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Abstract: Ibuprofen is one of the most often detected pollutants in the environment, particularly at
landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the
presence of other compounds which may influence their degradation. This work describes the new
degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged
in this process. It is known that the key intermediate which transformation limits the velocity of the
degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors,
the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the
B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it
was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI).
Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of
Co2+ ions into the medium significantly extended the time necessary for the complete removal of
ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the
presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen,
degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture
completely inhibits degradation of ibuprofen.
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1. Introduction

The increased use of non-steroidal anti-inflammatory drugs has contributed to their presence
in natural waters and wastewaters. Ibuprofen is one of the active compounds more frequently
detected in the influents and effluents of wastewater treatment plants. In the final effluents
and surface water concentration of ibuprofen varies from 0.018 to 4.24 µg/L and from 0.042 to
1.26 µg/L, respectively [1–3]. Although ibuprofen is considered as one of the most easily transformed
pharmaceuticals with removal efficiencies above 90% its metabolites are still observed in the effluents of
biological wastewater treatment system [1–4]. A large number studies are related to the physico-chemical
mechanisms of ibuprofen degradation while there is very little information about the microbiological
decomposition of this drug. Murdoch and Hay [5–7] isolated and described two bacterial strains
able to utilize ibuprofen and proposed degradation pathways. In Sphingomonas sp. strain Ibu-2
ibuprofen degradation occurs through its hydroxylation to isobutylocatechol, which is then cleaved to
5-formyl-2-hydroxy-7-methylocta-2,4-dienoic acid, oxidized to 2-hydroxy-5-isobutylhexa-2,4-dienedioic
acid [5,6]. The GC-MS analysis showed that in Variovorax Ibu-1 ibuprofen is transformed to
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trihydroxyibuprofen which probably is the dead-end metabolite [5–7]. Almeida et al. [8] described
Patulibacter sp. Strain I11 able to degrade paracetamol under cometabolic conditions. In the studied
strain, proteomic analysis showed the presence of acyl-CoA synthetase and protein containing a Rieske
(2Fe-2S) iron-sulfur domain. Such enzymes were also detected in Sphingomonas Ibu-2. It may indicate that
these proteins have a similar role in ibuprofen degradation [8]. Zwiener et al. [9] and Quintana et al. [10]
observed other metabolites during ibuprofen degradation in bioreactors. These authors suggested
that the first reaction of ibuprofen utilization is the transformation of the aliphatic chain of ibuprofen.
Quintana et al. [10] identified two isomers of hydroxyibuprofen which were further metabolized. Zwiener
et al. [9] also detected hydroxyibuprofen as a metabolite under oxic conditions. Moreover, under anoxic
conditions, carboxyhydratropic acid appeared. Carboxyibuprofen was identified during ibuprofen
degradation under oxic and anoxic conditions [9].

The wastewaters frequently contain a mixture of aromatic compounds, organic solvents, heavy
metals or synthetic polymers which may influence the efficiency of biodegradation processes [11,12].
It is suggested that heavy metals, such as Cr(VI) or Hg(II), inhibit the assimilation of aromatic
compounds by the interaction with essential cellular components. These metals are known to damage
the cell membranes, nucleic acids, and enzymes engaged in the biodegradation processes [12–14]. As a
consequence, extended acclimation periods and reduced biodegradation rates are observed [11,13,15].
The presence of organic compounds with structural similarity to the target compound may cause
the competition for the active centers of the key enzymes [16,17]. However, these compounds
may also induce the same metabolic pathways and in this way stimulate degradation of the target
compound [17,18]. Moreover, the concomitant organic contaminations could be an additional carbon
and energy source increasing the degradation efficiency [16,17].

Our previous study showed that Bacillus thuringiensis B1(2015b) degrades ibuprofen both under
monosubstrate and cometabolic conditions [19,20]. For that reason the objectives of this study were:
(1) to examine the influence of environmental factors of pH and temperature on the ibuprofen
degradation rate; (2) to investigate the effect of potential co-pollutants: heavy metals and selected
aromatic compounds on ibuprofen degradation; and (3) to identify metabolites formed during
ibuprofen decomposition and the enzymes engaged in ibuprofen degradation by Gram-positive
Bacillus thuringiensis strain B1(2015b).

2. Results and Discussion

2.1. Factors Affecting Ibuprofen Degradation

Ibuprofen degradation depends on many environmental factors which may influence both: the
processes directly connected with ibuprofen decomposition (e.g., enzymes of degradation pathway)
and the whole cell metabolism. For example, an increase in the metabolism rate at higher temperature
may cause biomass growth. In consequences it should lead to increase of ibuprofen degradation
rate. On the other hand, factors limiting the growth of microorganisms through the inhibition of
the main metabolic pathway, may indirectly influence ibuprofen decomposition. For that reason the
knowledge about influence of environmental factors on ibuprofen degradation may allow predicting
the degradation ability of the examined strain in the environment.

