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Glioblastoma is an aggressive tumor and is associated with a dismal prognosis. The
availability of few active treatments as well as the inexorable recurrence after surgery are
important hallmarks of the disease. The biological behavior of glioblastoma tumor cells
reveals a very complex pattern of genomic alterations and is partially responsible for the
clinical aggressiveness of this tumor. It has been observed that glioblastoma cells can
recruit, manipulate and use other cells including neurons, glial cells, immune cells, and
endothelial/stromal cells. The final result of this process is a very tangled net of interactions
promoting glioblastoma growth and progression. Nonetheless, recent data are
suggesting that the microenvironment can also be a niche in which glioblastoma cells
can differentiate into glial cells losing their tumoral phenotype. Here we summarize the
known interactions between micro-environment and glioblastoma cells highlighting
possible therapeutic implications.
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INTRODUCTION

The 2021 World Health Organization (WHO) Classification defines glioblastoma (GBM) as a
diffuse astrocytic glioma without IDH (Isocitrate dehydrogenase) and H3R gene mutations, with
enhanced microvascular proliferation, necrosis, and specific alterations like gain of chromosome 7/
chromosome 10 loss, EGFR (Epidermal Growth Factor Receptor) amplification, and/or TERT
(Telomerase Reverse Transcriptase) mutations (1, 2).

GBM is one of the most fatal primary central nervous system (CNS) malignancies with an
estimated 5-years overall survival (OS) of only 6.8% (3, 4). In particular, the prognosis of patients
with newly diagnosed GBM ranged from 12 to 18 months (5) while the recurrent disease is
associated with a very poor outcome with an estimated OS of 5-10 months (6).

Several efforts have been spent to improve clinical outcomes of patients with GBM, nonetheless,
none of the investigated agents have replaced the standard of care represented by maximal safe
surgery followed by chemoradiation and adjuvant temozolomide, which has been adopted in 2005
(4). Even in the management of recurrent GBM, few systemic compounds demonstrated clinical
efficacy (6).

There are several reasons behind these failures. First, the enrollment of GBM patients within
clinical trials is limited only to10% of all GBM patients (7, 8).
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However, the major cause explaining the difficult development
of effective agents is certainly the complex biology of the disease.
Indeed, GBM is associated with specific features which can be
summarized in 1) the extremely high heterogeneity presented by
tumor cells requiring combined treatment for different subtypes of
GBM cancer cells; 2) the lack of biological models able to replicate
or at least estimate the interaction between human tumor cells and
the surrounding tissue; 3) the complex microenvironment
surrounding the tumor (9–12). Furthermore, the presence of
glioblastoma cancer stem cells (CSCs) has been employed to
explain the impressive recurrence rate and regenerative proprieties
of this tumor (13).

Of note, it has been demonstrated that GBM cells can
manipulate the microenvironment surrounding themselves
developing a niche sustaining tumor growth and development
(14). This process involves immune cells, astrocytes, glial cells,
neurons, extra-cellular matrix (ECM), vascular cells, and other
cell types (15–20). There are several ways by which GBM can
communicate with the surrounding tissue. The secretion of
soluble factors able to modulate genomic expression and
biological behaviors of tumor-associated cells is one of the
most obvious and described systems.

Of interest, GBM cells can develop a nuclear and
cytoplasmatic ‘‘continuum’’ with neighboring cells. These
nanotubes mediate the transfer of protein and inorganic
elements (21). Moreover, this also non-secretable molecules
such as RNAs, DNA and also mitochondria, and nuclei can be
transported from the tumoral to a surrounding cell by these
nano-tubules (22–24). Notably, this system is also probably
responsible for acquired resistance to radiation and systemic
temozolomide (TMZ) (23).

GBM cells can also promote the creation of gap junction and
cytoplasmatic connections (15–20). Finally, the secretion of
microvesicles, extracellular vesicles, and exosomes can promote
communication with also very distant cells or tissues (15–20).

The interactions between tumor cells and immune cells have
acquired an increased interest due to the availability of agents
able to promote immune-system reactivation. Nonetheless, other
interactions have been only partially investigated and could hide
novel promising targets for tumor treatment. Here we performed
a review summarizing the identified interactions between GBM
and its associated microenvironment. We also focused our
attention on possible novel treatments targeting these
complex interactions.
IMMUNE CELLS AND GLIOBLASTOMA

Immune-contexture assumes a very important role within the
GBM microenvironment. It can stimulate the progression and
development of tumor cells (25).

In contrast to what was supposed in the past, it has been
largely demonstrated that glioblastoma is not an immune ‘‘cold
tumor’’ (26, 27). Similar to other tissue, the CNS has its resident
immune tissue represented mainly from microglia (28).
Furthermore, like other solid tumors, GBM can activate and
Frontiers in Oncology | www.frontiersin.org 2
recall migrating immune cells from systemic tissues and
lymphatic vessels (28). Indeed, there is a connection between
deep cervical nodes, dural sinus, and lymphatic vessels allowing
systemic immune cells to move into the CNS reaching the target
site (29, 30). CNS is regulated by several molecular mechanisms
able to enhance or suppress the immune response. However, the
main difference with other peripheral non-CNS tissues is that the
balance between inhibitory and stimulating mechanisms is
biased in favor of immune suppression (31–35). One of the
most important factors mediating an immune-inhibition is the
TGFb2 (transforming growth factor b2) (36, 37). This factor can
mediate inhibition of Interleukin 2 mediated T cell survival and
reduce the production of critical effector proteins by lymphocytes
and other immune cells (36, 37). An increased intracranial
pressure, such as that observed during an inflammation
response, could be catastrophic and associated with irreparable
damage to the neurological tissues. Thus, CNS protects itself
preventing prolonged immune response with activation of
several mechanisms supporting an immune-depressive status
(31–35).

