci-
mens with a scalpel blade. This was followed by centrifugation, re-suspension and fixation with cold
ethanol. Specific details of our 2-color, multiparametric method of cell cycle analysis have been previ-
ously published [4]. Briefly, an aliquot of suspension is dual-labelled with both propidium iodide as well
as a FITC-conjugated anti-cytokeratin antibody (CAM 5.2, Becton-Dickenson, Mountain View, CA).
Cells of epithelial derivation could thereby be specifically identified during data acquisition with the use
of specimen and (non-immune) antibody-negative control green fluorescence (FL 1) histograms as illus-
trated in Fig. 1. At least 5000 cytokeratin-positive events were obtained from each sample. The DNA
histograms resulting from this technique were superior, with minimal debris and optimal coefficients of
variation (mean= 2.5%, all were<4%). Cell cycle calculations were performed using an automated
software program (CellFit, Becton-Dickenson) which contains a pulse-height aggregate discrimination
module.

2.3. Data analysis

Patient ages were obtained from surgical pathology reports. Comparisons between sets of parameters
(i.e., t-tests) were performed using commercially-available, statistical software on a personal computer.
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Fig. 1. Top left: fluorescence-1 (green fluorescence) histogram exhibiting a population of cytokeratin positive cells, designated
by R1. Top right: histogram of DNA content (vertical axis) versus cytokeratin fluorescence intensity (horizontal axis). The
R1 gate is illustrated by the vertical line. Note the presence of populations corresponding to aggregates. Lower left: gate
R3 corresponding to the aggregate subtraction component of the doublet discrimination module. Lower right: cytokeratin gated
DNA histogram, demonstrating a unimodal G0G1 population with low coefficient of variation and minimal debris or aggregates.

3. Results

3.1. Neoplasm proliferation (SPFt) and clinicopathologic parameters (Table 1)

The mean synthesis phase fraction of tumor cells (11.2%) was more than ten fold greater than mean
SPF for benign breast tissues (0.73%), although both were characterized by considerable range of varia-
tion (SPFt: 2–42%, SPFb: 0.1–3.8%). There was no apparent relationship between patient age and degree
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Table 1

Correlation between neoplastic cell proliferation (SPFt) and clinicopathologic parameters

Parameter (N) Mean SPFt (SD) p value
Age
<56 yr (32) 11.0 (10.3) NS
>56 yr (31) 11.4 (8.7)

Tumor grade
I (6) 1.2 (0.77) <0.001
II (24) 7.2 (5.5)
II (31) 16.1 (9.4)

% DCIS in tumor
0–20% (43) 12.7 0.007
>20% (17) 6.4

Benign histology
1© normal (20) 14.8 (9.7) 0.001(1© vs. 2©)
2© atrophic (17) 6.9 (4.4) 0.05 (2© vs. 4©)
3© NPFCD (5) 6.3 (4.2)
4© PFCD (18) 12.7 (9.5)

% Normal TDLU
1© 0–30 (31) 9.0 (7.7)
2© >30 (28) 13.7 (9.9) 0.05

% PFCD
1© 0 (20) 14.3 (11.9)
2© 1–20 (25) 8.5 (7.3) NS
3© >20 (14) 11.8 (9.2)

of tumor cell proliferation whether evaluated as mean SPFt in groups of patients above vs below mean
age (Table 1) or by age in decades (i.e., 30–40 yr, 41–50 yr, etc.,. . . , data not shown). SPFt was strongly
correlated with tumor differentiation; the mean SPF of poorly-differentiated neoplasms (16.1%) was
more than double that of moderately-differentiated lesions (7.2,p < 0.001%). SPFt was also signifi-
cantly greater (12.7% mean) among those neoplasms which were characterized by limited DCIS (<20%
of tumor volume) as opposed to cases (6.4% mean SPFt) with extensive DCIS (>20% tumor volume)
(p = 0.001). This correlation, though, may largely reflect a significant association between tumor dif-
ferentiation and the proportion of DCIS. The mean percent tumor volume comprised of DCIS in poorly
differentiated carcinomas was 9.7, vs. 27.1% for well or moderately differentiated tumors (p = 0.001).

