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ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen that
has the ability to grow in a range of environmental niches. Here, we report the draft
genome sequences of 10 environmental strains of the bacterium isolated from soils,
sediments, and waters in various locations in North America and South Africa.

Pseudomonas aeruginosa is an important opportunistic pathogen often associated
with multiple-drug resistance in hospital environments (1). The bacterium is espe-

cially problematic in immunocompromised individuals, such as patients with cystic
fibrosis, in whom it causes severe health problems (2). In addition to human hosts, the
bacterium has the ability to grow in a range of ecological niches, including plant and
animal tissues of all kinds, as well as soils and aquatic environments (3). Even though
P. aeruginosa demonstrates extensive genetic and phenotypic diversity in ecological
niches (4, 5), the majority of whole-genome sequencing (WGS) studies considering the
organism focus on medically important strains (6–9).

To investigate the genomic diversity of P. aeruginosa in the environment, we
obtained the whole-genome sequences of 10 P. aeruginosa strains isolated from
different locations across North America and South Africa. Strains Pae85, Pae100,
Pae102, and Pae110 were isolated from soils and sediments at various sites around the
greater Toronto area in Ontario, Canada, while Pae111, Pae112, and Pae113 were
isolated from farm soil samples taken outside Maysville, KY. Strain Pae160 was isolated
from a freshwater pond on a golf course in South Africa. Strains PaEB1 and PaEB6 were
isolated from water sediment collected at two sites along the Saw Kill, a tributary of the
Hudson River in Dutchess County, NY. The two strains were extracted from positive
Pseudalert test kits (Idexx Laboratories, Westbrook, MA).

Isolated bacterial cultures were grown in Luria-Bertani broth overnight at 37°C in a
shaking incubator. Cells were harvested and genomic DNA was extracted using the
DNeasy UltraClean microbial kit (Qiagen, Carlsbad, CA). For the Pae strains, WGS was
performed on a MiSeq platform at the University of Toronto Centre for the Analysis of
Genome Evolution and Function (Toronto, Canada), according to the manufacturer’s
protocol, to generate 250-bp paired-end reads. For the PaEB strains, WGS was per-
formed on a HiSeq platform by Wright Labs at Juniata College (Huntingdon, PA),
according to the manufacturer’s protocol, to generate 150-bp paired-end reads. For
every strain, adapters were trimmed using Cutadapt version 1.14 (10) and quality
filtered using Trimmomatic version 0.36 (11). Draft assemblies were conducted using
SPAdes version 3.10.0 (12), with k-mer sizes of 21, 33, 55, 77, 99, and 127. Contigs
shorter than 500 bp or with fewer than four reads were removed from the assembly.
Finally, assembly improvement was undertaken as described by Page et al. (13), where
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contigs were scaffolded using SSPACE (14) and sequence gaps were filled using
GapFiller (15). The assembly with the largest N50 value was used for further analysis.

The average number of contigs per genome was 80, with a standard deviation of
13.9. The draft genomes ranged in size from 6,336,070 bp to 6,836,824 bp, with an
average G�C content of 66.3% (Table 1). The N50 of the draft genomes ranged from
121,945 bp to 735,709 bp, with an average of medians of 278,999.2 bp and an average
median coverage of 85.2� (Table 1).

Accession number(s). The whole-genome shotgun projects have been deposited at
DDBJ/ENA/GenBank (see Table 1). The versions described in this paper are NKYD01000000
(Pae85), NKYC01000000 (Pae100), NKYB01000000 (Pae102), NKYA01000000 (Pae110),
NKXZ01000000 (Pae111), NKXY01000000 (Pae112), NKXX01000000 (Pae113), NKXW01000000
(Pae160), NKXV01000000 (PaEB1), and NKXU01000000 (PaEB6).
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TABLE 1 Summary of the draft genome sequences for Pseudomonas aeruginosa environmental strains

Isolate Origin Location
No. of
contigs

Genome
size (bp)

G�C
content (%) N50 (bp)

Median read
depth (�)

GenBank
accession no.

Pae85 Soil King City, Ontario, Canada 100 6,360,006 65.95 140,050 29 NKYD00000000
Pae100 Soil King City, Ontario, Canada 74 6,436,962 66.42 196,319 26 NKYC00000000
Pae102 Soil King City, Ontario, Canada 90 6,437,018 66.42 121,945 20 NKYB00000000
Pae110 Sediment Toronto, Ontario, Canada 75 6,438,971 66.42 234,265 29 NKYA00000000
Pae111 Soil Maysville, KY 71 6,385,725 66.47 206,050 22 NKXZ00000000
Pae112 Soil Maysville, KY 68 6,444,483 66.39 231,479 40 NKXY00000000
Pae113 Sediment Maysville, KY 65 6,393,508 66.47 245,535 45 NKXX00000000
Pae160 Water South Africa 98 6,836,824 66.01 188,795 30 NKXW00000000
PaEB1 Water Annandale, NY 65 6,336,070 66.50 735,709 337 NKXV00000000
PaEB6 Water Annandale, NY 93 6,467,958 66.41 489,845 274 NKXU00000000
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