2.1.1. Influence of pH and Temperature on Ibuprofen Degradation

pH is a major factor which significantly influences bacterial cell morphology, membrane
characteristic and microbial activity [21]. Additionally, pH may impact biosorption, toxicity,
and ionization of pharmaceuticals present in the environment [22,23]. In the present studies
Bacillus thuringiensis B1(2015b) degraded ibuprofen with the highest removal efficiency at pH 7.2.
Simultaneously, significant inhibition of the removal rate at 8.0 pH was observed despite the high
amount of bacteria (Figure 1a). In some cases a lower degradation rate may be connected with the ionic
form of the molecule at alkaline pH. Under these conditions the surface of the bacterial cell is negatively
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charged, leading to lower electrostatic interaction between negatively-charged molecules and binding
sites of the biomass surface. Ibuprofen has a pKa of 4.3 and at pH higher than 6.5 more than 99% of this
drug is present in anionic form. Therefore, at pH 7.2 and 8.0 differences in degradation efficiency may
not be connected with different ionic forms of ibuprofen. Another reason is that the observed difference
may be a functional state of protein engaged in the degradation process. At low pH (4.0–5.0) ibuprofen
is present in an uncharged form and interacts with the surface of bacteria cells [23]. This may suggest
easier and faster degradation of ibuprofen, however, in the uncharged form this compound is more
toxic to organisms [22]. Our results seem to confirm this evidence. We observed a lower ibuprofen
degradation rate and low optical density of bacteria culture at acidic pH (Figure 1a). A low ibuprofen
degradation rate at 8.0 pH was probably connected with the activity of degradative enzymes. Although
maximal activity of phenol monooxygenase and catechol 1,2-dioxygenase at this pH was observed,
hydroxyquinol 1,2-dioxygenase showed 74% of its maximal activity. Hydroquinone monooxygenase
had maximal activity at pH 6.0 while, at pH 8.0, significant decrease of the enzyme activity was
observed (Figure 2a–d). Hydroquinone monooxygenase is a FAD-dependent monooxygenase. Above
pH 7.5 this enzyme easily loses the FAD molecule that may significantly decrease enzyme activity at
pH 8.0 [24]. This may suggest that the activity of this enzyme limits the ibuprofen removal rate.
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It is well known that one of the most important factors that influences biodegradation processes is
temperature. According to van’t Hoff’s principle the speed of a chemical reaction increases by a factor
of 2–4 for a 10 ◦C rise in temperature [25]. However, in biological systems, the impact of temperature
on biodegradation process is more complicitous. It is connected with the relationship between the
functioning of the cell membrane and temperature. Too high a temperature may cause denaturation of
membrane-bound proteins, whereas at too low a temperature the membrane phospholipids become
more viscous. This may result in increasing rigidity of the cell membrane and impedes membrane
transport [26]. Moreover, the temperature influences growth and metabolic activity of bacteria [27].
Our study revealed strong correlation between specific ibuprofen removal rate and bacterial growth
with the maximum at 30 ◦C (Figure 1b). Total inhibition of ibuprofen degradation at 42 ◦C is probably
caused by denaturation of cell proteins. This reflects low optical density of bacteria at this temperature
(Figure 1b). Moreover, the strong correlation between maximal degradation rate at 30 ◦C and maximal
activity of hydroquinone monooxygenase and hydroxyquinol 1,2-dioxygenase at this temperature was
observed (Figure 3a,c). Activity of phenol monooxygenase and catechol 1,2-dioxygenase, enzymes
involved in degradation of another aromatic compounds by Bacillus thuringiensis B1(2015b), was also
maximal at 30 ◦C (Figure 3b,d).
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2.1.2. Heavy Metals and Ibuprofen Degradation

In landfill sites, wastewaters, as well as in various natural environments, different types of
contaminants are present. Contamination of the environment with aromatic compounds, including
non-steroidal anti-inflammatory drugs, is often accompanied by the presence of heavy metals which
may influence biodegradation processes. The effect of heavy metals on these processes depends on the
kind of metal and its chemical and physical form such as separated-phase solids, soil-adsorbed species,
colloidal solutions, soluble complexed species, or ions solutes [13,14]. The chemical and physical state
of metals depends on the environmental conditions, such as pH, redox potential of the water phase,
exchange capacity of soil, and organic matter content [11]. The influence of metals on biodegradation
processes also depends on their impact on microorganisms [13]. Therefore, non-observed effect
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concentration (NOEC) of Cu(II), Cd (II), Co(II), Cr(VI), or Hg(II) for Bacillus thuringiensis B1(2015b),
was determined [19]. The values obtained for the metals tested are listed in Table 1.

Table 1. Effect of metal ions on Bacillus thuringiensis B1(2015b) growth.