Recently, two transcription factors showed to mediate several
immune-depressive effects in GBM (38). These factors are
represented by SRY-Box Transcription Factor 2 (Sox2) and
octamer-binding transcription factor 4 (Oct4) whose activation
promotes the suppression of both innate and adaptive immune
responses maintaining glioma cell stemness and tumor-
propagating potential (38). In particular, the co-expression of
Oct4/Sox2 inhibits the expression of CCL5 (C-C Motif
Chemokine Ligand 5), CXCL9 (C-X-C Motif Chemokine
Ligand 9), CXCL10, and CXCL11 which are essential to induce
lymphocyte CD8 effector (Th1 response) attraction (38).
Furthermore, they promote the secretion of SPP (signal
peptide peptidase), IL8 (Interleukin 8), CXCL5, CCL20, IL6
(interleukin 6) inducing Treg (immune-inhibitory) response
and shifting macrophage differentiation toward an immune-
regulatory profile more than an immune-active one (38).
Several immune checkpoints such as PD-L1 (Programmed
Death Receptor Ligand 1), CD70 (Cluster of differentiation
70), A2aR (adenosine A2A receptor), and TDO (Tryptophan
2,3-dioxygenase) are also overexpressed in cells with Sox2/Oct4
overexpression (38). The effects promoted by Sox2/Oct4 are directly
mediated by overexpression of the BRD3 (Bromodomain
containing protein 3) and BRD4 (Bromodomain containing
protein 4) proteins which belong to the Bromodomain and extra
terminal motif (BET) proteins family. The BRD3 and BRD4
proteins act modulating the activity of the histone 3 (H3)
acetylation mediated by the H3K27Ac enzyme. This mechanism
appears of particular interest considering the availability of pan
BET inhibitors.

Another recent research investigated RNA expression of
GBM-derived sphere-line treated with the BET inhibitor JQ1.
The inhibition of BET resulted in a significant modulation of
genes responding to Interferon-alpha (enhanced in about 50% of
GBM) through a direct transcriptional inhibition more than
interference to the JAK (Janus Kinase) -STAT (Signal transducer
and activator of transcription) pathway (39).
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BET inhibitors have recently been assessed on phase I clinical
studies and further trials assessing their clinical efficacy are
needed (40–47).

In conclusion, differently from other tissues, CNS physiologically
employs signals able to reduce an immune innate and adaptive
response. This happened to prevent catastrophic effects associated
with an uncontrolled inflammation in a dedicated system such as
the brain or the spinal cord. In this context, GBM cells adopt several
mechanisms to reinforce this inhibition. Glioblastoma stem cells
(GSCs) are probably an important component of this complex
mechanism as they express important transcription factors such as
Sox2 and Oct4 (38). Nonetheless, it is also likely that other pathways
converge on the same inhibition suggesting that the inhibition of a
singular cascade could not be associated with an effective immune
response reactivation.

GBM – Microglia, Myeloid Cells,
and Macrophages
Immune resident cells of the CNS are microglia and macrophages
including perivascular, meningeal, choroid plexus, and
circumventricular macrophages (28). These cells cover over 50%
of the GBM tumor load and their composition change during the
time and tumor progression (48). In the early phases of GBM
development, the microglia is the most represented infiltrating cell
subtype while macrophages andmyeloid cells composed a large part
of GBM volume in advanced phases (49, 50). Differently from
macrophages, microglia constitute the resident immune system of
the CNS. These cells can move within the CNS but they do not
circulate in other tissues. Both microglia and macrophages are
ineffective against tumors as their immune response is suppressed
by the presence of an immune-depressive cytokines storm (11, 51).
Indeed, GBM cells can directly mediate the production of several
immune-depressive cytokines. Furthermore, cancer cells can
manipulate the secretion and phenotype of surrounding immune
cells shifting their phenotype toward an immune-suppressive one
and initiating positive feedback leading to an immune-suppressive
contexture. Notably, macrophages and myeloid cells are important
protagonists of this process.

Myeloid cells constitute a large part of the immune-
contexture of GBM. These cells are recruited directly from
tumors cells and then can differentiate toward macrophages
and monocyte phenotypes (52).

Myeloid cells have been classified into monocytic and
granulocytic subtypes. Both these cells inhibit T cell and NK
activities. Curiously, some data seem to confirm a negative
prognostic role of these cells in males while these same cells can
positively activate an immune response in female patients (52).