Benign tissue samples submitted for FCM were about equally divided between histologically “normal”
TDLU, atrophic breast tissue (32 and 33%, respectively) and fibrocystic change (34%). The mean SPFt
was greatest in tumors characterized by a (predominant) background of “normal” (that is, non-atrophic
and non-fibrocystic) tissue. Cases in which the benign sample submitted for flow cytometric cell cycle
analysis was histologically “normal” had a mean SPTt of 14.8%. This is significantly greater than mean
SPTt (6.9%) of cases in which the benign tissue submitted for cell cycle analysis was histologically
atrophic (p = 0.001), but it was not statistically different from cases in which the benign sample ex-
hibited proliferative fibrocystic change (12.7%). The numbers of samples comprised of non-proliferative
fibrocystic changes was insufficient for meaningful statistical analysis.

Since samples of benign tissue submitted for flow cytometric analysis were obtained prospectively
and thus not necessarily representative of overall “background” breast histology, these results are po-
tentially vulnerable to selection artifacts. However, similar correlations between SPFt and predominant
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“background” histology (i.e., as assessed by reviewing all histologic sections) were also apparent. The
mean SPFt in tumors accompanied by predominantly “normal” breast tissue was 16.6%, vs. 7.9% for
cases with a predominantly atrophic background (p = 0.03) and 15.5% for cases with a fibrocystic
background. The sample of benign tissue harvested for cell cycle analysis was usually, but not always,
morphologically representative of the overall background epithelium; 76% of the samples reflected the
predominant histology in routinely obtained sections. This degree of concordance derives largely from
the homogeneity of lumpectomy/mastectomy tissues characterized by “normal” or “atrophic” TDLU ep-
ithelium. Most discrepancies, accordingly, reflected the focal nature of fibrocystic change and its intimate
admixture with “normal” and/or “atrophic” epithelium. Proliferative fibrocystic alterations were, over-
all, observed in 72% of lumpectomy/mastectomy specimens. However, it comprised 0–10% of benign
epithelium in 32%, 10–30% of benign epithelium in 15% and>30% of epithelium in only 24% of cases.

3.2. Correlations between SPFb and clinicopathologic parameters (Table 2)

Benign epithelial cell proliferation was weakly, albeit significantly, correlated with patient age; mean
SPFb in patients less than 56 yrs was 0.84%, vs. 0.59% for patients greater than 56 yrs (p = 0.02). SPFb
was more strongly associated, however, with the histology of benign epithelium. The mean SPFb in sam-
ples composed of non-atrophic “normal” tubular duct lobular units was 1.1%, vs. only 0.43% for samples
showing atrophic breast tissue (p = 0.001). Proliferative fibrocystic tissues, interestingly, were character-
ized by a mean SPF (0.70%) which was lower, but not significantly different from that of “normal” breast
tissue. SPFb failed to correlate with the extent of proliferative disease in lumpectomy/mastectomy tis-
sues. It was 0.72% for cases in which benign epithelium was comprised of an estimated 1–20% PFCD, vs.
0.64% in cases with>20% PFCD. In contrast, SFPb was significantly correlated with the extent of non-
atrophic “normal” epithelium present (0−20% = 0.59% vs. 21−40% = 0.64% vs. 41−60% = 0.75%
vs.>60%= 1.1%,p = 0.02).