Metal Ion Metal Ion Concentration (mM) Optical Density (OD600) NOEC (mM)

Cu2+

0.00000082 0.150 ± 0.040

0.00256

0.0000041 0.146 ± 0.026
0.00002048 0.138 ± 0.033
0.0001024 0.139 ± 0.019
0.000512 0.145 ± 0.016
0.00256 0.156 ± 0.012
0.128 * 0.092 ± 0.015
0.064 * 0.109 ± 0.015
0.32 * 0.094 ± 0.034
1.6 * 0.077 ± 0.019

Cd2+

0.000001 0.111 ± 0.009

0.003

0.000004 0.106 ± 0.028
0.00002 0.113 ± 0.025
0.000102 0.118 ± 0.032

0.001 0.120 ± 0.034
0.003 0.117 ± 0.030

0.013 * 0.108 ± 0.001
0.064 * 0.119 ± 0.011
0.32 * 0.124 ± 0.027
1.6 * 0.079 ± 0.008
8.0 * 0.061 ± 0.008

Co2+

0.17 0.149 ± 0.008

0.21

0.21 0.162 ± 0.015
0.27 * 0.120 ± 0.014
0.34 * 0.108 ± 0.022
0.42 * 0.095 ± 0.010
0.52 * 0.050 ± 0.016
0.66 * 0.035 ± 0.009
0.82 * 0.019 ± 0.008
1.02 * 0.020 ± 0.004
1.28 * 0.017 ± 0.008
1.60 * 0.017 ± 0.008

Cr6+

0.00000082 * 0.079 ± 0.021

0.32

0.0000041 * 0.092 ± 0.030
0.00002048 * 0.095 ± 0.030
0.0001024 * 0.127 ± 0.023
0.000512 * 0.170 ± 0.021
0.00256 * 0.138 ± 0.021

0.128 0.065 ± 0.008
0.064 0.009 ± 0.004
0.32 0.004 ± 0.003
1.6 * 0.003 ± 0.003
8.0 * 0.000 ± 0.000

Hg2+

0.000000492 0.104 ± 0.015

0.000307

0.000002 0.103 ± 0.023
0.000012 0.113 ± 0.002
0.000061 0.108 ± 0.006
0.000307 0.121 ± 0.013

0.001536 * 0.047 ± 0.014
0.00768 * 0.000 ± 0.000
0.0384 * 0.000 ± 0.000
0.192 * 0.000 ± 0.000
0.96 * 0.000 ± 0.000
4.8 * 0.000 ± 0.000

* Statistically different from control group (one-tailed Dunnett’s test, p < 0.05).
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The highest inhibition of bacterial growth was observed in the presence of Hg2+ (NOEC = 0.3 µM).
Mercury is a well-known pro-oxidant which exerts the oxidative stress via generation of hydrogen
peroxide [28]. However, because B1(2015b) strain possess catalase activity, the toxicity of mercury
could result from its ability to bind to the sulfhydryl groups of enzymes essential for microbial
metabolism [11,19]. Although mercury ions inhibit growth of B1(2015b) strain, the NOEC of Hg(II) for
this strain is significantly higher than the average concentration of mercury determined in sewage and
other contaminated environments [29,30]. Addition of Hg(II) to the medium resulted in slower
removal of ibuprofen in comparison to the control (without metal ion) (Figure 4a,f). This may
suggest interaction of Hg(II) with enzymes engaged in ibuprofen degradation. Similar effect was
observed by Said and Lewis [31] during degradation of 2,4-dichlorophenoxyacetic acid methyl ester
by microbial consortium. In turn, Kuo and Genthner [13] observed stimulation of 2-chlorophenol and
3-chlorophenol biodegradation in the presence of metal ions at low concentration.
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Low NOEC values for Cd(II) and Cu(II) (Table 1) indicate high sensitivity of Bacillus thuringiensis
B1(2015b) to these metals. Cadmium is known to cause the oxidative stress and inhibit DNA repair
processes [32]. The toxicity of copper may be the result of its high affinity for amines and carboxyl
groups localized on cell surface of bacteria [33]. Copper ions may also interact with DNA and lead
to the disorder of its helical structure. Like Cd(II), Cu(II) ions can bind to the thiol groups of various
enzymes [33,34]. Despite the similar toxicity of Cd(II) and Cu(II) for B1(2015b) strain, cadmium
ions significantly affect the degradation rate of ibuprofen (Figure 4a–c). This may result from the
differences in the transport of these two ions into bacterial cell. Although copper is an essential trace
element, it is toxic to cells at concentrations higher than physiological levels. Therefore, the intracellular
concentration of copper is tightly controlled by the copper transport systems consist of P-type ATPases
as CopA, CopB, copper chaperones, and chelators [35]. Due to the highly specific transporters, copper
ions do not compete against other ions [36]. In turn, cadmium ions may enter bacterial cell by
magnesium or manganese uptake systems, disturbing metal ion homeostasis in bacterial cells [37,38].
On the other hand, biodegradation processes are catalyzed by metalloenzymes that depend on divalent
ions, such as Mn(II) or Fe(II) [39], and the disturbance of metal ions homeostasis may decrease the
biodegradation efficiency. Inhibitory effects of cadmium may be also connected with its larger ionic
radius, resulting in easier destabilization of degradative enzymes [38]. Inhibition of ibuprofen removal
during first 31 h of incubation (Figure 4a,c) seems to confirm these speculations.