The main stimulation for macrophages and microglia accrual
around the tumor is mediated by the same glioblastoma cells through
the production of CCL2 (C-CMotif Chemokine Ligand 2), CCL7 (C-
C Motif Chemokine Ligand 7), GDNF (Glial Cell-Derived
Neurotrophic Factor), SDF1 (stromal cell-derived factor 1), TNF
(tumor necrosis factor), VEGF (vascular endothelial growth factor),
ATP (adenosine triphosphate), CSF-1 (Colony-stimulating factor 1),
GM-CSF (Granulocyte-Macrophage Colony-Stimulating Factor), and
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expression of OLIG2 (Oligodendrocyte transcription factor 2) (48, 51,
53). Macrophages and microglia can perpetuate themselves accrual
through the production of CCL2 resulting in a positive feedback loop
(53). In advanced phases, microglia are localized mainly around
tumor tissue while macrophages are localized in perivascular
regions (54).

The differentiation of macrophages ranges from two specific
phenotypes which are: M1 (immune-response enhancer) or M2
(immune-regulator inhibiting immune response) (55, 56).
Although explicative, this classification is not definitive as
macrophages can reach an intermediate grade of differentiation
activating both genes of the M1 and M2 subtypes (57). In GBM,
the resulting phenotype can inhibit immune response through
secretion of transforming growth factor b1 (TGFb1), arginase 1
(ARG1), or interleukin 10 (IL-10) enhancing neo-angiogenesis
through VEGF production and extracellular matrix modeling by
metalloproteases (MP) (38). On the other hand, these
macrophages also produce pro-inflammatory molecules such as
IL-b1 (interleukin b1), TNF, IL-5 (interleukin 5), and IL-12
(interleukin 12) which are molecules stimulating the immune
response (38).

It has been demonstrated that macrophages promote GBM
growth and progression in different ways (11).

First, the macrophage tumor suppression phenotype inhibits
the response of other immune cells surrounding the tumor. This
immune inhibition is mainly explicated by myeloid cells and
differentiated macrophages which miss the activation of natural
killer (NK) cells, the production of interferon g (INF g) and
TGFb (55). These same cells can induce lymphocytes
differentiation toward an immune-regulatory (Th2) profile by
TGFb, reactive oxygen species (ROS), cysteine depletion, L-
selectin downregulation, ARG1, and inducible nitric oxide
synthase (iNOS2) production (36, 37).

The remodeling of ECM is essential for tumor migration and
is mediated by the production of inactive metalloproteases
enzymes by GBM cells (48, 58). These pro-Metalloproteases
are then activated by enzymes produced by microglia.
Moreover, the production of CSF1 by glioblastoma induces the
release of the insulin-like growth factor-binding protein 1
(IGFBP1) by microglia which Is essential to promote
vascularization and angiogenesis (48, 58, 59).

The administration of macrophages able to restore immune
response would be a promising strategy able to partially restore
immune-response against the tumor. The development of
engineered macrophages (car-M) is at an early stage of
assessment but it could be a promising strategy for GBM
treatment (60).

Similar to macrophages and microglia also neutrophils and
other innate immune cells are attracted by the tumor. In
particular, inflammatory factors secreted after a surgical
intervention such as IL-8, TNF, and CCL2 can promote
neutrophil infiltration in addition to SDF1 and plasminogen
activator inhibitor 1 secreted by tumor cells (61, 62). These
innate immune cells can facilitate further accrual of macrophages
and contribute to microenvironment remodeling.
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Lymphocytes and
Antigen-Presenting Cells
Antigens exposure can start an adaptive immune response in the
CNS like observed in other organs.

The presence of lymphocytes surrounding the tumor has been
largely reported in GBM where their concentration correlates
positively with survival (63, 64).

When an antigen is recognized by the immune system, a
specific lymphocyte clone targeting the same antigen expands
itself starting an adaptive immune response. The antigen-
presenting cells (APCs) are essential to start the clonal
expansion as these cells mediate the presentation of the
antigen to the lymphocytes initiating the immune response
(29, 30). Antigens captured within the CNS are processed by
APC and then presented to lymphocytes probably in deep
cervical nodes. Activated lymphocytes can move into the brain
directly thanks to the increased permeability resulting from
inflammation and neo-vessels or after exposure to antigen by
APCs on the meningeal surface (29, 30).

Even if lymphocytes can move around GBMmass their ability
to start an immune response against tumor is strongly inhibited
by several factors. Once lymphocytes come to the peritumoral
tissue they are invested by strong immune-depressive signaling
mediated tumor cells and GBM associated microenvironment.
The TGFb1 and TGFb2 molecules are the main characters for
this inhibition (11, 37, 65).

It is important to observe that immune-inhibitory signals are
largely provided by the microenvironment more than directly by
GBM cells. This is a concrete example of how GBM cells
manipulate the microenvironment to sustain their growth and
expansion (11). Notably, it has been reported that GBM cells can
induce pericytes to produce TGFb and IL-10 (an inhibitory
interleukin) (66).

GBM cells can also release directly inhibitory signals such Fas
antigen ligand (FASLG), and other inhibitory molecules.
Lymphocytes assume the classical exhaustion phenotype
expressing several-inhibitory receptors including the PD-1, T
cell membrane protein 3 (TIM3), lymphocyte activation gene 3
prote in (LAG3) , and T cel l immunoreceptor with
immunoglobulin and ITIM domains (TIGIT) (67).

As already specified, it is interesting to observe that a large
part of inhibitory molecules released by GBM cells can be
mediated by the Sox2/Oct4 (38).