The observed relationships between SPFb and patient age or background histology in large part re-
flected the strong association between patient age and background histology. The mean age of patients

Table 2

Correlations between benign breast epithelial cell proliferation (SPFb) and clinicopathologic parameters

Parameter (N) Mean SPFb (SD) p value
Age
<56 (60) 0.593 (0.384) 0.05
>56 (72) 0.843 (0.754)

Histology
1© normal (40) 1.067 (0.802) 1© vs. 2© 0.000
2© atrophic (41) 0.429 (0.316) 1© vs. 3© 0.0015
3© NPFCD (10) 0.580 (0.220) 1© vs. 4© 0.016
4© PFCD (32) 0.700 (0.430) 2© vs. 4© 0.0042

Tumor grade
well/moderate (41) 0.583 (0.394) 0.038
poor (46) 0.854 (0.763)

PFCD extent
0 (39) 0.831 (0.661) NS
1–20% (53) 0.717 (0.747)
>20% (51) 0.616 (0.312)
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in which the benign sample submitted for cell cycle analysis consisted of “normal” tissue was 45.2 yrs,
compared to 62.4 yrs for patients with “atrophic” samples (p < 0.001). Despite having a mean SPFb
approaching that of samples with “normal” tissue though, the mean age of patients having proliferative
fibrocystic tissue samples (60.2 yrs) was not significantly different from those with atrophic tissues. As
may be anticipated, the amount of morphologically “normal” TDLU parenchyma declined with advanc-
ing patient age; it comprised 63% of the total epithelium for patients 0–44 yrs, vs. 44% for patients
45–54 yrs, 30% for patients 55–66 yrs and 17% for patients 67–91 yrs (p < 0.01). An analogous, sta-
tistically significant reciprocal association was observed between patient age and the extent of atrophic
epithelium (p = 0.001). Due in large part to the focal nature of proliferative fibrocystic alterations how-
ever, it was not possible to identify a straight forward relationship between patient age and the extent
of PFCD within lumpectomy/mastectomy tissues. The mean percent of epithelium comprising PFCD in
24–44 yr old patients was 8.4%, vs. 18% for patients 45–54 yrs and 21% for patients 55–66 yr. In 67–91
year olds, though, %PFCD dropped to 14.3%. The complex interaction between age, histology and SPFb
is further highlighted by comparing SPFb from groups having similar histology but differing age. The
mean SPFb in samples composed of “normal” TDLU from patients aged 0–44 yrs (N = 20) was 1.2%,
vs. 0.94% for patients 45 yrs or older (p = NS). Age-associated differences in proliferation were also
lacking in samples containing PFCD (mean SPFb 0–60 yrs= 0.66%, vs. 0.74% for patients>61 yrs).

Finally SPFb was significantly greater (0.85% mean) in patients with poorly differentiated, vs. well
or moderately differentiated neoplasms (0.55% mean,p = 0.04). However, there was no statistically
significant overall correlation between SPFb and SPFt.

4. Discussion

Correlations between SPFt and breast tumor differentiation have been previously reported by numer-
ous authors. This study is the first, of which we are aware, to observe an association between the presence
of extensive DCIS and low SPFt. This relationship may seem paradoxical in view of the reported pro-
clivity of tumors with extensivein situ components to recur [2]. Such recurrences, however, develop in
residual breast parenchyma (i.e., in patients treated with conservative surgery) and they do not necessar-
ily forbode a disease-associated mortality. Indeed, the risk for local relapse in such cases seems to be
conferred primarily on the basis of occult deposits of residual un-resected tumor cells. Some authors, in
fact, have shown that the incidence of axillary nodal metastasis varies inversely with DCIS extent (i.e.,
among invasive lesions of similar size) and thus lesions with extensivein situ neoplasm may constitute
in inherently less aggressive disease subset [3], at least with respect to metastatic potential. To the extent
that SPF reflects tumor aggressiveness, our study would seem to support that view. This interpretation
would be further supported by the observed significant correlation in this study between extensive DCIS
and a well or moderately (i.e., vs. a poorly) differentiated invasive neoplastic component. Thus, the ten-
dency for widespreadin situ neoplasm to develop prior to, or concurrent with, invasive growth would
appear to reflect a generally less aggressive form of breast neoplasia.