Co(II) and Cr(VI) ions were less toxic to B1(2015b) than the others (Table 1). Although Co(II) ions
show lower toxicity and do not affect ibuprofen degradation during first hours of the experiment,
their presence in the medium significantly extended the time necessary for the complete removal of
the drug (Figure 4d). The inhibitory effect of cobalt was also observed by Yeom and Yoo [15] during
degradation of benzene and toluene by Alcaligenes xylosoxidans Y234. Since, in the degradation of
aromatic compounds, mono- and dioxygenases, the iron-binding proteins are engaged [39], cobalt may
affect their activity by competition with iron during assembling the enzyme active site [40,41]. In the
presence of 0.00082–2.56 µM Cr(VI), stimulation of bacterial growth was observed (Table 1). Although
hexavalent chromium is very toxic to organisms, in the presence of glucose (when it is reduced to
Cr(III) form) it stimulates glucose metabolism and in consequence bacterial growth [42,43]. At higher
concentration Cr(III) is accumulated in the cell membrane and toxic for bacteria [42,44,45]. In the
presence of hexavalent chromium degradation of ibuprofen was similar to this drug degradation in
the presence of Cd(II). Cr(VI) does not influence the transport system of divalent cations, but it may
oxidize divalent cations crucial for the activity of degradative enzymes [44,45].

2.1.3. Degradation of Ibuprofen in the Presence of Selected Aromatic Compounds

Pharmaceutical pollutants coexist in the environment with other contaminants, such as aromatic
compounds which enter the environment as a result of natural processes or human activity [17,46].
Due to the similar chemical structure to ibuprofen, these compounds may induce enzymes engaged in
ibuprofen degradation. On the other hand, aromatic compounds may compete with ibuprofen for the
position in the enzyme activity site, decreasing the degradation rate [17]. Therefore, the influence of
phenol, benzoate, 2-chlorophenol, and 4-chlorophenol on ibuprofen degradation was examined. Of all
the aromatic compounds used, only phenol does not influence ibuprofen degradation. Simultaneously
with the degradation of ibuprofen, decrease in phenol concentration was observed (Figures 4a and 5a).
It was frequently demonstrated that phenol may be used as a carbon source during biodegradation of
non-growth substances [47,48]. Nowak and Mrozik [49] observed degradation of 4-chlorphenol in the
presence of phenol as a growth substrate. 4-chlorophenol like ibuprofen is a para-derivative of phenol.
This may indicate that phenol did not inhibit degradation of its para-substituted derivatives [49].
On the other hand a decrease in the degradation of the phenol para-substituent in the presence of
phenol was observed by Wang et al. [50]. This may result for different reasons. A decrease of the
degradation rate may be caused by competition between substrates for the active site of the same
enzyme. An increase in degradation may result from the accelerated induction of common degradative
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enzymes. If degradative enzymes belong to two different degradative pathways then the increase
in degradation rate is caused with better biomass growth in the presence of growth substrate and in
consequences with synthesis of essential reducing equivalent [49–51]. An example of the last situation
is degradation of 4-chlorophenol in the presence of phenol observed by Nowak and Mrozik [49]. They
showed that both 4-chlorophenol and phenol were cleaved by catechol 2,3-dioxygenase [49]. In our
study we observed two different degradative pathway of phenol and ibuprofen. The key enzyme
involved in phenol degradation by Bacillus thuringiensis B1(2015b) is catechol 1,2-dioxygenase whereas
one of the enzyme in ibuprofen degradation pathway is hydroxyquinol 1,2-dioxygenase (Table 2) [20].
It is surprising that although phenol was degraded we did not observe stimulation of bacterial growth
under this condition. In the presence of benzoate (Figures 4a and 5b), ibuprofen degradation was
slower. This may result from the competition between benzoate and ibuprofen for the active sites of
degradative enzymes, connected with the similar acidic structure of these compounds. Our assumption
is supported by the fact, that ibuprofen was not degraded until complete utilization of benzoate. Both,
2-chloro- and 4-chlorophenol were not decomposed by Bacillus thuringiensis B1(2015b) (Figure 5c,d).
However, in the presence of 2-chlorophenol, slow degradation of ibuprofen was observed, while in
the presence of 4-chlorophenol ibuprofen degradation was totally inhibited (Figure 5c,d). It is known
that 2-chlorophenol is less toxic than other chlorophenols [52,53]. Very poor bacterial growth in the
presence of 4-chlorophenol indicates high toxicity of this compound for Bacillus thuringiensis B1(2015b)
(Figure 5d). Moreover, because of its chemical structure, ibuprofen may induce enzymes with high
affinity to para-substituted derivatives. Hence, 4-chlorophenol could be bound more strongly by these
enzymes and block their active sites.
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Table 2. Specific activity of enzymes after ibuprofen induction.