The complex network of immune-inhibitory signals can
partially explain the failure of clinical trials exploring immune-
checkpoint inhibitors (ICIs). To date, three different phases III
trials failed to show a clinical benefit from the addition of
nivolumab in newly diagnosed and recurrent GBM (68–70).

In the last years, a novel immune strategy employing
engineered T-cells (car-T) has been investigated with favorable
preliminary results. In GBM the introduction of reprogrammed
T-cells could be ineffective due to the immune shield provided by
the tumor microenvironment (70). Strategies aimed to switch the
composition of cancer-associated immune cells from an
immune-suppressive to an immune-active one are of critical
importance. Combinatory strategies employing more immune
targets are under investigation (70).
Frontiers in Oncology | www.frontiersin.org 4
NEURONS AND GLIOBLASTOMA

The brain is composed of over 60% of the white matter which is
largely composed of myelinic axons. Neurons, astrocytes, and
oligodendrocytes with other glial cells (including microglia) are
the most represented cells in the brain and CNS (71).

The study of the interactions between these components and
glioblastoma appears of extreme interest as these are strictly
related to some of the most important biological and clinical
features of GBM cells.

Indeed, connexons between white matter, neurons, and
tumors can partially explain the high recurrence rate of the
disease as well as the ability to relapse also in a distant site such as
the contralateral hemisphere (71–74). Of interest, the interaction
between neurons and GBCs assumes a particular interest in
recent years.

Indeed, the biological niche composed of GBM cells, GSCs,
peritumoral oligodendrocytes, astrocytes, and also neuronal
axons can both drive differentiation of a GSCs cell toward a
tumoral phenotype or, surprisingly, toward a differentiated non-
tumoral cell subtype (75). On the other hand, also GBM cells can
induce the dedifferentiation of astrocytic cells while astrocytes
and oligodendrocytes can support tumor growth in different
ways. In particular, astrocytes can support tumor growth and
development through the secretion of several cytokines
and other soluble factors stimulating directly GBM growth and
maintaining an immune-suppressive contexture (76, 77).

Astrocytes
Tumor-associated astrocytes (TAAs) can contribute to GBM
growth in different ways. During early phases of tumor
development, TAAs respond to initial injury with the secretion
of TGFb, IL-6, and Insulin growth factor 1 (IGF-1) which could
contribute to GBM sustainment (76, 77). These same TAAs
express the sonic hedgehog (SHH) gene and are concentrated in
the perivascular niche of GBM (78–80). In early and advanced
phases communications between GBM and TAAs occurred
especially through the secretion of extracellular vesicles which
contribute to stimulating several growth factors by TAAs (81).
These include the vascular endothelial growth factor (VEGF),
fibroblast growth factor (FGF), hepatocyte growth factor (HGF),
and epidermal growth factor (EGF) (81).

The contribution of TAAs is of key importance as these cells
can stimulate neo-angiogenesis through secretion of VEGF and
hypoxia-inducible factor -1 (HIF-1) (82, 83).

Of interest, it has been demonstrated that astrocytes actively
participate in chemotherapy resistance by GBM (84). The exact
mechanism by which this is possible is still unclear but in vitro
studies identified that chemoprotection performed by TAAs is
possible only when these cells are connected to cancer cells by
gap junctions. Indeed, apoptosis and GBM cells death increased
when the development of gap junctions was inhibited by the
administration of carbenoxolone (a gap junctions communication
inhibitor) (84).

One of the most surprising behaviors of astrocytes is the
capacity to be transformed in tumor-initiating cells. In vivo
studies demonstrated that several oncogenes including MYC,
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Di Nunno et al. Microenvironment and Glioblastoma
RAS, and EGFR variant III can dedifferentiate astrocytes in
tumoral cells (85, 86). This close relationship suggests a
common phenotype shared by GBM and astrocyte supporting
the hypothesis that astrocytes are the precursor normal cells by
which gliomas originate. It is still unknown the exact
mechanism, but it has been observed that glioma cells inhibit
the expression of the onco-suppressor p53 in normal astrocytes
(87, 88). The malignant transformation of astrocytes required the
miR-10b which is silenced in TAAs but is largely expressed and
secreted by GBM cells using extracellular vesicles (89).

Although the already cited oncogene (MYC, RAS, and EGFR)
can mediate the transformation of astrocyte into malignant
glioma cells it is still unclear the exact mechanism by which
GBM cells can initiate this process in humans (85, 86). However,
the manipulation and conversion of surrounding astrocytes into
neoplastic cells can be another issue explaining the well-known
recurrence and regeneration proprieties of this tumor

Neurons
Neurons can be manipulated by glioma cells to stimulate tumor
progression and invasion. One of the first documented
interactions between neurons and GBM is associated with the
release of glutamate which could be enhanced in patients with
GBM resulting in seizure onset and increased vascular
permeability mediated by the N-methyl-D-aspartate receptors
(NMDA) (90, 91). Of interest, synapsing signaling of cortical
neurons can directly stimulate GBM growth. Neurons and
oligodendrocyte precursor cells can secrete the postsynaptic
adhesion molecule neuroligin 3 which mediated the activation
of several key pathways including the mammalian target of
rapamycin (mTOR), phosphoinositide-3-kinase (PI3K), and
focal adhesion kinase (FAK) (92). Also, the brain-derived
neurotrophic factor chaperone Bip (HSPA5) has been
identified as an agent able to stimulate mitosis and cell
division (92).