A noteworthy finding of this study was the lack of significant difference between the overall mean
SPFb of “normal” vs. “proliferative fibrocystic” tissues. Our laboratory has reported similar findings
using samples derived from benign breast biopsies [4]. Importantly, fibrocystic aliquots in this study
were derived from patients who were significantly older than patients having histologically “normal”
(i.e., non-atrophic) tissue samples. (They were not different, in fact, from the mean age of patients having
atrophic samples.) Thus, our data imply that proliferative fibrocystic change represents not so much a
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state of hyper-proliferationvis-à-vis“normal”, but rather a level of proliferation which is inappropriate
for patient age, and hence the expected degree of atrophy/involution. In this sense, then, fibrocystic
change may be viewed as a manifestation of delayed, inappropriate or interrupted atrophy. It is important
to note that “normal”, fibrocystic and even atrophic breast tissues are characterized by a high level of
inter-patient variation with respect to SPF, as demonstrated by the large SD’s in each category. The
extent to which this is a reflection of heterogeneous tissue composition within individual breast tissues,
temporal variation (e.g., as with hormonal cycling) or simply intrinsic inter-patient variability remains
unclear.

Retention of pre-involutional cell cycling characteristics in fibrocystic tissues might have relevance
to the observation that mean neoplastic cell SPF was similar in groups of cases having normal TDLU
or proliferative fibrocystic backgrounds (14.8 and 12.7%, respectively); both were greater than in cases
with a predominantly atrophic background (6.9%). It may also account for the greater mean SPFb among
poorly-differentiated carcinomas vs. well and moderately differentiated carcinomas (0.85% vs. 0.58%),
since 74% of tumors having a background of “normal” TDLU were poorly-differentiated, compared to
42% of tumors having a predominantly atrophic background. Although an association between neoplas-
tic and “background” epithelial phenotypes, overall, thus seems established, the nature of this relation-
ship is speculative. One might hypothesize that more actively cycling benign populations have a “head
start”, so that genetic alterations leading to hyper-proliferation and malignant neoplasia are imposed on
cells which are intrinsically less restricted with respect to cell cycle progression, leading ultimately to a
rapidly-proliferating, poorly differentiated neoplastic phenotype. Alternatively, actively cycling benign
populations may be more susceptible to mutational influences, thereby resulting in a relatively greater
degree of genetic instability, by virtue of mitotic errors, and hence less differentiated phenotype. The
latter hypothesis is supported by the well established correlation between elevated proliferative fraction,
DNA aneuploidy and high grade in breast neoplasia.

With respect to fibrocystic changes, the data are not incompatible with the notion that “proliferative”
alterations may predispose to malignancy by virtue of abnormally retained sensitivity to substances such
as estrogen, that stimulate cell cycling in tissues which would normally be atrophic. Proliferative fibro-
cystic lesions have been shown to have upregulated expression of hormone receptors [5]. This model
would account for the lack of hyper-proliferationvis-à-vis “normal” TDLU epithelium and also for
the well-documented lengthy interval between the diagnosis of fibrocystic changes and appearance of
subsequent malignant neoplasia. A competing hypothesis is that the presence of PFCD reflects the con-
sequences of exposure to carcinogenic stimuli, and thus represents a morphologic hallmark of “partial”
malignant transformation akin to colorectal adenoma. Such lesions would be expected to demonstrate
unequivocal elevation of proliferative fraction. Although our study did not reveal increased SPF in pro-
liferative fibrocystic lesions relative to “normal” lobules, we did not compare proliferative fibrocystic
tissue to “normal” or atrophic lobules within the same breast. Nor did we evaluate a series of patients
with benign breasts. We cannot fully discount the possibility that PFC may, in at least some cases, arise
from atrophic TDLU epithelium. Thus, subtle elevations in proliferative fraction were not fully excluded.

The measurable frequency of cases without any significant background of PFC would imply, more-
over, that not all breast carcinomas develop through, or concurrent with, such changes. This finding is
under emphasized in generally accepted current models of breast carcinogenesis. These cases may rep-
resent distinct subsets of breast neoplasia having a different pathogenesis, possibly involving divergent
carcinogenic factors and/or genetic pathology. Further studies, in our opinion, which explore the rela-
tionship between neoplastic features and precursor tissue alterations may thus prove useful in refining
our understanding of human breast carcinoma.
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