Enzyme Specific Enzyme Activity
(mU/mg Protein) Enzyme Specific Enzyme Activity

(mU/mg Protein)

Methane
monooxygenase 831.39 ± 167.97 Catechol

2,3-dioxygenase 0.00 ± 0.00

Butane/isobutane
monooxygenase 150.94 ± 21.95 Protocatechuate

3,4-dioxygenase 0.00 ± 0.00

Propane/butane
monooxygenase 311.77 ± 62.99 Protocatechuate

4,5-dioxygenase 0.00 ± 0.00

Pentane
monooxygenase 0.00 ± 0.00 Gentisate

1,2-dioxygenase 0.00 ± 0.00

Phenol
monooxygenase 77.40 ± 4.50 Hydroxyquinol

1,2-dioxygenase 99.12 ± 12.92

Hydroquinone
monooxygenase 102.68 ± 14.24 Hydroquinone

1,2-dioxygenase 0.00 ± 0.00

Catechol
1,2-dioxygenase 34.99 ± 2.91 Acetyl-coenzyme A

synthetase 249.47 ± 24.16

Laccase 0.00 ± 0.00 Peroxidase 0.00 ± 0.00

2.2. Ibuprofen Degradation Pathway

So far the only pathway of ibuprofen biodegradation was described by Murdoch and Hay [5].
These authors suggested that catechols are the key metabolites in ibuprofen degradation and they are
cleaved by extradiol dioxygenase to 5-formyl-2-hydroxy-7-methylocta-2,4-dienoic acid. Our studies
showed that one of the most important step during ibuprofen degradation by Bacillus thuringiensis
B1(2015b) is hydroxylation of both: aromatic ring and aliphatic chain of ibuprofen. This is confirmed
by the high activity of aliphatic monooxygenases and phenol and hydroquinone monooxygenases
(Table 2). GC-MS analysis of intermediates showed that the mass spectrum of the main intermediate
had a molecular ion at m/z 59, 73, 118, 236 and 279. The obtained mass spectral fragmentation pattern
after derivatization showed that the peak detected via GC-TOFMS was 2-hydroxyibuprofen (Figure 6a).
This intermediate was probably formed as a result of aliphatic monooxygenase activity, appearing at 6 h
of Bacillus thuringiensis B1(2015b) incubation and disappearing at 288 h of experimentation (Figure 7).
Maximum concentration of 2-hydroxyibuprofen was observed at 42 h when ibuprofen was not detected.
This may suggest that this step limits ibuprofen degradation rate. Hydroxylation is a typical, first
reaction during ibuprofen degradation in both Pro- and Eukaryotes under oxic conditions [5,9,10,54].
The degradation product at m/z 45, 73, 131, 159, and 308 corresponded to 2-(4-hydroxyphenyl-)
propionic acid (Figure 6b), which may be substrate for acyl-CoA synthase/thiolase (Table 2). The
activity of this enzyme was also observed during ibuprofen degradation by Sphingomonas Ibu-2 [6].
Almeida et al. [8] also indicated involvement of this enzyme in ibuprofen decomposition by
Patulibacter sp. strain I11. In the present studies mass spectra for other two intermediates from
the extract of B1(2015b) culture were also detected. One spectrum corresponded to 1,4-hydroquinone
(Figure 6c) and the second one to 2-hydroxyquinol (Figure 6d). 1,4-hydroquinone is a product of
acyl-CoA synthase/thiolase activity and may be transform to 2-hydroxy-1,4-quinol by hydroquinone
monooxygenase. The activity of these two enzymes was observed in the extract of culture (Table 2).
Moreover, activity of hydroxyquinol 1,2-dioxygenase after the induction by ibuprofen was observed
(Table 2) as in the presence of glucose alone the enzyme was not active at all. Hydroxyquinol
1,2-dioxygenase favorable binds 2-hydroxy-1,4-quinol and is responsible for ortho cleavage of this
compound to 3-hydroxy-cis,cis-muconic acid [39]. It indicates that cleavage of 2-hydroxy-1,4-quinol by
Bacillus thuringiensis B1(2015b) undergoes through the intradiol pathway. That is why we may speculate
that degradation product of ibuprofen is 3-hydroxy-cis,cis-muconic acid which may be introduce to the
central metabolism. The proposed ibuprofen degradation pathway in Bacillus thuringiensis B1(2015b)
is presented in Figure 8. Hitherto it was only described as the extradiol cleavage of the ibuprofen
derivative [5,7]. Therefore, our results provide the evidence for the functioning of the novel ibuprofen
degradation pathway.



Molecules 2017, 22, 1676 10 of 17
Molecules 2017, 22, 1676 10 of 17 

 

 

Figure 6. Spectra of putative metabolites identified via GC/MS analyses: 2-hydroxyibuprofen (a); 2-
(4-hydroxyphenyl-) propionic acid (b); 1,4-hydroquinone (c); and 2-hydroxy-1,4-quinol (d). 