Oligodendrocytes and White Matter
Oligodendrocytes may absolve an inhibitory function against
GBM cells. Indeed, these cells can activate the WNT inhibitory
factor 1 leading to the inhibition of GBM growth and
proliferation (93, 94). In CNS, Oligodendrocytes modulate
neural plasticity, metabolic support, and axon activity through
myelination. It is well known that GBM can spread through
myelinic axons (75). The butterfly shape commonly observed in
GBM indicates that tumor cells can invade the contralateral side
following the commissure fibers of the corpus callosum (75).
Similarly, GBM can spread through the arcuate fasciculus and
using the radiation of the corpus callosum (75). It has been
supposed that GBM cells adopted myelinated axons as scaffolds
and tracks however a recently published study could drastically
modify this concept (75). Glioblastoma stem cells are contained
in a specific biological niche composed of their microenvironment
which influences GSCs fate and differentiation. It is easy to think
that GSCs differentiate into cancer cells but it is not always true as in
some conditions these cells can differentiate into normal cells
without tumorigenicity. It seems that a biological niche composed
of white matter can induce GSCs to differentiate toward a
Frontiers in Oncology | www.frontiersin.org 5
pre-oligodendrocyte phenotype losing oncogenic potential (75).
This mechanism is similar to that happening during the response
to injury (75). Thus, this is an important discovery demonstrating
that GSCs can differentiate toward a normal cell phenotype.

The mechanism by which this happens involves the white
matter destruction which leads to upregulation of the SOX10
transcription factor. The SOX10 mediates oligodendrocyte
differentiation also by cancer cells (75).

Further investigation of this pathway will probably provide
new therapeutic insights for the clinical management of GBM.
CANCER STEM CELLS

Glioblastoma stem cells explain the extreme clinical aggressiveness
of GBM. In GSCs are associated with the high recurrence rate of the
tumor even after complete resection (72). These cells are also
associated with tumor renewal and resistance to treatment (73).
Finally, the ability to spread and relapse in a distant site of the brain
such as the contralateral hemisphere could be partially explained by
GSCs an interaction between tumors and neurons (71–74). As
already discussed, the differentiation of GSCs could be shifted
toward a tumoral or non-tumoral phenotype according to the
biological niche in which these cells are located (75).

Glioblastoma stem cells are localized in a specific niche
localized in the perivascular and hypoxic regions of the tumor.
These cells are similar to normal neural stem cells (NSCs) which
are localized mainly in the subventricular zone of the brain which
is a common site of origin for glioblastoma (95–97).

It is still unclear if GSCs derived from altered NSCs or
mutated glioma cells (98). Glioblastoma Stem Cells are surely
associated with GBM progression and recurrence after surgery
(99, 100). The surface marker CD133 is one of the most adopted
markers to recognize GSCs.

The expression of CD133 is regulated by Sox2 and agents
targeting or interfering with this transcription factor can reduce
tumor-initiating ability, resistance to chemotherapy, and
recurrence (101). Nestin is another upregulated factor reported
on GSCs that is directly correlated with poorer survival
(98) (102).

Notably, the specific position of GSCs leads to an interaction
with Endothelial cells (ECs) and pericytes. It has been supposed
that GSCs directly respond to hypoxia stimulating vessels
creation and neo-angiogenesis through the production of
VEGF (103, 104). Moreover, GSCs can differentiate into ECs
and pericytes (103–105). The most surprising finding related to
GSCs is that these cells can be located at a distance of up to 3 cm
from the primary tumor (106). Moreover, their histological
identification is almost impossible as these cells are
indistinguishable from normal tissue cells (72). Nonetheless,
some studies suggest that GSCs derived from the GBM core are
different from those isolated by peritumoral tissue presenting
different behaviors in terms of proliferative potential and
expression of stem-cell markers (72, 107, 108). Even if
peritumoral GSCs are less aggressive compared to GSCs from
the core of GBM these same cells are also more resistant to
temozolomide and radiation therapy (72, 107, 108). As
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discussed in a previous paragraph, the transcription factors
Sox2 and Oct4 are activated in GSCs promoting glioma cell
stemness and stimulating several mechanisms leading to innate
and adaptive immune response inhibition (38). Curiously,
recent data suggest a strong interaction between glioblastoma
cancer cells and GSCs (109). This is mainly mediated by the
cascade activated by the brain-derived neurotrophic factor
(BDNF) secreted by GBM cells and the receptor neurotrophic
receptor tyrosine kinase 2 (NTRK2) localized on stem cells. This
interaction leads to a paracrine effect resulting in tumor growth
and development (109).
ENDOTHELIAL CELLS

Neovascularization and new vessels development are both
hallmarks of GBM. The fast growth of the tumor mass required
high blood intake thus there are several identified pathways by
which GBM cells can interact and manipulate ECs activity (110).

Hypoxia is one of the most important stimulations for tumor
growth, vessels development, and acquisition of more aggressive
pathological features by tumor cells (111–113). In general,
hypoxia leads to a metabolic switch by tumor cells which are
more likely to promote aerobic glycolysis. Hypoxia induces also
an attenuated expression of DNA repair enzymes and impedes
the formation of Reactive Oxygen Species (ROS) reducing the
cytotoxic effect of radiation therapy (111–113).

Notably, ROS can assume a different biological role according
to their concentration. Low levels of ROS are associated with
stimulation of hormone secretion, synaptic plasticity, and immune
response (114, 115). High levels of ROS are instead associated with
DNA damage and in particular p53 damage (116). The DNA
damage promoted by ROS could partially explain the switch from
low to high-grade gliomas (117). The NADPH oxidase (NOX) 4 is
activated by PDGF and TGF-b and is a key enzyme associated
with ROS production (H2O2) (118). The inhibition of this enzyme
could be a promising target in patients with GBM.

One of the most established pathways for new vessels
development is the recruitment of EC progenitors by the bone
marrow. This is a process occurring during embryogenesis or
after an ischemic insult which is also adopted by GBM cells (119,
120). Tumor cells or microenvironments manipulated by GBM
cells can secrete the SDF-1 which is the ligand of the CXCR4
receptor expressed by EC progenitors (121, 122). The interaction
between SDF-1/CXCR-4 resulted in EC activation and
recruitment of novel EC (121, 122).

It has been well established that GBM cells and the
surrounding microenvironment can stimulate the production
of the VEGF. This factor can drive EC toward the development
of novel vessels in a process known as sprouting angiogenesis.
Notably, the neoangiogenic promotion carried out by VEGF can
be inhibited by the interaction between the Notch receptor and
Delta-like canonical Notch ligand 4 (DLL4) (123). Curiously,
novel vessels development can originate also through a process
known as vasculogenic mimicry (124–126). This phenomenon is
mediated by the same tumor cells which can differentiate to
Frontiers in Oncology | www.frontiersin.org 6
create a vessels-like structure. In particular, macrophages
surrounding tumors can mediate cyclooxygenase-2 (COX-2)
activation stimulating vasculogenic mimicry (127). Other
supposed mechanisms involved in this pathway are the
expression of VE-Cadherin by GBM stem cells resulting from
hypoxia and the HIF 1 and HIF 2 secretion. Also, the mTOR
expression seems to be involved in this pathway (128).

Vascular co-option is another mechanism by which tumor
cells move around pre-existing vessels gaining the access to
oxygen and nutrients. Curiously GBM cells can induce
secretion of bradykinin by EC cells. Bradykinin plays a
chemotaxis effect on GBM cells (129, 130). The interaction
between SDF1/CXCR4 (129, 130) and the expression of the
EGFRvIII are also involved in this mechanism (129–131).

A well-described mechanism associated with neo-angiogenesis
is the interaction between VEGF and VEGFR2 and VEGFR1
(132). The interaction between VEGF and VEGFR1 or VEGFR2
induces the phosphorylation and activation of the ERK 1/2
(extracellular signal-regulated kinases 1 and 2) and p38 MAPK
(mitogen-activated protein kinase) which together mediated
transcription of pro-angiogenic factors (132).

This interaction also results in blood vessels permeability, and
proteins lost from blood (110) explaining an increased
permeability, edema onset, and increased intracranial pressure.
This can explain the clinical benefit experienced by patients
treated with the anti-VEGF agent bevacizumab (133–136). Even
if the administration of bevacizumab is associated with reduced
edema and vascularization within tumor masses it failed to show a
significant survival benefit among patients with GBM (133–136).

The lack of the survival benefit observed could reflect the co-
existence of several mechanisms resulting in angiogenesis and
vessels development. In this optic, the inhibition of the VEGF
mediated by bevacizumab can activate or reinforce other
molecular pathways converging on angiogenesis promotion
resulting in resistance to the anti-VEGF.

The study of the interactions between immune cells in tumor-
associated microenvironment assumes an increased interest (137).
Increasing data seem to indicate that hypoxia induces secretion of
the VEGF which is one of the main molecules mediating this
signaling. In particular Regulatory T lymphocytes (T reg) mediate
the production of IL-10, IL-4, and IL-13 inducing differentiation of
macrophages into M2 phenotype and stimulating expression of
inhibitory B7-H receptor on their membranes (137).

Thus, the inhibition of VEGF could also result in an enhanced
immune response against the tumor. This supposed synergic effect
has led to the assessment of combination strategies in the clinical
setting. Unfortunately, a phase II study assessing the combination
between bevacizumab and pembrolizumab (a PD-1 inhibitor) failed
to show a significant clinical efficacy on patients with GBM (138).
TARGETING THE MICROENVIRONMENT
IN GLIOBLASTOMA

There are very few systemic agents showing clinical efficacy in
patients with glioblastoma (139–142). As already discussed in
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previous paragraphs, a great interest in the immune contexture of
GBM is explained by the availability of active compounds able to
restore immune response against tumors. Nonetheless, immune-
checkpoint inhibitors failed to improve the survival of patients
with GBM (68). The reason for this failure can be partially
explained by the lack of uniformly expressed tumor-specific
antigen due to the high heterogeneity of tumor GBM cells as
well as the presence of an immune-depressive microenvironment
which impairs the ability of immunotherapy to work. Also, GSCs
can mediate immune escape (38).