Figure 6. Spectra of putative metabolites identified via GC/MS analyses: 2-hydroxyibuprofen (a);
2-(4-hydroxyphenyl-) propionic acid (b); 1,4-hydroquinone (c); and 2-hydroxy-1,4-quinol (d).



Molecules 2017, 22, 1676 11 of 17
Molecules 2017, 22, 1676 11 of 17 

 

 

Figure 7. Appearance of 2-hydroxyibuprofen during ibuprofen degradation by Bacillus thuringiensis 
B1(2015b). 

 

Figure 8. Ibuprofen degradation pathway in Bacillus thuringiensis B1(2015b). 

3. Materials and Methods  

3.1. Bacterial Strain and Growth Conditions 

Bacillus thuringiensis B1(2015b) was routinely cultivated in the nutrient broth at 30 °C for 24 h 
under oxic conditions with agitation at 130 rpm. After this, cells were harvested by centrifugation 
(5000× g at 4 °C for 15 min), washed with a fresh sterile medium and used as inoculum. 

3.2. Ibuprofen Degradation Experiments 

Degradation experiments were performed under aerobic conditions in 250 mL Erlenmeyer flasks 
containing 130 mL of the mineral salts medium [17] with glucose (1 g/L) inoculated with bacterial 
cells to a final optical density of about 0.1 at λ = 600 nm (OD600). Ibuprofen was added to a final 
concentration of 10 mg/L. Estimation of optimal temperature and pH for ibuprofen degradation was 
conducted in range 4–42 °C and 4.0–8.0, respectively. Bacterial growth was expressed as an optical 
density at 600 nm. To determine the effect of heavy metals and aromatic compounds on ibuprofen 
degradation, bacterial cultures were additionally supplemented with proper compound. Phenol, 
benzoic acid, 2-chlorophenol, and 4-chlorophenol were introduced into the cultures at a final 
concentration of 1 mM. Metal ions were added as CoSO4, Cd(NO3)2, K2Cr2O7, CuSO4 and HgCl2 at 
concentration equal to the estimated NOECs. All cultures were incubated with shaking (130 rpm) at 

Figure 7. Appearance of 2-hydroxyibuprofen during ibuprofen degradation by Bacillus thuringiensis
B1(2015b).

Molecules 2017, 22, 1676 11 of 17 

 

 

Figure 7. Appearance of 2-hydroxyibuprofen during ibuprofen degradation by Bacillus thuringiensis 
B1(2015b). 

 

Figure 8. Ibuprofen degradation pathway in Bacillus thuringiensis B1(2015b). 

3. Materials and Methods  

3.1. Bacterial Strain and Growth Conditions 

Bacillus thuringiensis B1(2015b) was routinely cultivated in the nutrient broth at 30 °C for 24 h 
under oxic conditions with agitation at 130 rpm. After this, cells were harvested by centrifugation 
(5000× g at 4 °C for 15 min), washed with a fresh sterile medium and used as inoculum. 

3.2. Ibuprofen Degradation Experiments 

Degradation experiments were performed under aerobic conditions in 250 mL Erlenmeyer flasks 
containing 130 mL of the mineral salts medium [17] with glucose (1 g/L) inoculated with bacterial 
cells to a final optical density of about 0.1 at λ = 600 nm (OD600). Ibuprofen was added to a final 
concentration of 10 mg/L. Estimation of optimal temperature and pH for ibuprofen degradation was 
conducted in range 4–42 °C and 4.0–8.0, respectively. Bacterial growth was expressed as an optical 
density at 600 nm. To determine the effect of heavy metals and aromatic compounds on ibuprofen 
degradation, bacterial cultures were additionally supplemented with proper compound. Phenol, 
benzoic acid, 2-chlorophenol, and 4-chlorophenol were introduced into the cultures at a final 
concentration of 1 mM. Metal ions were added as CoSO4, Cd(NO3)2, K2Cr2O7, CuSO4 and HgCl2 at 
concentration equal to the estimated NOECs. All cultures were incubated with shaking (130 rpm) at 

Figure 8. Ibuprofen degradation pathway in Bacillus thuringiensis B1(2015b).

3. Materials and Methods

3.1. Bacterial Strain and Growth Conditions

Bacillus thuringiensis B1(2015b) was routinely cultivated in the nutrient broth at 30 ◦C for 24 h
under oxic conditions with agitation at 130 rpm. After this, cells were harvested by centrifugation
(5000× g at 4 ◦C for 15 min), washed with a fresh sterile medium and used as inoculum.