Novel combination strategies are under investigation to
overcome these limitations.

For example, it has been demonstrated that other immune
checkpoints co-exist with PD-1. These are the indoleamine 2,3-
dioxygenase (IDO1), T cell immunoglobulin-mucin-domain
containing-3 (TIM-3), and lymphocyte activation gene 3
(LAG3) (143). Novel trials exploring combinations between PD-
1 and LAG3 (NCT02658981) or IDO1 (NCT03707457) are under
investigation. Similarly, the combination between temozolomide
and IDO1 inhibitors is under investigation (NCT02052648).

Previous trials investigating neoantigen vaccination showed
that vaccines can induce a significant increase of tumors
infiltrating lymphocytes (144). Unfortunately, these infiltrating
lymphocytes assume an exhausted phenotype. Thus the co-
administration of multi-epitope vaccines and immune-
checkpoint inhibitors could be another promising approach
(NCT02149225 GAPVAC trial) (144). Strategies assessing co-
administration of vaccines and CAR-T engineered with
EGFRvIII and PD-1 are also under investigation (NCT04003649,
NCT04201873, NCT02529072, NCT02287428) (145–147). Also,
the administration of co-stimulatory agonists able to enhance T
cell function is under investigation. Agonists such as CD27, 4-1BB,
OX40 or CD40 are under investigation (NCT04547777,
NCT02658981, NCT03688178, NCT04440943) (145–147).

Since macrophages are strongly associated with the development
of an immune-depressive microenvironment the possibility to
develop an engineered cell type of macrophage could be a
promising strategy allowing a microenvironment to switch toward
an immune-active phenotype (60). This Car-M strategy is still under
early assessment however this appears a very promising approach.

As already specified SOX2 and Oct4 are two transcription
factors able to modulate a very large amount of genes involved in
the immune response. These two factors act through proteins
belonging to the BET family. To date, BET inhibitors have been
assessed on phase I trials with more of them showing a safety
profile (39–47). A further investigation of these agents could be
important for patients with GBM.

The inhibition of the CSF1 receptor can inhibit the
interaction between GBM and cells of the immune innate
system including tumor-associated macrophages. Studies on
murine models showed that macrophages develop resistance to
CSF1 inhibition through the expression of the insulin growth
factor 1 (148). The co-administration of CSF1 and IGF1
inhibitors could be an interesting approach as associated to
restored immune-active microenvironment resulting from
macrophages activation (148).
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In the last years, several agents targeting angiogenesis have been
tested in GBMwithout significant results. The only FDA-approved
drug is bevacizumab which has been associated with prolonged
progression-free survival, a reduction of symptoms related to the
tumor but failed to show a significant impact on overall survival
(133–136). Several efforts are spent to understand the reason for
bevacizumab resistance. The very high hypoxia level described
inside the tumor can partially explain this failure. Indeed, hypoxia
is associated with upregulation of the hypoxia-inducible protein 2
(HIG2) gene with downregulation of the CYLD gene expression.
The overexpression of HIG2 resulted in HIF-1b, VEGF expression,
and bevacizumab resistance through direct stimulation of hypoxia-
inducible factor. Nonetheless, agents targeting HIG2 products
failed to improve the clinical outcomes of patients with GBM
(149). Novel approaches are aimed to target the angiotensin II
receptors (AngII-R) and VEGF (150). However, this approach has
been evaluated only in murine models thus assessments on
humans are necessary to further assess this approach.

Since GBM cells adopt extracellular vesicles to communicate
with surrounding tissue, a system able to reduce vesicles uptake
and synthesis can be a promising target. Pre-clinical studies
showed that inhibitors of neutral sphingomyelinase (GW4869)
can reduce the production of extracellular vesicles while heparin
and annexin A1 inhibitors can reduce vesicles intake by target
cells (151–153).

Direct inhibition of junctions between GBM and microenvironment
is also a strategy under investigation. Inhibition of connexin 43 is
essential to inhibit the interaction between GBM and astrocytes (154).
Another interaction between oligodendrocytes, astrocytes, and GBM
cells is the interaction between neuroligin 3/ADAM10 (155). Indeed,
GBM cells produce neuroligin 3 which is cleaved from the ADAM10
secreted by neurons and oligodendrocytes (156). The effect is a
stimulation of GBM growth and development (11). Thus inhibitors
of the ADAM10 appear a promising strategy for GBM which should
be further assessed among clinical trials in humans.
CONCLUSION

GBM remains a fatal disease with limited treatments. The reason
for this failure could be partially explained by the development of
a complex and effective net of interactions between tumor cells
and surrounding tissue cells. The microenvironment resulting
from the manipulation carried out by cancer cells can feed and
stimulate GBM proliferation hiding and protecting tumor cells
from systemic treatments.

Interactions between tumor, endothelial and immune cells are
under careful assessment due to the availability of drugs targeting
these pathways. Recently, also the associations between
glioblastoma and astrocytes, oligodendrocytes, white matter,
and neurons come out from the shadow offering novel
promising targets with therapeutic implications.