3.2. Ibuprofen Degradation Experiments

Degradation experiments were performed under aerobic conditions in 250 mL Erlenmeyer flasks
containing 130 mL of the mineral salts medium [17] with glucose (1 g/L) inoculated with bacterial
cells to a final optical density of about 0.1 at λ = 600 nm (OD600). Ibuprofen was added to a final
concentration of 10 mg/L. Estimation of optimal temperature and pH for ibuprofen degradation
was conducted in range 4–42 ◦C and 4.0–8.0, respectively. Bacterial growth was expressed as an
optical density at 600 nm. To determine the effect of heavy metals and aromatic compounds on
ibuprofen degradation, bacterial cultures were additionally supplemented with proper compound.
Phenol, benzoic acid, 2-chlorophenol, and 4-chlorophenol were introduced into the cultures at a final
concentration of 1 mM. Metal ions were added as CoSO4, Cd(NO3)2, K2Cr2O7, CuSO4 and HgCl2 at
concentration equal to the estimated NOECs. All cultures were incubated with shaking (130 rpm) at
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30 ◦C. The HPLC (High Performance Liquid Chromatography) analyses of each culture supernatant
and measurements of the cultures growth were carried out 6 h.

For studying the microbial growth and ibuprofen degradation, the damped least-squares
(DLS) method known as the Levenberg–Marquardt algorithm was used. The application of the
Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of m empirical
datum pairs (xi, yi) of independent and dependent variables, find the parameter θ of the model curve
f(x, θ) so that the sum of the squares of the deviations is minimized:

g(θ) = Σi=m1 (Yi − f(θ, Xi))
2 (1)

3.3. Determination of No-Observed-Effect Concentrations (NOECs) of Heavy Metals

In order to assess NOECs of Cu(II), Cd(II), Co(II), Cr(VI), and Hg(II) for Bacillus thuringiensis
B1(2015b), Dunnett’s tests were performed. Initial concentration of each heavy metal tested was
50 mM, excluding Hg(II) (30 mM). The assays were performed using 96-well microtiter plates in three
independent trials. Into each well, 200 µL of mineral salts medium with 1.25 g/L glucose, 50 µL
of bacterial culture (optical density = 0.15), and an appropriate volume of metal ion solution was
introduced. Cu(II), Cd(II), and Cr(VI) solutions were introduced to obtain the concentration range
0–8 mM; Hg(II) in the concentration range 0–4.8 mM while Co(II) was introduced to obtain a final
concentration of 1.6 mM. After 24 h incubation in dark, at 30 ◦C, plates were subjected to the optical
density analysis. The NOEC was defined as the highest toxic concentration that does not influence
bacterial growth.

3.4. HPLC Analysis

Cultures samples were collected and analyzed every 6 h during first three days of the experiment
(72 h) and then every 24 h tthereafter. The concentration of ibuprofen, 2-hydroxyibuprofen, phenol,
benzoic acid, 2-chlorophenol, and 4-chlorophenol was determined with the HPLC technique using a
Merck Hitachi (Darmstadt, Germany) HPLC reversed-phase chromatograph equipped with Ascentis
Express® C18 HPLC Column (100 × 4.6 mm), pre-column Opti-Solw® EXP, and UV-VIS DAD detector.
The mobile phase consisted of acetonitrile and 1% acetic acid (50:50 v/v) at a flow rate of 1 mL/min.
For phenol, benzoic acid, 2-chlorophenol, and 4-chlorophenol, the detection wavelength was set at
260 nm, and for ibuprofen and 2-hydroxyibuprofen at 240 nm [19]. Ibuprofen, 2-hydroxyibuprofen,
phenol, benzoic acid, 2-chlorophenol, and 4-chlorophenol concentrations were identified by comparing
the HPLC retention times and the UV-VIS spectra with those of the external standards.

3.5. Enzyme Assays

After five days of incubation, Bacillus thuringiensis B1(2015b) cells were transferred to fresh
mineral salts medium supplemented with 10 mg/L ibuprofen and 1 g/L glucose. After 24 h, cells
were harvested by centrifugation (4500× g for 15 min at 4 ◦C) and the pellet was washed with 50 mM
phosphate buffer, pH 7.0, and resuspended in the same buffer. Cell-free extracts were prepared by
sonication of the whole cells suspension (6 times for 15 s) and centrifuged at 9000× g for 30 min at 4 ◦C.
Clear supernatant was used as a crude cell extract for enzyme assays. The enzymes for enzyme activity
analysis were selected based on the literature data indicating enzymes involved in the decomposition
of the aromatic structure under aerobic conditions.

Activity of aromatic monooxygenases was determined spectrophotometrically by measuring
NADH oxidation rate (ε340 = 6220/M cm) [55].