Due to the presence of deep communications between tumor
cells and the microenvironment the use of agents targeting more
than one altered intracellular cascade at the same time appears a
promising approach.
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In this optic novel immune-combination including immune
checkpoint inhibitors) targeting PD-1/PD-L1, IDO1, TIM3, LAG3),
engineered immune cells (CAR-T and CAR M), immune agonists
(targeting OX40, CD27,4-1BB, CD40), and BET inhibitors are
under investigation. Notably, tumor-associated macrophages are
one of the most important cell-associated with the development of
an immune-depressive habitat. Thus, a strategy able to reverse this
effect such as CAR M assumes a particular interest.

Strategies aimed to inhibit the signaling between GBM cells
and the microenvironment are also of key importance as able to
inhibit the manipulation carried out by tumor cells on
surrounding tissues. Inhibitors of sphingomyelinase, annexin
A1 can act on extracellular vesicles secretion and intake while
other agents such as ADAM10 inhibitors could directly interfere
with the jap junctions connecting GBM to other cells.

Finally, it should be noted that a specific microenvironment
composition (such as that described on the white matter) can
promote GBM differentiation and convert a tumor cell into an
oligodendrocyte well-differentiated element. This surprising finding
Frontiers in Oncology | www.frontiersin.org 8
suggests that there are some elements inside the microenvironment
that can provide inhibitory messages to GBM reversing its natural
course. Interactions between neurons and glia (especially
oligodendrocyte) appear of particular interest and should be
further assessed as could hide important targets for novel drugs
development. In conclusion, GBM should be considered as a
network of interactions in which an action perpetuates against
tumor cells result in a response of the associated microenvironment
and vice versa. The role of the microenvironment should be always
considered during pre-clinical studies and would offer novel targets
for patients with GBM.
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GLOSSARY

ADAM10 Adam metallopeptidase domain 10
APC Antigen Presenting Cell
ARG1 arginase 1
A2aR adenosine A2A receptor
ATP adenosine triphosphate
BDNF brain derived neurotrophic factor
BET Bromodomain and extra terminal motif proteins family
BRD3 Bromodomain containing protein 3
BRD4 Bromodomain containing protein 4
CD70 Cluster of differentiation 70
CD133 prominin-1
CCL2 C-C Motif Chemokine Ligand 2
CCL5 C-C Motif Chemokine Ligand 5
CCL7 C-C Motif Chemokine Ligand 7
COX 2 cyclooxygenase-2
CCL20 C-C Motif Chemokine Ligand 20
CXCL3 C-X-C Motif Chemokine Ligand 3
CXCL5 C-X-C Motif Chemokine Ligand 5
CXCL9 C-X-C Motif Chemokine Ligand 9
CXCL10 C-X-C Motif Chemokine Ligand 10
CXCL11 C-X-C Motif Chemokine Ligand 11
CNS Central Nervous System
CSF-1 Colony stimulating factor 1
DLL4 Delta-like canonical Notch ligand 4
EC Endothelial cell
ECM Extra-cellular matrix
EGF Epiderma growth factor
EGFR Epidermal growth factor receptor
ERK 1/2 extracellular signal-regulated kinases 1 and 2
FAK focal adhesion kinase
FGF Fibroblast Growth factor
GBM Glioblastoma
GDNF Glial Cell Derived Neutrophic Factor
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
GSC Glioblastoma stem cell
JAK Jasus Kinase
HGF Hepatocyte growth factor
HIF-1 hypoxia inducible factor 1
HIF-2 hypoxia inducible factor 2
HIG-2 hypoxia inducible protein 2

(Continued)
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HSPA5 brain-derived neurotrophic factor chaperone Bip
IDH Isocitrate dehydrogenase
IDO1 Indoleamine 2,3-dioxygenase
IGF1 insulin growth factor 1
IGFBP1 insulin-like growth factor-binding protein 1
IL5 Interleukin 5
IL6 Interleukin 6
IL8 Interleukin 8
IL10 Interleukin 10
INF g interferon g
iNOS inducible nitric oxide synthase
LAG 3 lymphocyte activation gene 3
MAPK mitogen-activated protein kinase
MGMT O6

– methylguanine DNA methyltransferase
MP Metalloprotease
mTOR mammalian target of rapamycin

NMDA N-methyl-D-aspartate receptors

NOX 4 NADPH oxidase 4

NSC Neural stem cell

NTRK2 neurotrophic receptor tyrosine kinase 2

Oct4 Octamer-binding transcription factor 4

OLIG2 Oligodendrocyte transcription factor 2
OS Overall survival
PD-1 Programmed Death Receptor 1
PD-L1 Programmed Death Receptor Ligand 1
PI3K phosphoinositide-3-kinase
ROS reactive oxygen species
SDF1 stromal cell-derived factor 1
SHH Sonic Hedgehog
SOX2 SRY-Box Transcription Factor 2
SOX10 SRY-Box Transcription Factor 10
SPP Signal Peptide Peptidase

STAT Signal transducer and activator of transcription
TAA Tumor associated astrocytes
TDO Tryptophan 2,3-dioxygenase
TERT Telomerase Reverse Transcriptase
TGFb1 transforming growth factor b1
TIM-3 T cell immunoglobulin-mucin-domain containing3
TMZ Temozolomide
TNF tumor necrosis factor
VEGF vascular endothelial growth factor
WHO World Health Organization
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