Aliphatic monooxygenase activity was monitored by measuring NADH oxidation (ε340 = 220/M cm)
in sealed assay vials containing 5 mL of methane, pentane, butane/isobutene, or propane/butane
(70:30 v/v), phosphoric buffer pH 7.4 (50 mM), NADH (200 µM), FAD (8.8 µM), and crude enzyme
extracts in a total volume of 2 mL [56].
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The activity of catechol 1,2-dioxygenase was measured spectrophotometrically by the formation
of cis,cis-muconic acid at 260 nm (ε260 = 16,800/M cm). In order to determine catechol
2,3-dioxygenase activity, the formation of 2-hydroxymuconic semialdehyde was measured at
375 nm (ε375 = 36,000/M cm) [51]. The activity of protocatechuate 3,4-dioxygenase was assayed
by measuring the oxygen consumption [57]. The activity of protocatechuate 4,5-dioxygenase was
measured spectrophotometrically by the formation of 2-hydroxy-4-carboxymuconic semialdehyde
at 410 nm (ε410 = 9700/M cm) [51]. In order to determine gentisate 1,2-dioxygenase activity, the
formation of maleylpyruvate was measured at 330 nm (ε330 = 10,800/M cm) [58]. The activity
of hydroxyquinol 1,2-dioxygenase was measured spectrophotometrically by the formation of
maleylacetate at 243 nm (ε243 = 44,520/M cm) [59]. The activity of hydroquinone 1,2-dioxygenase was
measured spectrophotometrically by the formation of 4-hydroxymuconic semialdehyde at 320 nm
(ε320 = 11,000/M cm) [60].

Acetyl-coenzyme A synthethase activity was measured spectrophotometrically based on NAD+

reduction to NADH at 340 nm (NADH: ε340 = 6220/M cm) with combination of malate dehydrogenase
and citrate synthase [61,62]. The enzymatic assay mixture contains: 50 µL L-malate (50 mM), 50 µL
ATP (20 mM), 50 µL MgCl2 (50mM), 50 µL coenzyme A (2 mM), 50 µL NAD+ (50 mM), 50 µL malate
dehydrogenase, 50 µL citrate synthetase, 450 µL phosphoric buffer (100 mM), 100 µL sodium acetate
(1 M), and 100 µL crude extract in total mixture volume of 1 mL.

The activity of laccases and peroxidases was measured spectrophotometrically based on the
syringaldazine oxidation product formation at 525 nm (ε525 = 65,000/M cm). The enzymatic mixture
contains: 110 µL syringaldazine (0.05 mM in 60% ethanol), 100 µL crude extract, 1 µL catalase
(10 mg/mL) in case of laccase, or 100 µL H2O2 (200 mM) for peroxidases and mixtures were filled up
with phosphoric buffer pH 7.4 (50 mM) to total mixture volume of 1 mL [63].

One unit of the enzyme activity was defined as the amount of enzyme required to generate 1 µmol
of product per minute. Protein concentration in the crude extract was determined by the Bradford
method using bovine serum albumin as a standard [51].

3.6. Intermediates Identification

Cultures samples, in the volume of 100 mL, were collected every seven days for six weeks.
All samples were centrifuged and acidified with hydrochloric acid to pH 3.0. Next, samples were
combined and extracted. The obtained extract was divided into two 300 mL fractions. One of them
was frozen in the liquid nitrogen, lyophilized and extracted with 10 mL of hexane (HPLC grade) (2×)
and 10 mL of toluene (HPLC grade) (2×), mixed and evaporated. Second fraction was extracted twice,
at first with hexane (HPLC grade) and then with toluene (HPLC grade) in the volume ratio 3:1 (v/v) in
both cases. Obtained extracts were mixed and evaporated. All cultures and extracts were prepared
in triplicate.

To each sample, 0.1 mL of derivatization reagent MTBSTFA with 1% t-BDMCS was added.
After incubation at 60 ◦C for 30 min, the sample was dissolved in 1 mL of hexane. To qualitative
analysis the PEGASUS 4D GCxGC-TOFMS gas chromatograph (LECO Corp., St. Joseph, MI, USA)
connected to a BPX5 (5% phenyl equivalent, 28 m × 0.25 mm; 0.25 µm) capillary column (SGE Int.,
Melbourne, Australia) was used. The ion source and transfer line temperature were set at 250 ◦C.
Helium was used as carrier gas, with a flow of 1.0 mL/min. After splitless injection of 1 µL of the
sample, the oven temperature was set and maintained for 2 min at 40 ◦C, then it has been applied a
heating ramp to 300 ◦C at a rate of 12 ◦C/min and maintaining the temperature of the oven for 15 min.
The ionization source operated in the positive ion mode (electron energy: 70 V) and the acquisition
rate was set at 10 spectra/s. The ibuprofen metabolites were identified by its mass spectra, as well as
by comparison of the retention time of the analytical standards.
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51. Wojcieszyńska, D.; Guzik, U.; Greń, I.; Perkosz, M.; Hupert-Kocurek, K. Induction of aromatic ring-cleavage
dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World J. Microbiol. Biotechnol.
2011, 27, 805–811. [CrossRef] [PubMed]

52. Penttinen, O. Chlorophenols in aquatic environments: structure-activity correlations. Ann. Zool. Fenn. 1995,
32, 287–294.

53. Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ.
2004, 322, 21–39. [CrossRef] [PubMed]

54. Ding, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J. Toxicity, degradation and metabolic fate of ibuprofen on
freshwater diatom Navicula sp. J. Hazard. Mater. 2017, 330, 127–134. [CrossRef] [PubMed]
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